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1. Introduction 

 

The linkages between commodity prices in geographically separated markets have 
long attracted the attention of economists and policy makers. The interest in the topic stems 
from the understanding that the intensity and the mode of price relationships may provide 
information about market integration or segmentation. Well-performing (integrated) spatial 
markets are characterized by strong price co-movement (dependence); that means, price 
shocks in one them evoke response to the others. Price transmission is a necessary condition 
for economic efficiency and maximization of benefits from spatial arbitrage (e.g. Meyer and 
von Cramon Taubadel, 2004; Serra et al., 2006).   

The investigation of price linkages in the physical or in the product quality space has  
been conducted with a large variety of quantitative approaches. The overwhelming majority 
of empirical studies have relied on tools suitable for analysis in the time domain such as the 
models of integration, cointegration, threshold or smooth transmission, and their variants (e.g. 
Abdulai, 2002; Dawson and Dey, 2002; Serra et al., 2006; Emmanouilides and Fousekis, 
2012; Hassouneh, et al. 2012). Very few works have relied on tools suitable for analysis in the 
frequency domain (spectral analysis) (e.g. Miller and Hayenga, 2001)1. Both types of analysis 
have strengths and weaknesses. The analysis in the time domain offers an excellent time-
localization (resolution); it assumes, however, that every point in the time-domain contains 
information about all frequencies. As a result, frequency information is completely lost and 
there is no way for a researcher to determine how the different periodic components of a 
given series change over time or how two or more time series are related to each other at 
different frequencies. The analysis in the frequency domain (spectral analysis) offers an 
excellent frequency-localization; it assumes, however, that every point in the frequency 
domain contains information from all points in the time domain. As a result, time information 
is completely lost and there is no way for a researcher to determine how two or more time 
series are related at different time periods (e.g. Ramsey and Lampart, 1998; Crowley, 2007).  
 A quantitative tool which reconciles the analysis in the time domain with that in the 
frequency domain is the wavelet analysis. Its theoretical foundations were laid in the 1980s 
and it was introduced in applied science in the early 1990s. The wavelet analysis allows 
unveiling relationships among time series in the time-frequency domain (that means, 
assessing how time series are related at different frequencies and how those relationships 
evolve over time). It has found fruitful applications in geophysics, in medicine, and in 
engineering.  Following the pioneering work of Ramsey and Lampart (1998), there has been a 
number of empirical studies using wavelet analysis mostly in Finance and Macroeconomics2.     
 Against this background the objective of the present paper is to investigate price co-
movement in the principal skim milk powder (SMP) markets. This is pursued using wavelet 
analysis and monthly wholesale prices from the three principal SMP-producing regions (EU, 
USA, and Oceania) The international trade of dairy products has acquired considerable 
momentum in the last 20 years due to liberalization of food trade, innovations in milk 
processing, rising per capita incomes, and changing dietary patterns in a number of 
developing countries (e.g. Beghin, 2005; Dong, 2006).  The SMP market is considered to be 
the most competitive among all international dairy commodity markets (AgriHQ Academy, 
2014); therefore, it presents a particular interest with regard to the investigation of spatial 
price co-movement. In what follows, Section 2 presents the analytical framework and Section 
3 the data, the empirical models and the empirical results. Section 4 offers conclusions. 

                                                           
1
 The works of Granger and Hatanaka (1964) and Labys and Granger (1970) were among the early applications 

of spectral analysis to price time series.   
2 Surveys are available in Crowley (2007), and in Aguiar-Conraria and Soares  (2014).  



 

 

2. Wavelet analysis of co-movement between time-series 

 

Let )(tx  be a time series. The continuous wavelet transform (CWT) maps )(tx  into  

a function of two variables, namely, time and scale3. This is achieved through the use of local 

basis functions called wavelets. A real or a complex-valued function )()( 2 RLt ∈ψ  qualifies 

as a mother wavelet if it satisfies the admissibility condition
4
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where )(ωΨ is the Fourier transform of )(tψ , ω  is an angular(radian) frequency, and ΨC is 

an admissibility constant (e.g. Farge, 1992; Daubechies, 1992). Starting with a mother 

wavelet one may obtain a family of daughter wavelets by scaling and translating )(tψ as  
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In (2), }0{−∈ Rs is the scaling (dilation) parameter and R∈τ is the translation (shift) 

parameter. The former controls the wavelet’s width (support); 1>s  implies stretching and 

1<s  implies compressing. The latter indicates where the wavelet is centered; changes in 

τ shift the position of the wavelet in time. 

 The continuous wavelet transform of )(tx  with respect to wavelet )(tψ  is given by   
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where * denotes complex conjugate. Being a function of two parameters )and( τs the 

continuous wavelet transform offers a localization of )(tx  in both the time and in the scale 

domains. The precision of localization, however, is limited by Heisenberg’s uncertainty 

principle (derived from quantum mechanics) according to which certain pairs of physical 
quantities cannot be known simultaneously with arbitrary high precision. For the parameters 

τands , in particular, it is impossible to know the exact scale and the exact time of 

occurrence of that scale. That means, there is a trade-off between precision in time and 
precision in scale; the higher precision in time comes at the expense of a lower precision in 
scale (and vice versa). For empirical applications, therefore, one has to select wavelets which 
yield small levels of total uncertainty and achieve a good compromise between time 
uncertainty and scale uncertainty (Rua, 2012; Aguiar-Conraria and Soares, 2014; Aguiar-
Conraria et al., 2014)5. 

                                                           
3  An alternative to CWT is the so-called Discrete Wavelet Transform (DWT).  Relative to the DWT, the CWT 
is computationally intensive. The results of the CWT, however, are easier to interpret relative to those of the 
DWT (Aguiar-Conraria and Soares, 2014; Aguiar-Conraria et al., 2014). In the field of agricultural economics 
the DWT has been applied by Davidson et al. (1998) to investigate cyclical behaviour in the prices of 21 
internationally traded commodities and by Bowden and Zhu (2008) to decompose the farmer terms of trade in 
New Zealand into trend and cyclical components and to examine causal influences with regard to exchange rate, 
output prices, and input prices. In none of the above mentioned works price co-movement and spatial market 
integration was an issue.     
4
 )(2 RL is the set of squared integral functions. These are defined on the real line and they satisfy  
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5 The lower bound of the total uncertainty, defined as the product the standard deviation in time and of the 
standard deviation in scale,  equals 0.5 (Aguiar-Conraria et al., 2008).  



 

 

 The wavelet power spectrum, which represents the local (at any pair τands ) variance 

of )(tx  is defined as the amplitude of the continuous wavelet transform, 

).4(),(),( ,, sWsWPS xx ττ ψψ =  

When the time-scale relationship between the two time series )(tx and )(ty is of interest, it 

can be measured by the cross-wavelet spectrum (it represents the local covariance) as     
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(Hudgins et al., 1993). From the cross-wavelet power spectrum one may obtain the complex 

wavelet coherency, the real wavelet coherency, and the phase difference (phase lead of 

)(tx over )(ty ). The first, is defined as   
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where S denotes a smoothing operator in both time and scale (e.g. Cazelles et al., 2008; 
Aguiar-Conraria et al., 2014). The cross-wavelet spectrum enters directly formula (6). 

Therefore, ψρ ,xy is (for complex-valued wavelets) complex-valued as well and, thus, it is 

difficult to interpret. For this reason, the real wavelet coherency, defined as   
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is used in practice (Rua, 2012; Marczak and Gomez, 2015). ψ,xyR takes values between 0 and 

1 with a high (low) value indicating a strong (weak) co-movement between the two time 

series. By plotting ψ,xyR  in the time-scale space one can distinguish regions where the link is 

stronger and to identify varying patterns in time and/or in scale.  
 The real wavelet coherency is a non negative number in all frequencies and it should 
not be interpreted separately from the phase difference (angle) which gives the relative 
position of the two series in the pseudo-cycle as a function of time and frequency. The phase 
difference can be computed as  
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where Im stands for imaginary and Re for real part of the cross-wavelet spectrum, 
respectively6 (e.g. Torrrence and Compo, 1997; Aguiar-Conraria and Soares, 2014; Marczak 
and Gomez, 2015); it can be positive or negative and it lies between π−  and π . If 

,0),(, =sxy τφ ψ  the time series move together in the specified frequency; if 

),2/,0(),(, πτφ ψ ∈sxy they move in-phase with x leading;  ),0,2/(),(, πτφ ψ −∈sxy  they move 

in-phase with y leading; a phase difference of π  (or of π− ) suggests an anti-phase 

relationship; if  ),,2/(),(, ππτφ ψ ∈sxy the two series move out-of-phase with y leading; and if 

),2/,(),(, ππτφ ψ −−∈sxy they move out of phase with x leading. Moves in- (out-) of-phase 

imply positive (negative) correlation (Agterberg, 2014). Figure 1 presents the interpretation 
of the wavelet phase angle. The examination of phase differences may yield useful insights 

                                                           
6 Economic data are real-valued. The use of real-value wavelets, therefore, to compute cross-wavelet spectrums 
will imply a zero phase angle. For this reason, complex-valued wavelets are typically employed for economic 
analysis. 



 

 

about the timing (leading, lagging, or synchronic) of the price linkages as well as on the 
existence of a fixed or a changing relationship.  
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Phase difference between two time series 

When more than two series are available, one may be interested in the partial complex 

wavelet coherency which captures the co-movement of two time series, conditional on the 
influence of a third series. The complex partial wavelet coherency between, say, series x and 
y, conditional on series z is computed as 
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Again, because ψρ ,.zxy is complex and difficult to interpret, its absolute value (the real partial 

wavelet coherency) is used in practice. The partial phase delay between x and y may be 
obtained by replacing the wavelet spectrum in (7) by its respective conditional (on z) one 
(e.g. Aguiar-Conraria and Soares, 2014).  A finding that controlling reduces coherency in 
some region of the scale-time space will imply that part of the strength of co-movement 
between x and y is due to the presence of z; an opposite finding will imply that z works 
towards clouding the relationship between the x and the y series. 
  There is a number of functions that can be used for continuous wavelet transforms; 
the most common choice, however, is the Morlet wavelet (Goupillaud et al., 1984) defined as  
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The Morlet wavelet has a number of advantages: (a) it is complex-valued (suitable, therefore, 
for the study of phase differences); (b) it has optimal joint time-scale concentration (its total 
uncertainty reaches the lower bound, 0.5); (c) it achieves an excellent compromise between 

time uncertainty and scale uncertainty (each equals to 1/ 2) ; (d) it facilitates the conversion 

from scale to the usual Fourier frequency f  (cycles per unit  of time). As known, the 
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relationship between f and s is 
s

sf
π

ω

2
)( 0= ; setting 60 =ω  (a very common choice in 
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  Because of the last relationship, the terms 

scale and frequency will be used here interchangeably;  high (low) frequency will imply 
small (large) scale.   
  

3. The Data, the models, and the empirical results 

 

The data for the empirical investigation are monthly nominal wholesale prices of SMP 
(in $1000 per ton). They have been obtained from DairyCo and they refer to the period 
2001:1 to 2015:37.  The EU, the USA, and Oceania are, in this order, the three principal 
SMP-producing regions in the World. They are at the same time the three major exporters; 
taken together, they accounted for more than 82% of the World exports in 2011-13 (OECD-
FAO, 2015). The most important import markets for SMP are Mexico, China, Indonesia, 
Algeria, Russian Federation, Middle East, Malaysia, Pakistan, and Egypt. The demand for 
SMP in developed countries have been stagnating in recent years; therefore, the growth in 
SMP production has been bound to come from exports to countries where not enough freshly 
produced milk is available. Trade flows of SMP among the USA, the EU, and Oceania are 
negligible; market integration in this case may be achieved indirectly, that means, from the 
fact that the three principal producing regions compete for customers in the international 
SMP market.  

All earlier works which have used the CWT to study linkages between economic time 
series have focussed their attention on the relationship between rates of change (e.g. Aguiar- 
Conraria et al., 2008; Addo et al., 2014; Aguiar-Conraria  et al., 2014;  Marczak and Gomez, 
2015). This applies to the present study as well; the variables of interest here are the 

logarithmic price ratios, , , 1ln( / )
i t i t

p p −  where 
it

p  is the wholesale price in time t=2001:2, …, 

2015:3, and in region i=Oceania, EU, and USA. We denote the logarithmic price ratios as 
deu, doc, and dus.  

    Figure 2 presents the real wavelet coherency for the SMP prices in Oceania and in 
the USA8.  The vertical axis presents the scale (in months) while the horizontal axis presents 
points in time. The inverted U-shaped red line indicates the cone of influence (COI), that is, 
the region of the real wavelet coherency affected by the edge effects9. The black contours 
designate the 5% level of significance estimated from Monte Carlo simulations using phase 
randomized surrogate series10.  The colour code for the values of the real wavelet coherency 
ranges from red (very high) to blue (very low); warmer colours indicate higher values. The 
statistically significant real wavelet coherencies are predominantly associated with low 
frequencies (scales above 12 months) and with the most recent years of the sample (roughly 

                                                           
7 www.dairyco.org.uk/market-information 

8 All estimations have been carried out using the GWPackage developed by Aguiar-Conraria and Soares. 
Accessible at https://sites.google.com/site/aguiarconraria/joanasoares-wavelets. 
9 As it is the case with other transforms, the CWT when applied to series with finite lengths suffers from border 
distortions which increase with the scale (e.g. Cazzelles et al., 2008;  Aguiar-Conraria and Soares, 2014). 
Results such as real wavelet coherencies, therefore, falling within the CIO should be interpreted with care.       
10 Surrogate is a non parametric randomized linear version of the original data which preserves the mean, the 
standard deviation, the autocorrelation, the partial autocorrelation function, and the power spectrum (e.g. Addo 
et al., 2014). Here, as in Aguiar-Conraria et al. (2008) and Aguiar-Conraria and Soares (2014) the surrogates are 
constructed fitting an ARMA(1,1) model to the original data and building new samples by drawing errors from a 
Gaussian distribution.     



 

 

after 2006); it is noteworthy that prior to 2006 one can hardly identify a region with 
statistically significant coherencies even at the very high scales. Table 1 presents descriptive 
statistics of the real wavelet coherencies for Oceania and the USA computed over all scales  
as well as over two scale bands; namely, the scale band 2-12 months and the scale band over 
12 months.  

Figure 3 presents the phase differences for two scale bands, again (the 2-12 months 
and the over 12 months); the “x” series is doc and the “y” series is dus. Note that there are no 
statistical tests for the significance of phase angles. Ge (2008) showed that under the null 
hypothesis of no linear relationship between two time series the phase difference will be 
distributed uniformly on [π , π− ]. The information from phase difference graphs, therefore, 
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Figure 2.  Oceania and the USA: Real wavelet coherency 

 

Table 1. Oceania and the USA: 

Descriptive statistics for the real wavelet coherency 

 

 Quantile 

Scales 0% 25% 50% 75% 100% 

all 0.015 0.558 0.801 0.904 0.960 

2 to 12  
months 

0.015 0.466 0.638 0.908 0.947 

more than 12 
months 

0.267 0.859 0.912 0.939 0.960 
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Figure 3. Oceania and the USA: Phase Difference, by Scale  

                       (upper part, 2- 12 months; lower part, over 12 months) 
 

 
should be always considered with reference to the statistical significance of coherency at the 
different scales and to the cone of influence. The phase angle for the scale 2-12 months 
exhibits an erratic behaviour prior to 2007 and after 2012 where, however, coherency at that 
band is generally not statistically significant. Between 2007 and 2011, the angle difference is 
initially in )0,2/( π− suggesting that there is a positive relationship between the price changes 

in the two regions with price shocks in the USA leading those in Oceania. Then, the angle 

difference lies in )2/,0( π suggesting again an in-phase movement of prices with Oceania as 

the leader. For scales over 12 months and for the sample intervals where coherency is 

statistically significant (this happens largely after 2006) the phase difference lies in )2/,0( π  

suggesting that the Oceania market leads the USA market. 
Figure 4 presents the real wavelet coherency for the SMP prices in the EU and in the 

USA. As it was the case for the rates of price change in Oceania and the USA, the statistically 
significant coherencies are predominantly associated with the low frequencies and with the 
most recent years of the sample. Table 2 presents the relevant descriptive statistics. The 
similarity in the coherency patterns of the pairs (doc, dus) and (deu, dus) carries over to their 
respective phase differences (Figure 5); there is an erratic behaviour at scales where 
coherency is not statistically significant and evidence of positive co-movement at the low 
frequencies with EU (the “x” series) being the leader.  

 



 

 

time

p
e

ri
o

d
s

 0
.0

5 

 0.05 

 0.05 

 0
.0

5
 

 0.05 

 0.05 

2

4

8

12

16

24

32

64

2001:2 2005:8 2009:3 2012:6 2015:1

 
 
 

Figure 4.  The EU and the USA: Real wavelet coherency 

 
 

Table 2. The EU and the USA: 

Descriptive statistics for the real wavelet coherency 

 

 Quantile 

 Scales 0% 25% 50% 75% 100% 

all 0.019 0.649 0.848 0.933 0.984 

2 to 12  
months 

0.019 0.534 0.754 0.864 0.969 

more than 12 
months 

0.138 0.864 0.932 0.959 0.984 
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Figure 5. The EU and the USA: Phase Difference, by Scale 

(upper part, 2- 12 months; lower part, over months) 
 

Figure 6 presents the real wavelet coherency for SMP prices in the EU and in 
Oceania. The price changes in this pair of regions are far more strongly associated compared 
to the other two pairs considered. The real wavelet coherencies are statistically significant at 
the large scales over the entire period 2001 to 2015. Moreover, the regions where coherency 
is not statistically significant are largely located at the bottom left part of Figure 6 (at the high 
frequencies and prior to 2009). Table 3 presents the relevant descriptive statistics. Given that 
coherencies are to a great extent statistically significant, it is now safer to draw conclusions 
about potential lead-lag relationships. The phase difference for the scale band 2-12 months 
evolves around zero but most of the times it lies )2/,0( π  implying that it is the “x” series 

(deu) rather the “y” (doc) series that leads. The values of the phase angle for scales over 12 
months are almost everywhere very close to zero suggesting that prices in the EU and in 
Oceania move together (Figure 7).                  

The results from the wavelet analysis appear to be in line with the developments in 
the SMP trade during the period considered in this study. In particular, in the first years of the 
sample, the EU and Oceania were the main competitors in the global SMP market. The USA 
production of SMP was consumed domestically and/or it was exported to the country’s 
neighbours (notably Mexico). After the mid-2000s the USA, thanks to rather favourable 
international international prices, has become a very active exporter. It has increased 
considerably its export volumes and at the same time it, to a large extent, has differentiated its 
export markets; although still about one third of the USA exports head to Mexico, the 
markets of China, Philippines, Indonesia, Vietnam, and Malaysia have become increasingly 
important for the USA. On those latter markets, the US exporters of SMP have to compete 
with their counterparts from Oceania and from the EU. The USA’s exposure to direct 



 

 

competition with the other two principal players in the international SMP market aligned, in a 
rather short time interval, the rate of change in wholesale prices in the US to those in Oceania 
and in the EU (the abrupt change/break in the intensity of price co-movement is evident in 
Figures 2 and 4 about 2006/7).  
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Figure 6.  The EU and Oceania: Real wavelet coherency 

 
 

Table 3. The EU and Oceania: 

Descriptive statistics for the real wavelet coherency 

 

 Quantile 

Scales 0% 25% 50% 75% 100% 

all 0.02 0.729 0.892 0.981 0.992 

2 to 12  
months 

0.02 0.577 0.751 0.854 0.987 

more than 12 
months 

0.826 0.968 0.982 0.987 0.992 
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Figure 7. The EU and Oceania: Phase Difference, by Scale 

(upper part, 2- 12 months; lower part, over 12 months) 
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(a) Oceania and the USA 
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(b) The EU and the USA 
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(c) The EU and Oceania 

Figure 8. Real Partial wavelet coherency 

 
Figure 8 (panels (a), (b) and (c)) presents the partial wavelet coherencies. In general, 

these are considerably lower than the corresponding (at the same time period and frequency  



 

 

band) unconditional ones even at the large scales11. The only noteworthy exception appears in  
the upper left part of Figure 8 (panel (c)) where the coherency between the price changes in 
Oceania and the in EU is unaffected by the price changes in the USA. The decrease in the 
high and statistically significant coherencies at the low frequencies with conditioning has an 
interesting economic interpretation. The three SMP-producing regions at the large scales have 
formed, in recent years, a great pool within which prices move together; changes in just one 
price contain much of the information relevant to the changes in the other two prices. The 
exception in the upper left part of Figure 8 (panel (c)) substantiates the claim. In the first 
years of the sample, the USA was not well integrated with the other two producing regions 
(that means, price changes in the US prices were not really informative about price changes 
in the EU and in Oceania); as result, conditioning on the US price changes had no effect 
whatsoever on the strength of the relationship between price changes in the EU and in 
Oceania. 
 
 

4. Conclusions 

 

The objective of the present paper has been to analyse price linkages in the principal SMP 
producing regions. This has been pursued using wavelet analysis and monthly wholesale 
prices from the EU, Oceania, and the USA. The continuous wavelets transforms by mapping 
stochastic processes into the time and into the frequency domains are capable of revealing 
potentially interesting patterns of spatial price dependence which cannot be detected by 
alternative approaches focussing exclusively either on the time or on the frequency domain.  

According to the empirical results: 
(a) The price linkages at the high frequencies are generally weak over the entire span  

of the data. They become, however, progressively stronger as one considers longer time 
horizons. This indicates a low speed of price transmission; full transmission of a price shock 
from one of the SMP region to the other is likely to require considerable (more than 12 
months) amount of time.  

(b) The pair of regions EU and Oceania exhibit over the total period considered here a  
higher degree of integration compared to the pairs USA and EU, and USA and Oceania. The 
rate of price changes in the USA, however, has shown a strong tendency to align with those 
in the other two regions after 2006/7 when the country started expanding its volume of SMP 
exports and diversifying its export markets.  

(c) At the low frequencies, price changes in both the EU and Oceania have been  
leading price changes in the USA. At the high frequencies, price changes in the EU largely 
lead those in Oceania; at the low frequencies, however, there is no such lag-lead relationship; 
prices in the EU and in Oceania move together. This is an indication that not only the strength 
but the timing of a spatial price relationship can be frequency-dependent.   

The intensification of trade is expected to strengthen the price linkages and the 
integration of the SMP-producing regions. According to the OECD-FAO (2015) the trade of 
SMP will exhibit an annual growth rate at about 2% in the next 10 years. Underlying that 
forecast is the assumption of strong growth in incomes among developing countries, 
especially in the Middle East, North Africa, South East Asia, and China. Nevertheless, there 
are uncertainties and challenges as well. First, is the outcome of various Free Trade 
Agreements and Regional Trade Agreements currently under discussion. Second, is the 
efforts of major importers (e.g. China) to increase their degree of self-sufficiency in dairy 

                                                           
11 Given that the overwhelming majority of partial coherencies are not significant, it does not make much sense 

to purse an analysis of lead-lad relationships through the phase difference graphs.   



 

 

commodities, in general, and in SMP, in particular. Third, is the impact of the removal since 
April 2015, of the EU quota on the production of milk and dairy commodities. Fourth, the 
environmental issues associated with dairy production activities (e.g. greenhouse-gas 
emissions, water access and manure management) may result into binding constraints (e.g. 
stringent environmental legislation) for certain important SMP exporters such as New 
Zealand.  
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