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Abstract
This note strengthens the sufficiency part of Blavatskyy's (2008) {em Stochastic Utility Theorem} and corrects an

error in the necessity part. To do so, we introduce the distinction between a {em stochastic utility representation} and

a {em strict stochastic utility representation} for binary choice probabilities.
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1 Introduction

Since the mid-1990s there has been renewed vigour in the debate about the descriptive
merits of expected utility (EU). John Hey sounded the call to battle with his conjecture that
“one can explain experimental anlayses of decision making under risk better (and simpler)
as EU plus noise — rather than through some higher level functional — as long as one specifies
the noise appropriately.” (Hey, 1995, p.640). A number of other contributors have since
weighed in on this empirical question, including (inter alia) Ballinger and Wilcox (1997),
Loomes and Sugden (1998), Buschena and Zilberman (2000), Butler, Isoni and Loomes
(2012), and Loomes and Pogrebna (2014).
Hey’s conjecture also signals a shift in the field of battle, from deterministic to stochastic

models of choice behaviour. Theorists have rallied to the call by providing axiomatic
foundations for models that may be characterised as “EU plus noise”. The leading examples
are Gul and Pesendorfer (2006), Blavatskyy (2008) and Dagsvik (2008).
The Gul and Pesendorfer (2006) model is of the random utility variety. A decision-

maker is characterised by a probability distribution over von Neumann-Morgenstern utility
functions. When presented with a choice amongst risky prospects, a utility function is
selected at random according to the given distribution and an expected-utility-maximising
choice is made.
The models of Blavatskyy (2008) and Dagsvik (2008), by contrast, are “single utility”

models in the Fechnerian tradition of psychophysics (Falmagne, 2002). For the case of
binary choice problems — the sort typically encountered in the experimental literature — a
decision-maker is characterised by a single von Neumann-Morgenstern utility function u
plus an auxiliary function f that converts expected utility differences into choice proba-
bilities. When presented with the binary choice {a, b}, where a and b are risky prospects,
the probability with which the decision-maker chooses alternative a, denoted P (a, b), is
determined as follows:

P (a, b) = f (u (a)− u (b)) .

She chooses b with the complementary probability P (b, a) = 1 − P (a, b). The function
f is required to be non-decreasing and to satisfy f (x) + f (−x) = 1. It follows that the
decision-maker chooses the alternative with the higher expected utility at least half of the
time, and this likelihood is weakly increasing in the difference between the higher and the
lower expected utility.
The essential difference between Blavatskyy (2008) and Dagsvik (2008) is that the latter

requires f to be strictly increasing, in the spirit of Debreu (1958), while Blavatskyy (2008)
does not. The two sets of axioms are also very different.1

The purpose of this note clarify and strengthen the representation theorem of Blavatskyy

1Dagsvik (2008) also considers stochastic models of multinomial choice, while Blavatskyy (2008) confines
attention to the binary case.



(2008). First, we observe that one of Blavatskyy’s axioms is redundant (i.e., it is implied
by the rest). Second, we show that the necessity of Blavatskyy’s axioms only obtains if f is
required to satisfy an additional property — it should not be constant on any neighbourhood
of 0 unless u is constant. Finally, we introduce the distinction between a stochastic utility
representation and a strict stochastic utility representation to emphasise the behavioural
implications of this new restriction on f .

2 A Strict Stochastic Utility Theorem

Let A denote the unit simplex in Rn, interpreted as the set of lotteries over the outcomes in
X = {x1, ..., xn}. Following convention, we write aλb for λa+ (1− λ) b whenever a, b ∈ A
and λ ∈ [0, 1].
Consider binary choice problems in which the pairs of alternatives are drawn from

the set A. Since choice behaviour may exhibit randomness, each decision-maker will be
characterised by a collection of binary choice probabilities rather than a preference relation.
A binary choice probability function is a mapping

P : A× A→ [0, 1] .

If a 6= b, the quantity P (a, b) is the probability (or, in behavioural terms, the expected
frequency) with which the decision-maker selects a when given the choice between a or
b. No behavioural interpretation is given to P (a, b) when a = b, but it is conventional
to define binary choice probability functions on the entire Cartesian product A × A for
convenience.
Given a binary choice probability function P , it is natural to induce the following binary

relation on A: for any a, b ∈ A:

a %P b ⇔ P (a, b) ≥ P (b, a) (1)

We will call %P the decision-maker’s stochastic preference relation. Thus, a is weakly
stochastically preferred to b iff the decision-maker is expected to choose a over b at least
as frequently as she is expected to choose b over a. We define �P and ∼P from %P in the
usual way.
Blavatskyy (2008) says that P : A×A→ [0, 1] has a stochastic utility representation if

there exists a linear utility function u : A → R and a non-decreasing function f : R → R

satisfying f (x) + f (−x) = 1 for all x ∈ R such that

P (a, b) = f (u (a)− u (b)) (2)

for any a, b ∈ A.
Note that f (x) + f (−x) = 1 implies f (0) = 1

2
, so P (a, b) ≥ 1

2
when u (a) ≥ u (b) and

P (a, b) ≤ 1

2
when u (a) ≤ u (b). In other words, if P has a stochastic utility representation



then the decision-maker maximises expected utility with error: she chooses the alternative
with the higher expected utility with probability at least 1

2
though not necessarily with

certainty. Moreover, the probability with which the expected-utility-maximising choice is
made is weakly increasing in the difference between the higher and the lower expected
utility.
Since f need not be strictly increasing, it is possible that P (a, b) = 1

2
even if u (a) >

u (b). This has the unfortunate consequence that u need not represent (in the usual sense)
the stochastic preference relation %P . To see why, observe that f (x) + f (−x) = 1 implies

P (a, b) + P (b, a) = 1

and hence

a %P b ⇔ P (a, b) ≥
1

2
(3)

We may therefore have a ∼P b (i.e., P (a, b) = 1

2
) when u (a) > u (b). This happens if f is

constant in some neighbourhood of 0 but u is non-constant.
Let us say that P has a strict stochastic utility representation if it has a stochastic

utility representation (2) such that u represents %P . This is equivalent to saying that
P has a stochastic utility representation such that either f is non-constant on any open
neighbourhood of 0 or u is constant.
Note that the function f in a strict stochastic utility representation need not be contin-

uous, even at 0. Indeed, there are important discontinuous examples, such as the Harless
and Camerer (1994) model of constant errors.
One half of Blavatskyy’s Stochastic Utility Theorem (Blavatskyy, 2008, Theorem 1)

establishes that the following five conditions are sufficient for P : A×A→ [0, 1] to possess
a stochastic utility representation:

Axiom 1 (Completeness) For any a, b ∈ A, we have P (a, b) = 1− P (b, a).

Axiom 2 (Strong Stochastic Transitivity) For all a, b, c ∈ A, if

min {P (a, b) , P (b, c)} ≥
1

2

then P (a, c) ≥ max {P (a, b) , P (b, c)}.

Axiom 3 (Continuity) For any a, b, c ∈ A the following sets are closed
{
λ ∈ [0, 1]

∣∣∣∣ P (aλb, c) ≥
1

2

}

{
λ ∈ [0, 1]

∣∣∣∣ P (aλb, c) ≤
1

2

}



Axiom 4 (Common Consequence Independence) For any a, b, c, d ∈ A and any λ ∈
[0, 1]

P (aλc, bλc) = P (aλd, bλd) .

Axiom 5 (Interchangeability) For any a, b ∈ A,

P (a, b) =
1

2
⇒ P (a, c) = P (b, c) .

In fact, a careful reading of Blavatskyy’s proof reveals a slightly stronger result: he
shows that Axioms 1-5 suffice for a strict stochastic utility representation. We may
strengthen it further by the following observation:

Lemma 2.1 Axiom 5 is implied by Axioms 1 and 2.

Proof. Davidson and Marschak (1959, p.240) prove that, given Axiom 1, strong stochastic
transitivity (Axiom 2) is equivalent to the following weak substitutability property:2 for any
a, b, c ∈ A,

P (a, b) ≥
1

2
⇒ P (a, c) ≥ P (b, c) (4)

Axiom 5 is a direct implication of weak substitutability, and hence of Axioms 1 and 2. �

As a Corollary we have the following strengethened version of the “sufficiency” part of
Blavatskyy (2008, Theorem 1).

Corollary 2.1 If P is satisfies Axioms 1-4 then it has a strict stochastic utility represen-
tation.

Although Corollary 2.1 follows directly from Blavatskyy (2008) and Lemma 2.1, we
give a proof in the Appendix.
The other half of Blavatskyy’s Stochastic Utility Theorem asserts that P has a stochastic

utility representation only if it satisfies Axioms 1-5. This is not quite correct. A binary
choice probability function with a non-strict stochastic utility representation may violate
Axioms 2, 3 and 5.

Example 2.1 Suppose that u is linear on A with u (A) = [0, 1] and f : R → R is the
function

f (x) =






3

4
if x ≥ 1

2

1

2
if x ∈

(
−1

2
, 1
2

)

1

4
if x ≤ −1

2

2If we replace “⇒” with “⇔” in (4) we obtain the substitutability condition (Tversky and Russo, 1969).



Note that f is non-decreasing and satisfies f (x)+f (−x) = 1. Let P (a, b) = f (u (a)− u (b))
for all a, b ∈ A. Then P is a binary choice probability function with a (non-strict) stochas-
tic utility representation. Let a, b, c ∈ A with u (a) = 7

8
, u (b) = 5

8
and u (c) = 1

4
. We have

P (a, b) = 1

2
and

P (a, c) =
3

4
>
1

2
= P (b, c)

which contradicts Axiom 5. We also have P (c, b) = P (b, a) = 1

2
and P (c, a) = 1

4
which

contradicts Axiom 2. Finally:

{
λ ∈ [0, 1]

∣∣∣∣ P (aλb, c) ≤
1

2

}
=

[
0,
1

2

)
.

This is a violation of Axiom 3.

To ensure that Axioms 1-5 (equivalently, Axioms 1-4) hold, the function f in a sto-
chastic utility representation must not be constant in any open neighbourhood of 0, unless
u is constant. In other words, the stochastic utility representation must be strict. The
following is proved in the Appendix.

Theorem 2.1 The binary choice probability function P has a strict stochastic utility rep-
resentation iff P satisfies Axioms 1-4.

Theorem 2.1 is the main result of the paper. It strengthens the sufficiency part and
corrects the necessity part of Blavatskyy (2008, Theorem 1). In short, Blavatskyy’s (2008)
analysis applies to what we have called strict stochastic utility representations. Obtain-
ing necessary and sufficient conditions for a stochastic utility representation remains an
open question. However, it also appears to be a less interesting one, as the inconsistency
between %P and the utility function in a stochastic utility representation is conceptually
unappealing.

3 Concluding remarks

To summarise, we have established three results. First, Axiom 5 (Interchangeability)
is redundant to Theorem 1 in Blavatskyy (2008). Second, the existence of a stochastic
utility representation does not imply Axioms 1-5. Hence, we introduce the notion of a
strict stochastic utility representation, in which u represents %P . Finally, we establish
that Axioms 1-4 are necessary and sufficient for the existence of a strict stochastic utility
representation.
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Appendix

Proof of Corollary 2.1. We break the proof into three steps.

Step 1. In which Axioms 1-4 are used to show that the binary relation %P has a linear
representation.

Let %P be the binary relation on A derived from P using (3). This is complete by
Axiom 1 and transitive by strong stochastic transitivity (Axiom 2). Using Axiom 3
we deduce that the sets {

λ ∈ [0, 1]
∣∣ aλb %P c

}

and {
λ ∈ [0, 1]

∣∣ c %P aλb
}

are closed for any a, b, c ∈ A. Finally, one may show that %P satisfies the following
independence condition: for any a, b, c ∈ A

a ∼P b ⇒ a
1

2
c ∼P b

1

2
c.

Suppose, to the contrary, that a ∼P b but

a
1

2
c �P b

1

2
c.

Then P (a, b) = 1

2
and

P

(
a
1

2
c, b
1

2
c

)
>
1

2
.

Using common consequence independence (Axiom 4) twice we have

P

(
a, b
1

2
a

)
>
1

2

and

P

(
a
1

2
b, b

)
>
1

2
.

Applying strong stochastic transitivity we deduce the required contradiction:

P (a, b) ≥ max

{
P

(
a, a

1

2
b

)
, P

(
a
1

2
b, b

)}
>
1

2
.



Theorem 1 in Fishburn (1982, Chapter 2) therefore implies that %P has a linear
representation u : A → R, unique up to positive affine transformations. If u is
constant, a strict stochastic utility representation follows trivially: define f (x) = 1

2

for all x. Otherwise, we may assume that u (A) = [0, 1] and we do so for the remainder
of the proof. We also define δi to be the i

th unit vector in Rn (i.e., the degenerate
lottery that gives xi with probability 1) and we assume that the elements of X are
ordered such that δ1 %

P δ2 %
P · · · %P δn. It follows that u (δ1) = 1 and u (δn) = 0.

Step 2. In which Axioms 1 and 2 are used to show that P can be re-expressed as a function
of the utilities of alternatives.

The weak substitutability condition (4), together with Axiom 1, give

u (a) = u (b) ⇔ P (a, b) =
1

2
⇒ P (a, c) = P (b, c) ⇔ P (c, a) = P (c, b)

for any a, b, c ∈ A. It follows that there exists a function π : [0, 1]2 → [0, 1] such
that P (a, b) = π (u (a) , u (b)) for any a, b ∈ A. Weak substitutability and Axiom
1 further imply that π is non-decreasing in its first argument, non-increasing in its
second and satisfies π (x, y) = 1− π (y, x).

Step 3. In which Axiom 4 is used to show that π (x, y) depends only on x− y.

Given any k ∈ [0, 1] note that

{
(x, y) ∈ [0, 1]2

∣∣ x− y = k
}

= {(y + k, y) | y ∈ [0, 1− k]}

= {(k + (1− k) z, (1− k) z) | z ∈ [0, 1]}

= {k (1, 0) + (1− k) (z, z) | z ∈ [0, 1]}

From the linearity of u and the fact that u (A) = [0, 1] we have

P (k (δ1, δn) + (1− k) (c, c)) = π (k (1, 0) + (1− k) (u (c) , u (c)))

for any c ∈ A. Common consequence independence implies that this quantity is
independent of c. Thus, for any k ∈ [0, 1], the function π is constant on the set

{
(x, y) ∈ [0, 1]2

∣∣ x− y = k
}

(5)

Since π (x, y) = 1−π (y, x), it follows that π is also constant on (5) for any k ∈ [−1, 0].
From Step 2, we know that the value of π on (5) is non-decreasing in k. The stochastic
utility representation now follows directly: define f : [−1, 1] → [0, 1] by f (k) =
π (x, y) for any (x, y) ∈ [0, 1]2 with x− y = k and define f on (−∞,−1) ∪ (1,∞) in
any fashion that ensures f is non-decreasing and satisfies f (x) + f (−x) = 1. Since
u represents %P , this is a strict stochastic utility representation.



This completes the proof of Corollary 2.1. �

Proof of Theorem 2.1. The “if” part is Corollary 2.1. We prove the “only if” part here.
Completeness (Axiom 1) is implied by f (x) + f (−x) = 1.
Axiom 2 (strong stochastic transitivity) follows from the facts that u represents %P

and f is non-decreasing: the former ensures u (a) ≥ u (b) whenever P (a, b) ≥ 1

2
, and the

latter implies
f (x+ y) ≥ max {f (x) , f (y)}

for all x ≥ 0 and y ≥ 0.
To verify continuity (Axiom 3) we use the linearity of u and the fact that u represents

%P to deduce

P (aλb, c) ≥
1

2
⇔ u (aλb) ≥ u (c) ⇔ λ [u (a)− u (b)] ≥ [u (c)− u (b)]

and

P (aλb, c) ≤
1

2
⇔ u (aλb) ≤ u (c) ⇔ λ [u (a)− u (b)] ≤ [u (c)− u (b)] .

Finally, common consequence independence (Axiom 4) follows from the linearity of u,
since

u (aλc)− u (bλc) = λ [u (a)− u (b)]

for any c ∈ A. �


