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1 Introduction

In a wide variety of economic, political, and social situations, people often expend
their scarce and irrevocable resources (e.g., money, time, effort) in order to secure
prizes or influence the chances of winning them. Examples include R&D compe-
titions, arms races, electoral campaigns, lobbying activities, litigations, waiting in
line, and athletic competitions. The game that well captures characteristics of these
situations is the all-pay auction (Hillman and Samet, 1987; Baye et al., 1996).1 In
this auction, all bidders forfeit their bids, and only the highest bidder wins the prize.
The literature traditionally assumes the symmetric tie-breaking rule in the all-pay
auction. This means that in case of a tie the prize is either split equally among
bidders with the highest bid if the prize is divisible or awarded to one of them with
equal probability otherwise. The all-pay auction is fair in that that tie-breaking rule
treats bidders equally.

Yet, casual observation questions such fair treatment. For example, favoritism
may take place in the workplace. Employers favor one employee over the other
equally performed employees in promotion. In many developing countries govern-
ment officials treat firms differently in government procurement (Lien, 1990). An
official’s favored firm can still obtain a contract by giving the same amount of bribes
to the official as the other firms.

The objective of this note is to characterize the set of Nash equilibria in the
two-person all-pay auction with discrete strategy space and complete information
in which bidders are treated differently in case of a tie. In this auction, each bidder
independently choose one of discrete bids. The winner of the prize is whoever
chooses the highest bid. In case of a tie, however, one designated bidder wins the
prize. Thus, one must outbid the other whereas the other only needs a tie.2

This note complements the existing literature of all-pay auctions with discrete
strategy space. Bouckaert et al. (1992) and Schep (1994) analyze the two-person all-
pay auction in which ties are broken randomly with equal probability. They show
that there are multiple equilibria in mixed strategies.3 Rapoport and Amaldoss
(2000) analyze two-person all-pay auctions with budget constraints in which neither
bidder wins the prize in case of a tie, and later Dechenaux et al. (2006) characterize
the set of Nash equilibria. Cohen and Sela (2007) investigate all-pay auctions with
a variety of tie-breaking rules. None of these studies, however, explores the tie-

1For a recent review of the literature, see Konrad (2009).
2Bornstein et al. (2005) theoretically and experimentally analyze a somewhat related asymmet-

ric contest. Their game is an asymmetric competition between two three-person groups over a
single prize. Each group member decides whether to contribute her entire endowment or not. The
two groups compete with each other in terms of the number of contributors. Asymmetry comes
into play when the two groups tie; one group is a pre-selected winning group of the contest in case
of a tie. Each contributor forfeits her contribution, regardless of whether her group wins or not.
Then, each member of the winning group can enjoy the prize, regardless of whether she contributes
or not.

3If the strategy space is continuous, there exists a unique equilibrium in which each bidder
randomizes uniformly over the closed interval [0, v], where v is the common valuation of the prize
(see Baye et al., 1996).



breaking rule that favors one bidder over the other bidder.4

This literature is relatively small compared to that of all-pay auctions with con-
tinuous strategy space.5 However, two major reasons make this line of research
worthwhile pursuing. First, it is well documented that the differences between con-
tinuous and discrete versions of a model often matters. Second, experimental meth-
ods have rapidly been gaining popularity in the field of contest theory (Dechenaux
et al., 2014), and the implementation of laboratory experiment requires discreteness.
Subjecting the continuous version of a model to experimental testing may lead to
erroneous conclusions.

The rest of the note proceeds as follows. Section 2 formally presents the model
and the set of Nash equilibria. Section 3 concludes.

2 Set of Nash Equilibria

There are two risk-neutral bidders, indexed by 1 and 2, respectively. Hereafter,
i ∈ {1, 2} is used to refer to a generic bidder and −i the other bidder. They seek
a single, indivisible prize v, the valuation of which is the same for both bidders.
Each bidder simultaneously chooses her bid bi from the discrete strategy space B =
{0, ϵ, 2ϵ, . . . }, where ϵ > 0. v is assumed to be multiples of ϵ such that v ≥ 2ϵ.6

Bidder 1 wins the prize if b1 ≥ b2 and bidder 2 wins otherwise. In other words,
bidder 2 has to outbid bidder 1. Formally, bidder 1’s contest success function is

p1(b1, b2) =

{

1 if b1 ≥ b2

0 otherwise

and bidder 2’s contest success function is p2(b2, b1) = 1 − p1(b1, b2) because the
winner of the prize is always determined. Bidder i’s preferences are represented by
the expected value of the payoff function given by

ui(bi, b−i) = v · pi(bi, b−i)− bi.

It is a well-known result that the all-pay auction with complete information does
not possess a pure-strategy equilibrium. Since it is straightforward to show that the
same is true even in the current setting, the proof is omitted.

In the mixed extension of the games, denote by (σ1, σ2) a profile of mixed strate-
gies, where σi is bidder i’s mixed strategy, i.e., a probability distribution over B,
and σi(b) is the probability assigned by σi to a pure strategy b ∈ B. Then, here is
the main result:

4One exception is Otsubo (2013), which introduces this asymmetric tie-breaking rule to the
same game studied by Rapoport and Amaldoss (2000).

5A partial list of the studies of the continuous all-pay auction that consider various tie-breaking
rules include Lien (1990), Konrad (2002), Araujo et al. (2008), Feess et al. (2008), and Szech
(2015).

6If v = ϵ, there exist two pure-strategy Nash equilibria; one in which both bidders choose a bid
0 and the other in which bidder 1 chooses a bid 0 and bidder 2 chooses a bid ϵ.



Theorem. There exist two types of Nash equilibria in mixed strategies (σ∗
1, σ

∗
2). The

first type is a unique symmetric Nash equilibrium characterized by

σ∗
1(b) = σ∗

2(b) =

{
ϵ
v

if b ∈ {0, ϵ, . . . , v − ϵ}

0 if b ≥ v
(1)

with equilibrium payoffs ϵ for bidder 1 and 0 for bidder 2. The other type is a
continuum of asymmetric Nash equilibria characterized by

σ∗
1(b) =

{
ϵ
v

if b ∈ {0, ϵ, . . . , v − ϵ}

0 if b ≥ v
(2)

and

σ∗
2(b) =







c
v

if b = 0
ϵ
v

if b ∈ {ϵ, 2ϵ, . . . , v − ϵ}
ϵ−c
v

if b = v

0 if b > v

(3)

with equilibrium payoffs c for bidder 1 and 0 for bidder 2, where c is a free parameter
such that 0 ≤ c < ϵ.

Proof. See Appendix.

This theorem warrants two comments. First, even in the current asymmetric
setting there exists a unique symmetric equilibrium, in which both bidders assign
equal probability ϵ

v
to each of the bids {0, ϵ, . . . , v − ϵ}. The same symmetric equi-

librium exists in the symmetric setting studied by Bouckaert et al. (1992) and Schep
(1994) if v is odd.

Second, there also exist a continuum of asymmetric equilibria. Bidder 1’s equi-
librium strategy does not differ from the one in the symmetric equilibrium, i.e.,
randomizes over bids {0, ϵ, . . . , v−ϵ} with equal probability. On the other hand, the
support of bidder 2’s equilibrium mixed strategy varies depending on the value of a
free parameter c ∈ [0, ϵ). If c = 0, bidder 2 randomizes over bids {ϵ, 2ϵ, . . . , v} with
equal probability. Both bidders earn a payoff of 0. If c > 0, bidder 2 randomizes
over bids {0, ϵ, . . . , v}, assigning probability ϵ

v
to each of the bids {ϵ, 2ϵ, . . . , v − ϵ}

and splitting the remaining probability ϵ
v
between bids 0 and v. A higher value

of c implies that bidder 2 puts more probability on 0 than on v. Bidder 2 earns 0
whereas bidder 1 earns c. One can pin down an asymmetric equilibrium for a given c
and generate a continuum of asymmetric equilibria by varying c over the half-closed
interval [0, ϵ).

Table 1 summarizes theoretical implications. It is worthwhile noting some high-
lights.

1. In the symmetric equilibrium there is no difference in the expected bid between
bidders. Due to the asymmetric tie-breaking rule, however, the probability of
winning differs between them; bidder 2 is more likely to lose the prize. This
disadvantage disappears as either ϵ → 0 or v → ∞.



Equilibrium
Expected Bid Bidder 2’s Prob.

Bidder 1 Bidder 2 of Winning

Symmetric v−ϵ
2

v−ϵ
2

1

2
− ϵ

v

Asymmetric v−ϵ
2

v−ϵ
2

+ (ϵ− c) 1

2
− 1

v

(
c− ϵ

2

)

Table 1: Theoretical implications

2. In the asymmetric equilibria bidder 2 is expected to bid more aggressively
than bidder 1. Bidder 2’s probability of winning exceeds 1

2
in the asymmetric

equilibria with c < ϵ
2
.

3. The auctioneer’s expected revenue, i.e., the sum of expected bids, is higher in
the asymmetric equilibria than in the symmetric equilibria.

Of particular interest is the existence of asymmetric equilibria in which bidder 2 is
more likely to win the prize. Even in an unfair contest like the current setting, the
contestant in a disadvantageous position still bids aggressively and wins the prize
more often in some equilibria.

3 Concluding Remarks

Many real-world contests do not always treat contestants equally even if their perfor-
mances are the same. This note sheds light on the tie-breaking rule that favors one
bidder over the other in the two-person all-pay auction with complete information
and discrete strategy space. The result shows that there are only one symmetric
equilibrium and infinitely many asymmetric equilibria and that in some asymmet-
ric equilibria the weaker bidder (bidder 2) is more likely to win the prize than the
stronger one (bidder 1).

Appendix

Proof. Let σ∗
i be bidder i’s (non-degenerated) mixed strategy in equilibrium. Here-

after, denote by S∗
i the support of σ∗

i , α
∗
i its minimum element, and β∗

i its maximum
element, respectively.

Let (σ∗
1, σ

∗
2) be a mixed-strategy equilibrium for the game and u∗

i = ui(σ
∗
i , σ

∗
−i) =∑

b∈B σ∗
i (b)·ui(b, σ

∗
−i) the corresponding equilibrium payoff of bidder i, where ui(b, σ

∗
−i)

denotes bidder i’s expected payoff from a bid b given bidder −i’s equilibrium mixed
strategy σ∗

−i. Then, u
∗
i = ui(b, σ

∗
−i) for b ∈ S∗

i and u∗
i ≥ ui(b, σ

∗
−i) for b /∈ S∗

i .
Lemmas 1–8 pin down the supports of mixed strategies in equilibrium.

Lemma 1. In any equilibrium (σ∗
1, σ

∗
2), for all b such that b > v, b /∈ S∗

i for all i,
i ∈ {1, 2}.



Proof. Suppose that there exists a bid w (> v) such that σ∗
i (w) > 0 for some i. Since

ui(w, σ
∗
−i) < 0, bidder i wishes to unilaterally deviate from σ∗

i by loading probability
1 on a bid 0, which contradicts w ∈ S∗

i .

Lemma 2. In any equilibrium (σ∗
1, σ

∗
2), (i) v ∈ S∗

i for at most one bidder. Moreover,
(ii) v /∈ S∗

1 .

Proof. (i) Suppose that v ∈ S∗
i for all i, i ∈ {1, 2}. Since σ∗

1(v) > 0, bidder 2’s
expected payoff from a bid v is

u2(v, σ
∗
1) = v ·

∑

b<v

σ∗
1(b)− v = v · (1− σ∗

1(v))− v < 0.

Therefore, bidder 2 wishes to unilaterally deviate from σ∗
2 by loading probability 1

on a bid 0. This contradicts v ∈ S∗
2 .

(ii) Suppose that v ∈ S∗
1 . It follows from (i) that v /∈ S∗

2 . Bidder 1’s expected
payoffs from bids v and β∗

2 are
u1(v, σ

∗
2) = 0

and
u1(β

∗
2 , σ

∗
2) = v − β∗

2 > 0,

respectively. Then, u1(v, σ
∗
2) < u1(β

∗
2 , σ

∗
2), which contradicts v ∈ S∗

1 .

Lemma 3. In any equilibrium (σ∗
1, σ

∗
2), (i) 0 ∈ S∗

i for at least one bidder. Moreover,
(ii) 0 ∈ S∗

1 . Consequently, (iii) u∗
1 ≥ 0.

Proof. (i) Suppose that 0 /∈ S∗
i for all i, i ∈ {1, 2}. Then, bidder 1 can get better

off choosing a bid 0 with probability 1 if α∗
1 < α∗

2 and bidder 2 can get better off
choosing a bid 0 with probability 1, otherwise. A contradiction.

(ii) Suppose that 0 /∈ S∗
1 . It follows from (i) that 0 ∈ S∗

2 and therefore α∗
1 > α∗

2 =
0. Then, all b such that 0 < b ≤ α∗

1 are not in the support of bidder 2 because her
mixed strategy that assigns probability 1 to a bid 0 strictly dominates these pure
strategies. In this case, bidder 1’s expected payoffs from bids α∗

1 and 0 /∈ S∗
1 are

u1(α
∗
1, σ

∗
2) = v ·

∑

b≤α∗

1

σ∗
2(b)− α∗

1 = v · σ∗
2(0)− α∗

1

and
u1(0, σ

∗
2) = v · σ∗

2(0),

respectively. Hence, u1(α
∗
1, σ

∗
2) < u1(0, σ

∗
2), which contradicts α∗

1 ∈ S∗
1 .

(iii) (i) and (ii) imply that either 0 ∈ S∗
2 or 0 /∈ S∗

2 must be true. If 0 ∈ S∗
2 ,

u∗
1 > 0 because

u∗
1 = u1(0, σ

∗
2) = v · σ∗

2(0)− 0 > 0.

Also, if 0 /∈ S∗
2 , u

∗
1 = 0 because

u∗
1 = u1(0, σ

∗
2) = v · 0− 0 = 0.

Therefore, u∗
1 ≥ 0.



Lemma 4. In any equilibrium (σ∗
1, σ

∗
2), for all b ∈ B such that 0 < b ≤ v − ϵ, if

b ∈ S∗
1 , then b ∈ S∗

2 .

Proof. Suppose that there exist a bid x (0 < x ≤ v−ϵ) such that x ∈ S∗
1 and x /∈ S∗

2 .
Consider two cases: (i) α∗

2 < x and (ii) α∗
2 > x.

(i) Suppose that α∗
2 < x. Define bx = max{b ∈ S∗

2 |α
∗
2 ≤ b < x}. Bidder 1’s

expected payoffs from bids x and bx are

u1(x, σ
∗
2) = v ·

∑

b≤x

σ∗
2(b)− x = v ·

∑

b≤bx

σ∗
2(b)− x

and
u1(bx, σ

∗
2) = v ·

∑

b≤bx

σ∗
2(b)− bx,

respectively. Then, u1(x, σ
∗
2) < u1(bx, σ

∗
2), which contradicts x ∈ S∗

1 .
(ii) Suppose that α∗

2 > x. Then, since u1(x, σ
∗
2) = −x < 0, bidder 1 can get

better off by choosing a bid 0 with probability 1. This contradicts x ∈ S∗
1 .

Lemma 5. In any equilibrium (σ∗
1, σ

∗
2), for all b ∈ B such that ϵ < b ≤ v, if b ∈ S∗

2 ,
then b− ϵ ∈ S∗

1 .

Proof. Suppose that there exist a bid y (ϵ < y ≤ v) such that y ∈ S∗
2 and y− ϵ /∈ S∗

1 .
Bidder 2’s expected payoffs from bids y and y − ϵ are

u2(y, σ
∗
1) = v ·

∑

b≤y−ϵ

σ∗
1(b)− y = v ·

∑

b≤y−2ϵ

σ∗
1(b)− y

and
u2(y − ϵ, σ∗

1) = v ·
∑

b≤y−2ϵ

σ∗
1(b)− (y − ϵ),

respectively. Thus, u2(y, σ
∗
1) < u2(y − ϵ, σ∗

1). This contradicts y ∈ S∗
2 .

Lemma 6. In any equilibrium (σ∗
1, σ

∗
2), S

∗
1 = {0, ϵ, 2ϵ, . . . , β∗

1} and {ϵ, 2ϵ, 3ϵ, . . . , β∗
1} ⊆

S∗
2 .

Proof. By definition, β∗
1 ∈ S∗

1 . It follows from Lemma 5 that β∗
1 ∈ S∗

2 . By Lemma
4, β∗

1 ∈ S∗
2 implies β∗

1 − ϵ ∈ S∗
1 . By recursively applying Lemmas 4 and 5, it is clear

that {ϵ, 2ϵ, 3ϵ, . . . , β∗
1} ⊆ S∗

1 and {ϵ, 2ϵ, 3ϵ, . . . , β∗
1} ⊆ S∗

2 . Since 0 ∈ S∗
1 by Lemma 3,

S∗
1 = {0, ϵ, 2ϵ, . . . , β∗

1}.

Lemma 7. In any equilibrium (σ∗
1, σ

∗
2) with v /∈ S∗

2 , S
∗
1 = S∗

2 = {0, ϵ, 2ϵ, . . . , v − ϵ}.
Consequently, u∗

1 = ϵ and u∗
2 = 0.

Proof. Given v /∈ S∗
2 it is obvious that β∗

2 ≤ v − ϵ. First show that (i) β∗
1 = β∗

2 .
Then, show that (ii) β∗

1 = β∗
2 = v − ϵ. Finally, show that (iii) 0 ∈ S∗

2 .
(i) It follows from Lemma 6 that β∗

1 ≤ β∗
2 . Suppose that β∗

1 < β∗
2 . This implies

that u2(β
∗
2 , σ

∗
1) = v−β∗

2 ≥ v− (v− ϵ) = ϵ > 0. Then, 0 /∈ S∗
2 must be true because if



0 ∈ S∗
2 , u2(0, σ

∗
1) = 0, which contradicts u2(0, σ

∗
1) = u2(β

∗
2 , σ

∗
1). Given that 0 /∈ S∗

2 ,
bidder 1’s expected payoffs from bids 0 and β∗

2 are

u1(0, σ
∗
2) = v · σ∗

2(0)− 0 = 0

and
u1(β

∗
2 , σ

∗
2) = v ·

∑

b≤β∗

2

σ∗
2(b)− β∗

2 = v − β∗
2 > 0,

respectively. Therefore, u1(0, σ
∗
2) < u1(β

∗
2 , σ

∗
2). This contradicts 0 ∈ S∗

1 .
(ii) Suppose that β∗

1 = β∗
2 < v − ϵ. Bidder 1’s expected payoff from a bid β∗

1 is

u1(β
∗
1 , σ

∗
2) = v − β∗

1 > v − (v − ϵ) = ϵ > 0.

Then, 0 ∈ S∗
2 must be true because if 0 /∈ S∗

2 , u1(0, σ
∗
2) = 0, which contradicts

u1(0, σ
∗
2) = u1(β

∗
1 , σ

∗
2). Given that 0 ∈ S∗

2 , bidder 2’s expected payoffs from bids 0
and v − ϵ are

u2(0, σ
∗
1) = 0

and
u2(v − ϵ, σ∗

1) = v ·
∑

b<v−ϵ

σ∗
1(b)− (v − ϵ) = v − (v − ϵ) = ϵ > 0,

respectively. Then, u2(0, σ
∗
1) < u2(v − ϵ, σ∗

1). This contradicts 0 ∈ S∗
2 .

(iii) (ii) implies that u∗
1 = ϵ, which in turn implies that 0 ∈ S∗

2 . Thus, u
∗
2 = 0.

Lemma 8. In any equilibrium (σ∗
1, σ

∗
2) with v ∈ S∗

2 , (i) u∗
2 = 0. Moreover, (ii)

S∗
1 = {0, ϵ, 2ϵ, . . . , v − ϵ} and {ϵ, 2ϵ, 3ϵ, . . . , v} ⊆ S∗

2 . Consequently, 0 ≤ u∗
1 < ϵ.

Furthermore, (iii) u∗
1 = 0 implies S∗

2 = {ϵ, 2ϵ, 3ϵ, . . . , v}, and u∗
1 > 0 implies S∗

2 =
{0, ϵ, 2ϵ, . . . , v}.

Proof. (i) It immediately follows from v ∈ S∗
2 that u∗

2 = 0.
(ii) It follows from recursively applying Lemmas 4 and 5 that v ∈ S∗

2 implies
that {0, ϵ, 2ϵ, . . . , v− ϵ} ⊆ S∗

1 and {ϵ, 2ϵ, 3ϵ, . . . , v} ⊆ S∗
2 . Since v /∈ S∗

1 by Lemma 2,
S∗
1 = {0, ϵ, 2ϵ, . . . , v − ϵ}. Since β∗

1 = v − ϵ and β∗
2 = v, bidder 1’s expected payoff

from a bid v − ϵ is

u1(v − ϵ, σ∗
2) = v ·

∑

e≤v−ϵ

σ∗
2(e)− (v − ϵ) = ϵ− vσ∗

2(v) < ϵ.

Since u∗
1 ≥ 0 by Lemma 3, 0 ≤ u∗

1 < ϵ.
(iii) By (ii), it suffices to show that (a) u∗

1 = 0 implies 0 /∈ S∗
2 and that (b) u∗

1 > 0
implies 0 ∈ S∗

2 .
(a) Suppose that u∗

1 = 0 and 0 ∈ S∗
2 . Since 0 ∈ S∗

1 by Lemma 3, u1(0, σ
∗
2) = 0.

However,
u1(0, σ

∗
2) = v · σ∗

2(0)− 0 > 0.

This contradicts u∗
1 = 0.

(b) Suppose that u∗
1 > 0 and 0 /∈ S∗

2 . Then, since 0 /∈ S∗
2 it is obvious that

u1(0, σ
∗
2) = 0. This contradicts u∗

1 > 0.



Lemma 9. There exists a unique symmetric equilibrium (σ∗
1, σ

∗
2) with v /∈ S∗

2 . In
this equilibrium,

σ∗
1(b) = σ∗

2(b) =

{
ϵ
v

if b ∈ {0, ϵ, . . . , v − ϵ}

0 if b ≥ v

with u∗
1 = ϵ and u∗

2 = 0.

Proof. Prove existence by construction. If (σ∗
1, σ

∗
2) is an equilibrium with v /∈ S∗

2 , it
follows immediately from Lemma 7 that S∗

1 = S∗
2 = {0, ϵ, . . . , v−ϵ} and consequently

u∗
1 = ϵ and u∗

2 = 0. Then, for bidder 1, σ∗
2(b)’s must be the solution to the following

system of v
ϵ
equations with v

ϵ
unknowns:







v · σ∗
2(0)− 0 = ϵ

v · [σ∗
2(0) + σ∗

2(ϵ)]− ϵ = ϵ

v · [σ∗
2(0) + σ∗

2(ϵ) + σ∗
1(2ϵ)]− 2ϵ = ϵ

...

v · [σ∗
2(0) + σ∗

2(ϵ) + · · ·+ σ∗
2(v − 2ϵ)]− (v − 2ϵ) = ϵ

v · [σ∗
2(0) + σ∗

2(ϵ) + · · ·+ σ∗
2(v − ϵ)]− (v − ϵ) = ϵ

This system can be expressed as follows:











v 0 0 . . . 0 0
v v 0 . . . 0 0
v v v . . . 0 0
...

...
...

. . .
...

...
v v v . . . v 0
v v v . . . v v












︸ ︷︷ ︸
v

ϵ
× v

ϵ












σ∗
2(0)

σ∗
2(ϵ)

σ∗
2(2ϵ)
...

σ∗
2(v − 2ϵ)
σ∗
2(v − ϵ)












︸ ︷︷ ︸
v

ϵ
×1

=












ϵ
2ϵ
3ϵ
...

v − ϵ
v












︸ ︷︷ ︸
v

ϵ
×1

(A.1)

The leftmost square matrix of (A.1) is nonsingular. Hence, there exists a unique
solution of the system. Find σ∗

2(0) and then substitute this into the second equation
in the system to obtain σ∗

2(ϵ). Recursively applying the substitution method eventu-
ally yields the solution for the system. It is straightforward to see that 0 < σ∗

2(b) < 1
for all b ∈ S∗

2 and
∑

b∈S∗

2

σ∗
2(b) = 1.

For bidder 2, σ∗
1(b)’s must solve the following system of v

ϵ
equations with v

ϵ

unknowns:






v · σ∗
1(0)− ϵ = 0

v · [σ∗
1(0) + σ∗

1(ϵ)]− 2ϵ = 0

v · [σ∗
1(0) + σ∗

1(ϵ) + σ∗
1(2ϵ)]− 3ϵ = 0

...

v · [σ∗
1(0) + σ∗

1(ϵ) + · · ·+ σ∗
1(v − 2ϵ)]− (v − ϵ) = 0

σ∗
1(0) + σ∗

1(ϵ) + · · ·+ σ∗
1(v − ϵ) = 1

(A.2)



This system can be expressed in the following matrix form:












v 0 0 . . . 0 0 0
v v 0 . . . 0 0 0
v v v . . . 0 0 0
...

...
...

. . .
...

...
...

v v v . . . v v 0
1 1 1 . . . 1 1 1












︸ ︷︷ ︸
v

ϵ
× v

ϵ












σ∗
1(0)

σ∗
1(ϵ)

σ∗
1(2ϵ)
...

σ∗
1(v − 2ϵ)
σ∗
1(v − ϵ)












︸ ︷︷ ︸
v

ϵ
×1

=












ϵ
2ϵ
3ϵ
...

v − ϵ
1












︸ ︷︷ ︸
v

ϵ
×1

(A.3)

Just as before, the leftmost square matrix of (A.3) is nonsingular. Hence, there
exists a unique solution of the system. The substitution method described before is
applied to derive the solution. One can make sure that 0 < σ∗

1(b) < 1 for all b ∈ S∗
1

and
∑

b∈S∗

1

σ∗
1(b) = 1.

Lemma 10. There exist a continuum of asymmetric equilibria (σ∗
1, σ

∗
2) with v ∈ S∗

2 .
In these equilibria,

σ∗
1(b) =

{
ϵ
v

if b ∈ {0, ϵ, . . . , v − ϵ}

0 if b ≥ v

and

σ∗
2(b) =







u∗

1

v
if b = 0

ϵ
v

if b ∈ {ϵ, 2ϵ, . . . , v − ϵ}
ϵ−u∗

1

v
if b = v

0 if b > v

with 0 ≤ u∗
1 < ϵ and u∗

2 = 0.

Proof. As in Lemma 9, prove existence by construction. By Lemma 8, if (σ∗
1, σ

∗
2) is

an equilibrium with v ∈ S∗
2 , S

∗
1 = {0, ϵ, . . . , v− ϵ}, S∗

2 = {ϵ, 2ϵ, . . . , v} if u∗
1 = 0, and

S∗
2 = {0, ϵ, . . . , v} if u∗

1 > 0.
Suppose that u∗

1 = 0. This implies that S∗
2 = {ϵ, 2ϵ, . . . , v} and that u∗

2 = 0.
Then, for bidder 1, σ∗

2(b)’s must be the solution to the following system of v
ϵ
equations

with v
ϵ
unknowns:







v · σ∗
2(ϵ)− ϵ = 0

v · [σ∗
2(ϵ) + σ∗

2(2ϵ)]− 2ϵ = 0

v · [σ∗
2(ϵ) + σ∗

2(2ϵ) + σ∗
2(3ϵ)]− 3ϵ = 0

...

v · [σ∗
2(ϵ) + σ∗

2(2ϵ) + · · ·+ σ∗
2(v − ϵ)]− (v − ϵ) = 0

σ∗
2(ϵ) + σ∗

2(2ϵ) + · · ·+ σ∗
2(v − ϵ) + σ∗

2(v) = 1



In the matrix form,











v 0 0 . . . 0 0 0
v v 0 . . . 0 0 0
v v v . . . 0 0 0
...

...
...

. . .
...

...
...

v v v . . . v v 0
1 1 1 . . . 1 1 1












︸ ︷︷ ︸
v

ϵ
× v

ϵ












σ∗
2(ϵ)

σ∗
2(2ϵ)

σ∗
2(3ϵ)
...

σ∗
2(v − ϵ)
σ∗
2(v)












︸ ︷︷ ︸
v

ϵ
×1

=












ϵ
2ϵ
3ϵ
...

v − ϵ
1












︸ ︷︷ ︸
v

ϵ
×1

(A.4)

Next, suppose that u∗
1 > 0. This implies that S∗

2 = {0, ϵ, . . . , v} and that u∗
2 = 0.

Then, for bidder 1, σ∗
2(b)’s must be the solution to the following system of (v

ϵ
+ 1)

equations with (v
ϵ
+ 1) unknowns:







v · σ∗
2(0)− 0 = u∗

1

v · [σ∗
2(0) + σ∗

2(ϵ)]− ϵ = u∗
1

v · [σ∗
2(0) + σ∗

2(ϵ) + σ∗
2(2ϵ)]− 2ϵ = u∗

1

...

v · [σ∗
2(0) + σ∗

2(ϵ) + · · ·+ σ∗
2(v − ϵ)]− (v − ϵ) = u∗

1

σ∗
2(0) + σ∗

2(ϵ) + · · ·+ σ∗
2(v − ϵ) + σ∗

2(v) = 1

In the matrix form,











v 0 0 . . . 0 0 0
v v 0 . . . 0 0 0
v v v . . . 0 0 0
...

...
...

. . .
...

...
...

v v v . . . v v 0
1 1 1 . . . 1 1 1












︸ ︷︷ ︸
(

v

ϵ
+1

)
×

(
v

ϵ
+1

)












σ∗
2(0)

σ∗
2(ϵ)

σ∗
2(2ϵ)
...

σ∗
2(v − ϵ)
σ∗
2(v)












︸ ︷︷ ︸
(

v

ϵ
+1

)
×1

=












u∗
1

u∗
1 + ϵ

u∗
1 + 2ϵ
...

u∗
1 + (v − ϵ)

1












︸ ︷︷ ︸
(

v

ϵ
+1

)
×1

(A.5)

The leftmost square matrices of (A.4) and (A.5) are nonsingular. Hence, there exists
a unique solution for each case. By the substitution method, one can obtain the
solution. It is easy to see that 0 < σ∗

2(b) < 1 for all b ∈ S∗
2 and

∑

b∈S∗

2

σ∗
2(b) = 1.

For bidder 2, σ∗
1(b)’s must be the solution to the following system of v

ϵ
equations

with v
ϵ
unknowns:







v · σ∗
1(0)− ϵ = 0

v · [σ∗
1(0) + σ∗

1(ϵ)]− 2ϵ = 0

v · [σ∗
1(0) + σ∗

1(ϵ) + σ∗
1(2ϵ)]− 3ϵ = 0

...

v · [σ∗
1(0) + σ∗

1(ϵ) + · · ·+ σ∗
1(v − 2ϵ)]− (v − ϵ) = 0

v · [σ∗
1(0) + σ∗

1(ϵ) + · · ·+ σ∗
1(v − ϵ)]− v = 0



This system of equations is in fact identical to (A.2). Thus, there exists a unique
solution such that 0 < σ∗

1(b) < 1 for all b ∈ S∗
1 and

∑

b∈S∗

1

σ∗
1(b) = 1.

Lemmas 1–10 complete the proof of the theorem.
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