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Abstract
This paper suggests combining the linear Dickey-Fuller and nonlinear Kapetanios-Snell-Shin unit root tests in ways

that explicitly acknowledge the underlying uncertainty regarding linearity versus nonlinearity. Simulation results show

the proposed combination tests perform well. An empirical example is provided, where purchasing power parity is

tested for 29 real exchange rates.
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1. Introduction 

 

An unresolved issue in unit-root testing is whether to use tests derived from a linear setting, such 

as the Dickey-Fuller test (DF, 1979), or to use tests developed under nonlinear frameworks, such 

as the one developed by Kapetanios, et al (KSS, 2003).  In practice, for example in the literature 

on tests of the purchasing power parity (PPP) hypothesis, linear and nonlinear unit root tests are 

often applied concurrently, at times yielding conflicting results. Under such circumstances, a 

naive union-of-rejections (UR) rule: “reject the null hypothesis if either test rejects the null 

hypothesis” is frequently adopted, either explicitly or implicitly. While such a rule is 

straightforward and powerful: ultimately, only the more powerful of the two tests is actually 

employed—it may lead to non-trivial oversizing because of the multiplicity of tests. Despite 

these issues, the literature has remained quiet on the correct method to combine these unit-root 

tests. 

 

This article seeks to help address this gap. We begin with two popular unit root tests, DF 

and KSS, and consider two combination procedures. First, we utilize the UR rule, addressing the 

multiple-test issue through size-adjusted, i.e. scaled, critical values. This UR strategy is adapted 

from Harvey, et al’s (HLT, 2009, 2012) handling of uncertainty regarding trend and initial 

conditions in unit-root tests.  Second, we use Fisher’s (1932) renowned Chi-squared test statistic 

to combine DF and KSS; the Fisher test is based on aggregation of p-values of the underlying 

individual tests.  

 

Simulations indicate that these combination tests (UR and Fisher) perform well in terms 

of size and power.  In most instances, the combination tests closely track the power of the more 

powerful of the two unit root tests; occasionally, the combination tests are even more powerful 

than the two underlying tests. As an empirical example, we also apply the proposed combination 

tests to the results of Zhou and Kutan (2011) regarding PPP hypothesis for 29 economies. 

 

2. Combining DF and KSS 

 

Let t
y  (where t = 1,…,T) be the demeaned or de-trended time series of interest. We refer to the 

case with demeaned series the “Level” case and the case with de-trended series the “Trend” case. 

The DF test is based on the t-statistic from the OLS regression 
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with H0: 0   against H1: <0.  The KSS test is based on the following auxiliary regression:  
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where the regressor 3

1t
y   is obtained from a first-order Taylor series expansion of an exponential 

smooth transition autoregression (ESTAR) model specified in KSS (2003).  The KSS test 

involves testing  H0: 0   against H1: <0. We note that DF and KSS have a common unit-root 

null hypothesis but different alternative hypotheses: stationary linear autoregression (AR) for DF 



and stationary nonlinear ESTAR for KSS.  Both tests possess power against alternatives of 

stationarity, both linear and nonlinear.  

 

To reach a joint test decision, we suggest two combination tests based on DF and KSS.  

First, following HLT (2009, 2012), we consider the following UR decision rule: 
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KSS
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where   is a given significance level,  is a scaling constant for size adjustment, and 
DFcv
  and 

KSScv
  are critical values of DF and KSS, respectively.  Second, we use Fisher’s Chi-squared test, 

aggregating the p-values of DF and KSS (pDF and pKSS, respectively) as  

 

(Fisher’s Chi-squared strategy)        2 ln ln
p DF KSS

F p p     .                                      (4) 

 

Both UR and Fp have well-defined asymptotic null distributions as DF and KSS converge jointly. 

However, unlike the standard Fisher test, which assumes independence across underlying 

individual tests, we cannot use 2 (4)  as the null distribution for 
p

F  because DF and KSS are 

correlated—we find via simulation that the correlation coefficient between the p-values of DF 

and KSS is about 0.82 (Level) and 0.74 (Trend). 

 

In Table I, we tabulate the critical values of UR and Fp for different sample sizes, 

obtained via simulation using GAUSS with 100,000 replications. For the UR test, | | | |
UR DF

cv cv
  -

- i.e., 
 is larger than 1, implying that the UR test would be oversized if the usual critical values 

were used.  The critical values of Fp are larger than the corresponding critical values of 2 (4)  

reflecting that DF and KSS are correlated. 

 

Table I: Critical values for various levels of significance () 
 

(a) Level 

  T=100   T=200   T=500   

 UR Fp UR Fp UR Fp 

10% -2.776 8.950 -2.764 8.896 -2.745 8.959 

5% -3.089 11.392 -3.066 11.398 -3.041 11.395 

1% -3.700 17.054 -3.650 17.116 -3.617 17.169 
 

(b) Trend 

  T=100   T=200   T=500   

 UR Fp UR Fp UR Fp 

10% -3.393 8.768 -3.355 8.813 -3.331 8.849 

5% -3.695 11.217 -3.638 11.244 -3.613 11.380 

1% -4.299 16.844 -4.221 16.937 -4.158 16.956 



3. Simulation Results 

 

We examine performance of the combination tests through Monte Carlo experiments based on 

the following DGPs: 

 

(AR)                              1t t t
y y u  ,                                                         (5) 

(ESTAR)           2

1 11 1 expt t t ty y y u 
        .                                     (6) 

 

We set T=200;  =1, 0.95, 0.9, 0.85 for the AR model;  =-0.1, -0.5 and  =0.01, 0.05, 0.1 for 

the ESTAR model; and 
1{ }T

t t
u   is drawn from i.i.d. N(0,1).  Simulations are performed in 

GAUSS, using 20,000 replications at 5% significance. Relevant critical values are presented in 

Table I, test results are reported in Table II, for AR alternatives, and Table III, for ESTAR 

alternatives.  

 

Table II: Power against stationary linear AR processes (5%, T=200) 

  Level       Trend       

 DF KSS UR Fp DF KSS UR Fp 

1 0.049 0.052 0.050 0.051 0.049 0.050 0.050 0.050 

0.95 0.320 0.263 0.299 0.315 0.187 0.151 0.174 0.170 

0.9 0.871 0.605 0.818 0.812 0.636 0.410 0.576 0.567 

0.85 0.996 0.828 0.989 0.983 0.953 0.669 0.921 0.905 

 

 The first rows of Table II indicate that individual and combination tests are all correctly-

sized. The remaining rows show that, as expected, if  <1, DF is more powerful than KSS and 

the combination tests have higher power than KSS, but lower than DF.  UR and Fp have similar 

power.  The power disadvantages of UR and Fp relative to DF are small in most instances. 

 

Table III: Power against stationary nonlinear ESTAR processes (5%, T=200) 

 

  Level       Trend       

 DF KSS UR Fp DF KSS UR Fp 

(-0.1,0.01) 0.142 0.158 0.153 0.156 0.102 0.103 0.101 0.108 

(-0.1,0.05) 0.374 0.430 0.430 0.458 0.212 0.228 0.231 0.241 

(-0.1,0.1) 0.575 0.555 0.600 0.638 0.328 0.321 0.346 0.375 

(-0.5,0.01) 0.591 0.726 0.735 0.775 0.342 0.445 0.433 0.456 

(-0.5,0.05) 1.000 0.997 1.000 1.000 0.994 0.976 0.997 0.998 

(-0.5,0.1) 1.000 1.000 1.000 1.000 1.000 0.998 1.000 1.000 

 

 Table III presents results under the stationary ESTAR alternative. KSS is generally more 

powerful than DF, with some exceptions. The combination tests are either nearly as powerful as 

the more powerful of DF and KSS, or even slightly more powerful. The power advantage gained 

by the combination tests stems from the fact that DF and KSS are not perfectly correlated and 

thus may complement one another in some cases. Of the two combination tests, Fp tends to be 



more powerful than UR. This is mainly due to the rejection frequencies of DF and of KSS being, 

in all cases, not far apart. 

 

4. Empirical Example 

 

Table IV: Empirical Results 

 

Country ADF KSS UR Fp 

EU Countries     

Austria -2.73 -2.43 -2.73 8.98 

Belgium -2.80 -2.14 -2.80 8.22 

Denmark -2.62 -1.79 -2.62 6.31 

Finland -2.78 -2.91 -2.84 11.43* 

France -2.97* -2.73 -2.97 11.49* 

Germany -2.94* -2.45 -2.94 10.10 

Greece -2.35 -1.99 -2.35 5.75 

Ireland -2.45 -2.60 -2.54 5.16 

Italy -2.73 -3.22* -3.14* 12.98* 

Luxembourg -2.75 -2.43 -2.75 9.06 

Netherlands -2.97* -2.48 -2.97 10.37 

Portugal -1.99 -1.74 -1.99 3.83 

Spain -2.91* -2.84 -2.91 11.75* 

Sweden -2.76 -3.12* -3.05 12.51* 

UK -2.96* -2.15 -2.96 9.05 

Non-EU Industrial 

Countries 

    

Australia -2.19 -1.69 -2.19 4.38 

Canada -2.10 -1.84 -2.10 4.43 

Japan -2.54 -2.37 -2.54 7.86 

New Zealand -3.26* -3.20* -3.26* 15.61* 

Norway -3.10* -2.46 -3.10** 10.98 

Switzerland -2.93* -2.47 -2.93 10.13 

Asian Countries     

Hong Kong -2.83 -3.73** -3.64* 16.88* 

Indonesia -1.43 -3.77** -3.68* 12.17* 

Korea -2.55 -4.89** -4.77** 36.74** 

Malaysia -1.76 -2.44 -2.38 5.49 

Philippines -1.54 -0.83 -1.54 1.62 

Singapore -3.14* -3.70** -3.61* 18.06** 

Sri Lanka -4.67** -4.10** -4.67** 50.66** 

Thailand -1.49 -2.11 -2.06 3.66 

 
Notes:   

(i) Figures with * and ** indicate significance at the 5% and 1% levels, respectively.  

(ii) Figures for ADF and KSS are taken from ADF1s and KSS1s of Zhou and Kutan (2011, Table 

III). The US dollar is the numeraire in calculating the real exchange rates. 



The two combination tests, UR and Fp, are employed to augment the findings of Zhou and Kutan 

(2011).  Using DF and KSS, these authors examined the PPP hypothesis, testing 29 bilateral real 

exchange rates for stationarity from 1973Q1 to 2009Q2. We calculate the values of UR and Fp 

based on the ADF1sig and KSS1sig results reported in Table III of Zhou and Kutan (2011), where 

“1” stands for the Level case and “sig” refers to the sequential testing procedure to determine the 

augmented lag order.   

 

 Our results are reported in Table IV. At the 5% level, the ADF test rejects the unit root 

null for 10 real exchange rates, while KSS rejects 8. Of the combination tests, UR results in 8 

rejections while Fp rejects 11. Rejections from UR include all but one (Sweden) of the rejections 

from KSS, plus one (Norway) of the 7 rejections made only by ADF.  Fp produces more 

rejections than any other test, including all of the 8 rejections made by KSS, and 5 of the 10 

rejections made by ADF (note that 3 countries are in both the ADF and KSS lists).  Interestingly, 

while neither ADF nor KSS is able to reject the non-stationarity null for Finland’s real exchange 
rate, Fp is able to do so. On the other hand, Fp fails to reject the unit-root null for 5 European 

countries in the ADF list: Germany, Netherlands, UK, Norway and Switzerland.  The 5 relevant 

real exchange rates may have conformed, over the study period, more closely to the linear AR 

process than the nonlinear ESTAR process, thus favouring the linear-based ADF.  

 

5. Conclusion 

 

In this paper, we suggest two combination unit root tests to formally combine the linear DF and 

nonlinear KSS tests, in recognition of the fundamental uncertainty regarding whether the 

underlying process is in fact linear or nonlinear. One of the suggested tests, the UR test, follows 

the union-of-rejections approach suggested by HLT (2009, 2011) and the other, the Chi-squared 

Fp test, derives from Fisher (1932). Simulations indicate that both combination tests are 

potentially useful: both are correct-sized and both possess good power, with Fp and UR often 

outperforming both DF and KSS under the stationary ESTAR alternative. As for comparisons 

between the two combination tests, our results suggest that, under the stationary ESTAR 

alternative, Fisher’s Chi-squared test is often more powerful. 
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