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Abstract
This note considers decision trees with three-valued outcomes. The structure of the trees are represented in a familiar

form, allowing for actions and states of nature where the states of nature are associated with objective probabilities.

We discuss the partitioning of trees by path enumeration, and present a simple formula for calculating the probabilities

of outcomes. Finally, we construct a linear programming model to optimize over the given probabilities to select the

optimal partition tree representing the collection of actions that minimizes the potential for loss.
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1. Introduction

In the literature, loss aversion refers to the avoidance of outcomes with losses (as in Kobber-
ling and Wakker (2005); Nygren et al. (1996); Tversky and Kahneman (1992), among others).
A decision maker may prefer a lottery with lower expected value and higher variance over a
lottery with higher expected value and lower variance but that involves an outcome with a
loss in a non-conformable situation.

Define ψ as a three-valued sign associated with an outcome where ψ ∈ {−, 0,+}. Let
us assume that a loss averse person seeks to identify the probability of loss associated with
a decision by categorizing outcomes as negative (ψ = (−)), positive (ψ = (+)), or neutral
(ψ = (0)). Consider the environment represented as a decision tree where a decision, or
sequence of decisions, leads to a loss. This outcome is therefore represented as a negative sign
(ψ = (−)) implying the potential for loss involved in that decision or sequence of decisions.
By definition, the decision maker would avoid decisions where the outcome may result in a
loss.

Now suppose there is no possible way to avoid a loss, yet there exists known probability
values associated with each ψ. Call an all-encompassing decision tree environment the “main
tree”, where a smaller target tree is realized by first decomposing the decision tree into
smaller trees via partitioning, then optimizing over the corresponding probabilities. This
research presents a method for calculating the probability of a loss, and selecting among the
enumerated sub-trees where the goal is to determine the tree (and thereby, the collection of
decisions) that minimizes the potential for loss.

2. Scenario

We begin with a few basic definitions of decision trees. Although this research is self-
contained, we note that classic fundamentals of decision trees are outlined in Raiffa (1968).
When facing a decision tree, a decision maker makes a series of one or more choices to reach
an outcome. Following Savage (1951), let A and S be finite sets representing alternatives
and states of nature, respectively. The set A contains courses of action a ∈ A that the
decision maker has complete control over, and therefore have no probabilities. The set S has
elements s ∈ S representing states of the world that the decision maker has no control over,
and therefore have probabilities.

Remark 1. For exposition, we consider objective probabilities, i.e., probabilities that are

objectively given with the decision tree rather assigned by the decision maker.

To define the structure of the tree, let D represent the set of decision nodes, C represent
the set of chance nodes, and E represent the set of end nodes where D ⊆ A and C ⊆ S. Let
a node n ∈ C,D,E.

Remark 2. Define the Cartesian product space

A× S = {(a, s) | a ∈ A, s ∈ S}



with elements (a, s) ∈ A × S representing the ordered pairs of alternative a in state of

nature s. To realize Remark 1, for any a, the elemental combination (a, s) has a probability

π ((a, s)) ∈ [0, 1] ⊆ R where
∑

s π ((a, s)) = 1 axiomatically, given the probability is associated

with state s only.

To indicate an order relation on the tree, consider any node n in the presence of preceding
nodes p. The existence of any n directly implies the existence of its predecessors, indicating
that a node cannot be analyzed unless its preceding nodes are included as well. We say the
initial node is always a decision node n ∈ D from which all following nodes stem, and the
final nodes are end nodes n ∈ E. Let any ψ occur only at an end node n ∈ E.

Remark 3. Following Remark 2, we let the probability measure π ({−, 0,+}) = 1 over the

space {−, 0,+} where π (ψ) ∈ [0, 1] and
∑

ψ π (ψ) = 1. It follows immediately that if π > 0
the interval (0, π) will be endowed with the Lebesgue measure µ ((0, π)) = π.

Let K represent a finite set of paths with elements k ∈ K. Define a path k = (n | pn)
recursively from n ∈ E. Here, the vertical bar | represents the familiar conditioning of one
node on another. Then, the probability of path k ∈ K is the conditional product chain

π (k) =
∏

n

π (n | pn) .

Finally, let an indicator function 1ψ be defined by 1ψ (k) ∈ {0, 1} where 1ψ (k) = 1 if k leads
to outcome sign ψ and zero, otherwise.

With the structure of the tree now understood, consider a collection of complete trees
(with paths from the initial node to the end nodes) within the “main tree”. Without loss
of generality, we partition T by full path enumeration into |T | trees. These individual trees
t ∈ T reflect the possible partitions of the main tree.

Remark 4. Denote by K (t) the set of all paths in a tree t. Let i, j ∈ T . For exposition,

fix any K (i) ∩K (j) = ∅ where i 6= j. It follows directly that the concatenation of the paths

〈K (T )〉 admits the cardinal equivalence |〈K (T )〉| = |K|.

We propose an optimization model to search through the space of decision trees, and
restrict the decision space to a single tree. Following the motivation of this research, the
goal is to determine the tree that minimizes the potential for loss.

Remark 5. The decision maker takes on only one outcome. We say the mapping a : decision maker →
T represents an action, and the variable at ∈ {0, 1} where at = 1 if action a is taken for tree

t and zero, otherwise.

Define the set of all actions as {at | t ∈ T} ∈ Z
|T |
2 expressed simply as {at}. For

readability, we let ‖{at}‖ be the length of the vector {at} where the cardinal equivalence
|T | = ‖{at}‖ holds.



3. Results

In traditional static optimization, the goal is to determine a single value for each decision
variable, such that the objective function will be maximized or minimized. For a dynamic
setting, time is considered and we encounter a dynamic optimization problem, often referred
to as an intertemporal optimization problem (Walde, 2008). In this type of multi-period
problem, we need to determine the optimal time-variant path of decisions and states over a
planning period, represented here in a decision tree form. This multi-step decision process
can be seen throughout literature in portfolio management (Costa and Nabholz, 2007; Chel-
lathurai and Draviam, 2008), consumption-investment (Fama, 1970), and consumer spending
decisions (Soman and Cheema, 2002), among others. However, in this research we are not
narrowly deciding on the optimal path, instead we are focusing on the optimal sub-tree.

Remark 6. The objective nature of the probabilities by Remark 1 combined with the nature

of the decision variables allows for a static linear programming formulation of an otherwise

intertemporal optimization problem.

Theorem 1. The goal can be formally defined as the following linear program.

min
∑

t

π (ψ)t at

s.t. π (ψ)t =

∑
k π (k)1ψ (k)∑

k π (k)
, for all k ∈ K, t ∈ T

π (k)t =
∏

n

π (n | pn) , for all k ∈ K, t ∈ T

1ψ (k)t ∈ {0, 1}, for all k ∈ K, t ∈ T

π (n)t ∈ [0, 1] , for all n ∈ C, t ∈ T

π (n)t = 1, for all n ∈ D, t ∈ T∑

t

at = 1, for all t ∈ T

at ∈ {0, 1}, for all t ∈ T

Proof. Fix ψ = (−). Using the probability variables as objective coefficients directly implies
the objective min

∑
t π (ψ)t at. Adjust Remark 3 by letting π (ψ)t > 0 for all t to allow for

a solution expressed in the form
∑

t at. Though forcing the solution set
∑

t at ≥ 1 would
achieve robustness, to satisfy Remark 5 we use

∑
t at = 1 since the objective min π (ψ)t at

together with
∑

t at = 1 makes the constraint
∑

t at ≥ 1 redundant. With the additional
constraints obvious, it only remains to show that

π (ψ) =

∑
k π (k)1ψ (k)∑

k π (k)

for every k. The recursion starts with the terminal node n ∈ E where there exists a ψ such
that the indicator function 1ψ (k) ∈ {0, 1} for every k. Let |A| > 1 for any n ∈ D such that S
for any alternative is collectively exhaustive implying π (S) = 1 by Remark 2. Then for any
tree t, the probability over K may be π (K) 6= 1 forcing the denominator

∑
k π (k) 6= 1 and



requiring the derivation of π (ψ) to take the form of a weighted average. See the Appendix
for clarification of π (K) 6= 1. Without loss of generality, fix π (n) = 1 for every n ∈ D to
preserve the calculation of π (k), and the result follows easily by backward recursion.

Corollary 1. Though a necessary condition for logical structure, excluding Remark 4 would

have no mathematical impact on the result in Theorem 1. The proof of this notion is obvious.
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Appendix

Consider the sample decision tree in Figure 1 where we represent the decision nodes as �,
the chance nodes as ©, and the end nodes as △ with the probabilities π (n) labeled on each
branch where n ∈ C,D. Full path enumeration for the tree in Figure 1 is shown in Table 1.

Path k Description π (k) Sign ψ 1ψ (k)

1 D1 → S1 → D2 → S3 → E1 1× 0.4× 1× 0.2 = 0.080 (−) 1
2 D1 → S1 → D2 → S3 → E2 1× 0.4× 1× 0.5 = 0.200 (+) 0
3 D1 → S1 → D2 → S3 → E3 1× 0.4× 1× 0.3 = 0.120 (0) 0
4 D1 → S1 → D2 → S4 → E4 1× 0.4× 1× 0.7 = 0.280 (−) 1
5 D1 → S1 → D2 → S4 → E5 1× 0.4× 1× 0.3 = 0.120 (+) 0
6 D1 → S1 → E6 1× 0.3 = 0.300 (0) 0
7 D1 → S1 → E7 1× 0.3 = 0.300 (+) 0
8 D1 → D3 → E8 1× 1 = 1.000 (−) 1
9 D1 → D3 → S5 → E9 1× 1× 0.5 = 0.500 (+) 0
10 D1 → D3 → S5 → E10 1× 1× 0.25 = 0.250 (−) 1
11 D1 → D3 → S5 → E11 1× 1× 0.25 = 0.250 (−) 1
12 D1 → S2 → E12 1× 0.45 = 0.450 (−) 1
13 D1 → S2 → E13 1× 0.25 = 0.250 (+) 0
14 D1 → S2 → D4 → S6 → E14 1× 0.3× 1× 0.25 = 0.075 (−) 1
15 D1 → S2 → D4 → S6 → E15 1× 0.3× 1× 0.75 = 0.225 (0) 0

Table 1: Path Enumeration of Figure 1

Fix the partition for T into |T | = 3 trees where

• t = 1 ≡ {k = 1, k = 2, k = 3, k = 4, k = 5, k = 6, k = 7}

• t = 2 ≡ {k = 8, k = 9, k = 10, k = 11}

• t = 3 ≡ {k = 12, k = 13, k = 14, k = 15}

and the remaining metrics are shown in Table 1. We first make clear the point that the
probability π (K) 6= 1 by

π (K) =
15∑

k=1

π (k)

= 0.08 + 0.2 + 0.12 + 0.28 + . . .+ 0.225

= 4.4.

In accordance with the goal, fix ψ = (−). The probability π (ψ = (−))T representing the



loss coefficient

π (ψ = (−))∑3

t=1

=

∑15
k=1 π (k)1ψ=(−) (k)∑15

k=1 π (k)

=
0.08 (1) + 0.2 (0) + 0.12 (0) + 0.28 (1) + . . .+ 0.225 (0)

0.08 + 0.2 + 0.12 + 0.28 + . . .+ 0.225

=
2.385

4.4
= 0.542045

follows easily. By Remark 4, K (t = 1) ∩K (t = 2) ∩K (t = 3) = ∅. For t = 1, we calculate

π (ψ = (−))t=1 =

∑7
k=1 π (k)1ψ=(−) (k)∑7

k=1 π (k)

=
0.08 (1) + 0.2 (0) + 0.12 (0) + 0.28 (1) + 0.12 (0) + 0.3 (0) + 0.3 (0)

0.08 + 0.2 + 0.12 + 0.28 + 0.12 + 0.3 + 0.3

=
0.36

1.4
= 0.257143.

With π (ψ = (−))t=1 ≈ 0.26, applying this logic to t = 2 and t = 3, we get π (ψ = (−))t=2 =
0.75 and π (ψ = (−))t=3 ≈ 0.53. By Theorem 1, the resulting solution set {at=1 = 1, at=2 =
0, at=3 = 0} yields the objective function value min

∑
t π (ψ = (−))t at ≈ 0.26.



Figure 1: Sample Decision Tree
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