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Abstract
The duality between cost and production functions has been thoroughly studied and is well-known. A given set of

assumptions on the technology implies a set of restrictions on the Jacobian of the cost function and on a subset of its

Hessian matrix. The vector of second derivatives of the cost function with respect to the input prices and the output

has not been fully characterized, however. In this note, we present a necessary and sufficient condition to ensure that

the components of this vector are all strictly positive. That is, we specify the condition for all conditional demand

functions to be simultaneously increasing in output. This condition is interpreted as a strengthening of the quasi-

concavity of the production function.
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1. Introduction 

The duality between production and cost functions is a fundamental result in economic theory.  It 

implies that the technology has an equivalent representation in both, the quantity space and the 

price space.  This form of duality proved to be extremely useful in applied economics as the 

estimation of cost functions became a very active field of application, for production economists 

in particular.  The number of such implementations is too large to try to credit them all here.  To 

serve such an important growing field of applications, economists have provided the applied 

researchers with a fairly complete theoretical characterization of the cost functions.  This 

characterization is not complete however, and the note here provides another piece to this 

characterization effort.  In particular, it focuses on determining the conditions under which the 

quantity effects are always positive.  That is, we show a necessary and sufficient condition to 

ensure that all conditional factor demands increase when output increases.  We use the rest of 

this introduction to set up the problem by quickly reviewing the cost minimization problem. This 

allows us to set up the notation used.  

It is common practice in every microeconomic textbook to study very carefully the 

properties of the cost function.  The argument usually follows a well-ordered path.  One 

considers a production function, y = f(x), where y is the output and x the n-vector of inputs.  

Then, the cost function is defined by the following problem: 
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where w is the n-vector of input prices and the prime superscript is the transposition operator. 

Conditions imposed on the production function translate into properties of the cost 

function.  Suppose that the production function, f, is twice continuously differentiable (
 
f ∈C

2 ), 

increasing in all of its arguments (fx > 0, where fx is the 1 n×  vector of partial derivatives of f), 

and strongly quasi-concave (if dx ∈ℜn \{0}  is such that 0xf dx =  then ' 0xxdx f dx < ).  These 

conditions imply that the cost function C is twice continuously differentiable (C ∈C
2 ), 

homogeneous of degree one in w ( ( , ) ( , )C w y C w yλ λ=  for λ > 0), increasing in w and y (Cw > 0 

and Cy > 0), and strongly concave in w (dw′Cww dw < 0 for all dw ≠ αw and α ∈ ℜ
 
\ {0}).  

Finally, if we strengthen the condition on the curvature of the production function by supposing 

it is concave in x (implying decreasing returns to scale) then the cost function is convex in y. 

From the preceding paragraph discussion, we observe that the Jacobian of the cost 

function is characterized in every dimension (w and y), but the Hessian matrix is only partially 

characterized.  To see this, note that the Hessian matrix of the cost function can be written: 
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From the discussion above, one can see that the matrices on the diagonal (namely, Cww and Cyy) 

are fully characterized, but the off-diagonal terms (Cwy and Cyw) are not. 

From Young’s theorem, we know that Cwy = Cyw’ so we might just focus on Cwy.  From 

Shephard’s Lemma (Cw’ = x) we deduce that Cwy = xy.  That is, Cwy is the conditional factor 

demand output effect vector.  Using the definition of the cost function and the envelope theorem 



we obtain w′xy = Cy = λ.  But since the Lagrange multiplier is non-negative and the vector of 

input prices is strictly positive, we know that the quantity effects (xy.) cannot be all 

simultaneously negative.  We also know that homotheticity of the production function is 

sufficient to ensure that all xiy are positive.  For empirical work, this might often be an excessive 

assumption, as it imposes too much structure on the characteristics of the technology.  For 

example, the Cobb-Douglas production function is homothetic but it comes at the price of 

imposing elasticity of substitution equal to one.  This is, in general, overly demanding on the 

technology.   We wish to be able to free us from this constraint, but at the same time we wish 

sometimes to avoid cases where some inputs might be used less intensively as production 

increase.  That is, we wish that the technology be compatible with an increasing output 

expansion path for all inputs. Figure 1 illustrates the cases of homotheticity and quasi-concave 

production function with xiy > 0 and xjy < 0.  Intuitively, in this paper a condition is given to 

avoid situation like the one represented in panel 2 of Figure 1, without imposing conditions so 

restrictive, such as homotheticiy, that we end up in situations like the one represented in panel 1. 
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Figure 1: Output expansion paths with quasi-concave production functions – 

Homotheticity on the left panel, negative output effect on the right. 

In this note, the characterization of the Hessian matrix of the cost function is extended by 

relating the positivity of the output effect vector to conditions on the production function, 

conditions that will be seen to be less demanding than homotheticity.  More precisely, it will be 

shown that to have all terms of the vector xy positive (Cwy = xy > 0) is equivalent to a curvature 

condition on f. 

The rest of the paper examines the relationship between x and y for a given input price 

vector, i.e. w=w  and an interior solution to the cost minimization problem.  This allows us to 

write the n-vector of conditional factor demands as x = x(y).  Given w=w , we deduce from the 

solution to the cost minimization problem that the marginal rates of substitution are constant for 

all y > 0.  That is, let Tni = -fi / fn for all i = 1, …, n-1, where fi is the partial derivative of f with 

respect to xi and let T :ℜ
nn
→ℜ

nn−1
 be the map from the space of the partial derivatives into the 

marginal rate of substitutions, T = [Tni].  Then, we must have: 
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This vector-equation condition gives us the key elements to characterize the curvature property 

of the production function in order to have a positive output effect, i.e. xiy > 0 for all i = 1,…n.  

We first show how the characterization works in the two input case and then generalize it to 

arbitrary n.  

2. The two-input case 

In the two-input case, it is immediate to show that: 
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By substituting equation (2) into equation (1), we obtain: 
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For equation (3) to be positive, the sign of both the numerator and the denominator must be the 

same.  But we have seen above that the dxi / dy cannot be all simultaneously negative, so we 

conclude that dxi / dy > 0 for all i if and only if (f1 f22 – f2 f12) / (f2 f11 – f1 f12) > 0.  This result is 

not implied by quasi-concavity, and we now show that it is in fact a strengthening of the 

curvature condition. 

Strong quasi-concavity of the production function implies that: 
1
 

f2 (f2 f11 – f1 f12) + f1 (f1 f22 – f2 f12) < 0.                (4) 

Because the production function is increasing, fx > 0, it follows that (f2 f11 – f1 f12) and (f1 f22 –

 f2 f12) cannot be simultaneously positive under quasi-concavity.  Strong quasi-concavity is only 

compatible with one of the following cases: either both terms are negative or they have opposite 

signs. It follows from equation (3) that when the sign of these terms is the same, the two output 

effects are positive. When the signs are different, one output effect is positive while the other is 

negative. 

Table 1. Signs of output effects (∂x1/∂y, ∂x2/∂y) 

 (f2 f11 – f1 f12) > 0 (f2 f11 – f1 f12) < 0 

(f1 f22 – f2 f12) > 0 Not compatible with strong quasi-

concavity of f 

(+, -) or (-, +) 

(f1 f22 – f2 f12) < 0 (+, -) or (-, +) (+, +) 

 

The (+, +)-cell in Table 1 shows that for positive output effect, Cwy = xy > 0, we need a 

strengthening of the strong quasi-concavity condition. That is, both (f2 f11 – f1 f12) and (f1 f22 – f2 

f12) must be negative.  This condition is not only sufficient, it is also necessary, as imposing that 

                                                
1
 This is a rewriting of the determinant condition on the bordered Hessian matrix for quasi-concavity of the 

production function. 



every output effect is positive implies a condition over each term, (f2 f11 – f1 f12) and (f1 f22 – f2 

f12), separately. 

Now, note that from quasi-concavity at least one of (f2 f11 – f1 f12) and (f1 f22 – f2 f12) is 

negative, so we may suppose that (f1 f22 – f2 f12) < 0 without lost of generality.  Using again the 

determinant condition on the bordered Hessian matrix of the production function, it follows from 

strong quasi-concavity that: 

2 11 1 12 1

1 22 2 12 2

f f f f f

f f f f f

−
> −

−
. 

Quasi-concavity bounds the input effect to be larger than the marginal rate of substitution 

(MRS).  Since the MRS (the right hand side of the equation above) is negative, it is clear that 

quasi-concavity is not enough to ensure positive output effect.  Positive output effect is therefore 

more demanding on the curvature of the isoquant than what is necessary to ensure the existence 

of the conditional factor demands.  Intuitively, the result is appealing.  The curvature of the 

isoquant under strong quasi-concavity allows the conditional factor demands to have either 

positive or negative output effects.  However, elimination of “backward bending” output 

expansion paths (as in Figure 1) requires that the optimal choice of inputs consistent with the 

(constant) MRS must be located in a smaller region than when it is not restricted.  In other 

words, the curvature of the isoquant must be large enough.  Of course, infinite curvature 

(Leontief technology) provides positive output effect.  Nevertheless, the necessary and sufficient 

condition for positive output effects, as it was shown here, is weaker than homotheticity (the 

output path being linear). As it is also clear from the discussion above, homotheticity is also 

overly demanding to ensure positive output effects. 

 

3. The n-inputs case 

In this section, we generalize the results of the first section to the n-inputs case.  Let 

1 1( , , )
n n
x x x
− −
≡ …  be the input vector obtained by deleting the n

th
 component from x.  Thus, the 

input vector is given by x = x
−n
,x
n

( ) ≡ (x1,…,xn−1,xn ).   Equation (1) can be rewritten as follows: 
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This equation can be expressed more compactly. Let A be a matrix with typical element 

( ), ( , )ij n ij i njA f f f f i j n= − ∀ <  and let An be a ( 1) ( 1)n n− × −  diagonal matrix with diagonal 

element A
in
= f

i
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f
in( ),∀i < n , and zeros elsewhere.  Then, equation (5) can be written as 

follows: 
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where [ ]/ndx dy  is a ( 1)n−  vector with /ndx dy  repeated in all ( 1)n−  entries of the vector.  

Now, note that 1

n
A A

−  is full ranked; It is obvious for the diagonal matrix An, and it follows from 



Debreu (1952) Theorem 5 and quasi-concavity of the production function that A is non singular.  

Consequently, a sufficient condition for the output effects to be positive is:
2
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For n = 2, equation (7) is identical to equation (2) of the previous section, and both cases are 

equivalent.  Consequently, the sufficient condition given by equation (6) reduces to the necessary 

and sufficient condition of the previous section. 

When n>2, this condition is no longer necessary and the requirement for positive output 

effect can be weakened.  Using the matrix notation above, equation (1) can be written as follows: 
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Let A
ij
 denotes a typical element of A

-1
 and write Equation (8) as follows: 
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Therefore, if the A
ij
A
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j=1

n−1

∑  for i=1,…,n-1 are all positive, then the 
  
∂x

i
/ ∂y  are of the same sign.  

But since at least one of these must be positive, they must be all positive.   

The Proposition below summarizes this discussion. 

Proposition: The necessary and sufficient condition for every output effects to be positive is: 
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It is possible to show that this condition is related to complementarity measures.  It is also 

a strengthening of the quasi-concavity condition as we have stressed above.  Finally, note that for 

n = 2, this condition reduces to the result obtained in the first section. 

 

4. Translog technology 

A Cobb-Douglas technology is homothetic, implying that the output-effects are necessarily 

positive.  This is well known, so in order to show that the above condition is not trivial, we use a 

translog production function with two inputs and one output: 

                                                
2
 This condition is similar to Leroux (1987) sufficient condition for every consumption goods to be normal. 

3
 This condition is similar to Alarie et al. (1990) necessary and sufficient condition for every consumption goods to 

be normal. 



1 1 2 2 11 1 1 12 1 2 22 2 2
ln ln ln 0,5 ln ln ln ln 0,5 ln lny a b x b x b x x b x x b x x= + + + + + . 

The first- and second-order partial derivatives are (for i and j = 1, 2): 
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where ε
i
! ∂ ln y ∂ ln x

i
= b

i
+ b

i1
ln x

1
+ b

i2
ln x

2
( )  is the elasticity of output with respect to input xi 

and 1 if  and 0 if 
ij ij

i j i jδ δ= = = ≠ . 

Substituting these results in the determinant condition for quasi-concavity given by 

equation (4), we obtain: 

( ) ( ) ( )2 11 2 12 1 1 22 1 12 2 2 1 1 2
b b b bε ε ε ε ε ε ε ε ε ε− + − < + . 

Since bij = 0 (the elasticities of substitution are constant) for a Cobb-Douglas technology, this 

equation reduces to ( )2 1 1 2
0 ε ε ε ε< + .  Clearly, the Cobb-Douglas functional form always 

satisfies this condition. 

Positive output-effects require that ( ) ( )11 2 12 1 2 1 22 1 12 2 1 2
 and b b b bε ε ε ε ε ε ε ε− < − < .  Once 

again, in the Cobb-Douglas case (a homothetic technology), these conditions are trivially 

satisfied, and the conditions reduce to 
2 1

0 ε ε<  and
1 2

0 ε ε< , since bij = 0. 

This result can be more revealing if we analyze it in terms of the parameters alone.  

Suppose that we normalize the inputs, i.e. we set values 
1 2

1x x= = .  This implies that 

1 2
ln ln 0x x= =  which in turn implies that 

1 1 2 2
 et b bε ε= = .  Then, the positivity conditions 

become ( ) ( )2 11 12 1 1 2 22 1 12 2 1 2
 and b b b b bb b b b b bb− < − < .  It is now easy to see that this is a stringier 

requirement than quasi-concavity, as this curvature requirement is satisfied at this specific point 

if and only if 
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