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Abstract
We show that the key results of the stochastic models (that use stochastic calculus) can be easily derived using

classical calculus and without restrictive assumptions. We apply our method to two major areas in stochastic analysis:

optimization and partial differential equations. For example, we apply the method to the portfolio model and the Black-

Scholes partial differential equations.
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1. Introduction

In this paper, especially in mathematical finance, we show that the key
results of the stochastic models (that use stochastic calculus) can be derived
without Ito’s lemma or Itos’s calculus. That is, we derive these results using
classical calculus and without the restrictive assumptions adopted by Ito (see
Ito (1944)). Moreover, our approach is more precise than Ito’s approach in
the sense that we don’t use the famous, controversial, imprecise rules, such
as (dt)2 = 0.

We apply our method to two major areas in stochastic analysis: opti-
mization and partial differential equations PDEs. In particular, we apply
our methods to the Black-Scholes PDE and the portfolio model.

2. Optimization

In this section, we apply our method to the area of continuous-time,
stochastic optimization. As an example, we choose the portfolio model (a
dominant model in mathematical finance; see, for example, Cvitanic and
Zapatero (2004), Alghalith (2009) and Detemple (2014)). In this paper, we
use standard technical assumptions.

Similar to previous literature, the price of the risky asset, at an arbitrary
time u, is given by

S (u) = S (t) eθu+σW (u); t ≤ u,

where W (u) is a standard Brownian motion, while θ and σ are constants.
Clearly (using classical calculus)

dS (u) = S (u) (θdu+ σdW (u)) . (1)

The wealth processX (u) satisfies the following equation (a well-known result
in the portfolio literature)

dX (u) = [rX (u) + π (u) (θ − r)] du+ π (u) σdW (u) , (2)

where r is the risk-free rate of return, and π (u) is the risky portfolio process.
Thus,

(dX (u))2 = [rX (u) + π (u) (θ − r)]2 (du)2 + (π (u)σdW (u))2 +

2 [rX (u) + π (u) (θ − r)] π (u)σdudW (u) . (3)



Proposition 1. The optimal portfolio is given by π (t) = − (θ−r)VX(t,X(t))
σ2VXX(t,X(t))

.

Proof. Consider the following exact Taylor’s expansion of the value func-
tion around the point of expansion (t, x)

dV (u,X) = Vudu+ VXdX + VuXdudX

+
1

2

�
VXX (dX)

2 + Vu (du)
2�+R (u,X) , (4)

where R is the remainder. Substituting (3) and (2) into (4) yields

dV (u,X) = Vudu+ VX [rX (u) + π (u) (θ − r)] du

+VuX [rX (u) + π (u) (θ − r)] (du)
2 +

1

2






VXX




[rX (u) + π (u) (θ − r)]2 (du)2+

(π (u)σdW (u))2+
2 [rX (u) + π (u) (θ − r)] π (u)σdW (u) du





+Vuu (du)
2






+R (u,X) .

Taking expectations on both sides, we obtain

E [dV (u,X)] = E[Vudu+ VX (rX (u) + π (u) (θ − r)) du

+ VuX [rX (u) + π (u) (θ − r)] (du)
2 (5)

+
1

2

�
VXX

�
[rX (u) + π (u) (θ − r)]2

�
(du)2

+Vuu (du)
2

�

+R (u,X)] +
1

2
σ2duEπ2 (u)VXX .

Differentiating (5) w.r.t.π (u) yields

E

�
VX (θ − r) du+ VuX (θ − r) (du)

2+

VXX
�
(rX (u) + π (u) (θ − r)) (θ − r) (du)2 + π (u)σ2du

�
�
= 0.

Dividing by du yields

E

�
VX (θ − r) + VuX (θ − r) du+

VXX [(rX (u) + π (u) (θ − r)) (θ − r)) du+ π (u) σ
2]

�
= 0.

Evaluating at time t (the current time), we obtain



VX (θ − r) + VXXπ (t) σ
2 = 0,

since du = 0 at t. Therefore, the optimal portfolio is given by

π (t) = −
(θ − r)VX (t,X (t))

σ2VXX (t,X (t))
.�

Needless to say, this is the same formula obtained by stochastic calculus.

3. PDEs— the Black-Scholes equation

In this section, we apply the method to PDEs. As an example, we apply
the method to the Black-Scholes PDEs (see Black and Scholes (1973)) .

Using (1) , we obtain

(dS)2 = S2
�
θ2 (du)2 + σ2(dW (u)2 + 2θσdudW (u)

�
. (6)

Proposition 2. The price of the option satisfies this PDE

Ct (t, S (t)) + r [CS (t, S (t))S (t)− C (t, S (t))] +
1

2
σ2CSS (t, S (t))S (t)

2

= 0.

Proof. Consider the following exact Taylor’s expansion of the price of the
European call option C (u, S) around (t, s)

dC (u, S) = Cudu+ CSdS + CSududS +
1

2

�
CSS (dS)

2 + Cuu (du)
2�+R (u, S) . (7)

Substituting (1) and (6) into (7) , and taking expectations yields

EdC (u, S) = E

�
Cudu+ CSSθdu+ CSuSθ (du)

2+
1
2

�
CSSS

2θ2 (du)2 + Cuu (du)
2 +R (u, S)

�
�

+
1

2
σ2duECSSS

2.



Using the Black-Scholes assumptions (replicating portfolio and risk neutral-
ity), we obtain

E

�
Cudu+ CSSrdu+ CSuSr (du)

2+
1
2

�
CSSS

2r2 (du)2 + Cuu (du)
2 +R (u, S)

�
�
+

1

2
σ2duECSSS

2
− rEC (u, S) = 0.

Dividing by du, then evaluating at t, we obtain the well-known Black-Scholes
PDEs

Ct (t, S (t)) + r [CS (t, S (t))S (t)− C (t, S (t))] +
1

2
σ2CSS (t, S (t))S (t)

2

= 0.�

Needless to say, our approach can be applied to many other models in sto-
chastic analysis.
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