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Abstract
This note studies second-degree discrimination by a platform that sells a two-version (online) service to consumers

engaged in a social network. Consumers choose between a premium version, which enhances network externalities, or

a free version, which includes advertising about some other product. Under the assumptions that the consumers'

valuations for the advertised product are uniformly distributed and that advertising has a signaling structure, we relate

optimal pricing to the underlying degree distribution and the hazard rate of the random network. We derive close form

expressions for the platform's profits in most prominent real-world social networks where online platforms operate.

Platforms that operate in large and relatively sparse networks wish to provide only the free version, whereas platforms

serving more densely connected networks prefer to provide both versions.
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1. Introduction

A group of consumers is engaged in a social network that enables positive externalities

over the consumption of a service. A single platform provides the service through a two-

version bundle: (1) a free version, with advertising about some (unrelated) product, and (2)

a premium version, with no advertising, that allows for higher network externalities relative

to the free version.1 In these situations, there is a trade-off between the profits from the

sales of the premium version and the profits from the advertising activity. The problem of

the platform is to choose second-degree discrimination strategies, where consumers self-select

themselves to adopt one version of the service or the other. Over the recent years, this type

of discrimination schemes with advertising have become a prevalent practice.2 This business

model is known as versioning in the business literature.

Under fairly general assumptions, Jimenez-Martinez (2018) analyzes the incentives of the

platform to pursue versioning, its optimal pricing policy, and the welfare implications. In

that model, the results on optimal pricing, as well as the derived welfare implications, can be

related to the degree distribution that underlines the social network. Given the generality of

the model, a caveat of Jimenez-Martinez (2018)’s analysis, though, is that it does not allow

for closed form expressions, neither for the platform’s profit functions nor for the optimal pric-

ing strategies. This makes it hard to map the implications of the model to sharp descriptions

of how real-world platforms operate over social networks. This note aims at obtaining more

detailed results from Jimenez-Martinez (2018)’s model on versioning by assuming that (1)

the distributions of the product’s valuations are uniform and (2) advertising has a signaling

structure. Under these more restrictive assumptions, we are able to capture empirical regu-

larities of second-degree discrimination with advertising in social networks. In particular, the

two key applications of Section 4 allow us to explore in detail the platform’s profit functions

for the two most prominent classes of degree distributions (according to empirical evidence):

the power law pattern and the exponential pattern.3 Platforms that operate in large and

1For example, think of Twitter or The Weather Channel platforms. Each of the two platforms offer
advertising about automobiles, among many other products unrelated to their services.

2Platforms that follow this practice, with advertising, include Google and Yahoo (web search engine),
Facebook, Twitter, Instagram, and Snapchat (social interaction), Whatsapp, Skype, and Line (communica-
tion) AirBnB (accommodation search), Amazon (retail, product search, and market matching), Waze (traffic
and route forecasting), BBC, CNN, The New York Times (news), The Weather Channel (weather forecast-
ing), Yelp and Foursquare (review and rating), YouTube, Vimeo, Apple Music, and Spotify (entertaining
and information), Strava, MapmyRun, Nike Training Club, and Azumio (exercise and health tracking), Box
(second-hand trade), or Tinder (dating).

3Power law distributions fit well the data on the nodes on the Internet (Barabási and Albert, 1999), the



relatively sparse networks—typically generated by power law distributions—have incentives

to provide only the free version of the service, whereas platforms serving more densely con-

nected networks—typically generated by exponential distributions—prefer to provide both

versions.

This note is related to the literature on network externalities (Farrell and Saloner, 1985;

Katz and Shapiro, 1985; Amir and Lazzati, 2011) and on second-degree discrimination

(Mussa and Rosen, 1978; Maskin and Riley, 1984). Our notion of advertising builds upon

the informative advertising notion proposed by Lewis and Sappington (1994) and Johnson

and Myatt (2006). The technical side relies upon random networks and on the configuration

model (Erdös and Renyi, 1959; Bender and Canfield, 1978; Bollobás, 2001; Newman et al.,

2001; Jackson and Yariv, 2007; Galeotti and Goyal, 2009; Fainmesser and Galeotti, 2016).

2. Model

A unit mass of consumers, indexed by i ∈ [0, 1], is embedded in a social network. A

platform offers two unrelated commodities over the social network: (1) z ≥ 0 units of a

product, which it produces at a marginal cost c ∈ (0, 1/2),4 and (2) any discrete quantities

of a two-version online service bundle, which it produces at no cost. The network enables

positive externalities for the consumption (only) of the service: the utility of each consumer

from her consumption of the service increases with the number of her neighbors. The two-

version service bundle consists of: (a) a free version, which is offered with advertising about

the product, and (b) a premium version, which does not include advertising and, furthermore,

allows consumers higher externalities relative to the free version. Notation a = 0 or a = 1

indicates that advertising is either absent or present, respectively. The price of each unit of

the product is p and the price of the (premium version of the) service is q. There is no price

discrimination for the advertised product: all consumers face the common price p, regardless

of the version of the service they adopt.

Each consumer has a unit demand for the service. Let zi be consumer i’s probability of

purchasing the product and let xi be the probability that consumer i adopts the premium

number of links in websites (Clauset et al., 2009), and the social commerce network through the Internet
(Stephen and Toubia (2009)). On the other hand, Rosas-Calals et al. (2007), Ghoshal and Barabási (2011),
and Scholz (2015) provide empirical evidence which suggests that some small and dense social networks
adjust well to the pattern of exponential degree distributions.

4The production cost of the advertised product is naturally assumed to be lower than its prior expected
valuation.



version of the service. Each consumer is willing to pay up to ω for a unit of the product

and up to θ for a unit of the service. The consumers’ valuations for the product ω are

independently drawn from a uniform distribution U [0, 1] and their valuations for the service

θ are independently drawn from some interval (θ, θ), with θ > 0, according to some (common)

distribution. The two commodities are totally unrelated and, therefore, the valuations ω and

θ are assumed to be independent from each other. By construction, the analysis focuses on

groups of consumers where all of them are willing to adopt at least the free version of the

service.5

2.1. Informative Advertising

Advertising helps consumers to improve their knowledge of their own tastes for the prod-

uct. Prior to their purchasing decisions, consumer do not know their valuation ω. Instead,

they receive some (noisy) public signal realization y ∈ (1/2, 1].6 Consumers then use the

signal realization y to update their beliefs about their underlying valuations ω. The public

signal yields either:

(1) the actual realization of the valuation y = ω, with probability
1 + a

2
, or

(2) some independent drawn from U [0, 1], with probability
1− a

2
.

Given this signaling structure, each consumer i obtains the posterior expectation of her

valuation for the product by applying Bayes rule:7

E[ω | y, a] =
1 + a

2
y +

1− a

2

(
1

2

)

. (1)

When advertising is absent (a = 0), consumers place weights according to a uniform proba-

bility on either the public signal realization y or their prior 1/2 being their true underlying

valuations, E[ω | y, 0] = (1/2)y + (1/2)(1/2). When advertising is present (a = 1), con-

sumers are able obtain additional information and turn to assign probability one to the

5This makes sense if we consider that such “minimally interested” consumers are indeed the ones who
form the network targeted by the platform.

6The signal realization is naturally assumed to the higher than the expected prior of the advertised
product’s valuation. The signal realization y can be interpreted as the public observation of some posted
information about the product quality (such as the one obtained from existing commercials, marketing
samples, or from some other selling activities).

7 In the expression in (1), the unconditional prior is given by E[ω] = 1/2 since ω ∼ U [0, 1].



valuation ω = y and probability zero to the prior: consumers learn their true valuations,

E[ω | y, 1] = y.8 Use Pa(z) to denote the inverse demand of the product if all consumers

receive an advertising level a ∈ {0, 1} and suppose that the platform offers a quantity z of

the product. Since the product’s valuation is drawn from a U [0, 1] distribution, the platform

sells the product to those consumers receiving a public signal greater than y = 1 − z. The

platform must therefore set prices according to the linear rules:

P0(z) = (3/4)− (1/2)z;

P1(z) = 1− z,
(2)

which gives us the expressions for the induced inverse demands of the product, conditioned

on each advertising level a ∈ {0, 1}.

2.2. The Social Network and Preferences

The social network is stochastic.9 The platform and the consumers are uncertain about

the specific architecture of the network but they commonly know the stochastic process that

generates it. There is a set [n, n] ⊆ R+ of possible neighborhood sizes, or degrees in the

social network.10 Let ni ∈ [n, n] be a possible degree for consumer i. The degree distribution

of the social network is given by a twice continuously differentiable distribution H(n), with

strictly positive density h(n), over the support [n, n].11

Let x(q) be the fraction of premium version adopters at price q, conditioned on the degree

distribution H(n). Since each consumer is assumed to adopt one of the two versions of the

service (which is ensured by θ > 0), the average consumption of the service of a consumer’s

8This simple formulation builds on the settings proposed by Lewis and Sappington (1994) and Johnson
and Myatt (2006) to analyze informative advertising. In particular, our specification of signaling ads induces
the type of fairly general clockwise demand rotations which were proposed by Johnson and Myatt (2006)
and subsequently used by Jimenez-Martinez (2018).

9The links facilitated by the platform are included in the targeted social network but the network can in
principle be a broader graph. Conceivably, the network can include also family, friendship, working relations
links, or links provided by other platforms. Then, one would naturally consider that the platform cannot
create or remove family, friendship or other links which are external to the platform’s provision of its online
service bundle. While considering a random network makes the analysis tractable, it allows for interesting
dynamic interpretations of how neighborhoods’ sizes evolve over time, which can formally be related to the
optimal pricing policy of the platform.

10For some applications, one might consider n = 0. Also, the set [n, n] could be unbounded as well and,
in particular, n could tend to infinity in some cases.

11 In other words, the degree of a fraction H(n) =
∫
n

n
h(m)dm of consumers does not exceed n.



neighbor equals one.12 Therefore, in a quite convenient way, the number ni captures in our

setup the average consumption of the service of agent i’s neighbors, conditioned on consumer

i having degree ni.

The network allows consumers to interact locally with respect to their consumptions

(only) of the service. The consumption of the service exhibits a local (positive) network

effect: a consumer’s utility from—any version of—the service increases as her neighbors

increase their consumptions13—regardless of the version of the service that the neighbors

adopt. A consumer’s utility raises by an amount of 1, when he adopts the free version of

the service, or by an amount 1 + β, where β > 0, when he adopts the premium version, for

each unit of the service consumed by her neighbors. The term β describes an externality

premium.14

To close the model, we consider that consumers process their information about their

neighbors according the degree independence assumption. This assumption requires that

each member of the network regards her links as independently chosen from the random

network15 and guarantees that her degree is the only relevant information about the network

that each consumer needs to consider.

Under the assumptions above, the expected utility of a consumer i, conditioned on having

degree ni, is given by

u(zi, xi |ni) ≡ zi(ω − p)
︸ ︷︷ ︸

product

+ xi

[
θ − q + (1 + β)ni

]

︸ ︷︷ ︸

premium version of the service

+ (1− xi)
[
θ + ni

]

︸ ︷︷ ︸

free version of the service

. (3)

12Formally, under the assumptions of the configuration model, the expected consumption of some version
of the service of a consumer i’s neighbor is derived as

∫
n

n
mhs(m)

[
P(zi = 1 |ni = m) + P(zi = 0 |ni = m)

]
dm

∫
n

n
nhs(n)dn

= 1

since, given the assumption θ > 0, we directly obtain P(zi = 1 |ni = m) + P(zi = 0 |ni = m) = 1 for each
degree m ∈ [n, n].

13 In practice, such externalities take the form of benefits from being able to interact with a higher number
of people (e.g. social interaction, second-hand trading, exercise tracking, or dating services), informational
gains (e.g., weather forecast, traffic monitoring, news services, or review and rating services), or collaborative
gains (e.g., online gaming or collaborative projects).

14This feature seems to be the consistent with most real-world online services where the premium version
allows consumers to enjoy the network externalities to a greater extent, compared to the free version.

15This is a very common assumption in the literature on random networks and has been used, among
others, by Jackson and Yariv (2007), Galeotti et al. (2010), Fainmesser and Galeotti (2016), and Shin
(2016).



It follows from the specification in (3) that the fraction of free version adopters at price q,

conditional on the degree distribution H(n), is

1− x(q) = P(xi = 0) = P
(
θ − q + (1 + β)ni ≤ θ + ni

)

= P (ni ≤ q/β) = H (q/β) .
(4)

For price q, let n(q) ≡ q/β be the cutoff degree such that xi = 0 if ni ≤ n(q) whereas xi = 1

if ni > n(q). The sensitivity of the demand x(q) of the premium version with respect to

its price depends on the random process that generates the network and on the externality

premium: x′(q) = − (1/β)h
(
n(q)

)
. Note that all consumers purchase the free version of the

service (i.e., x(q) = 0) when its price satisfies q ≥ q, where the upper bound q on the service

price is given by q ≡ βn. Since we are interested in restricting attention to optimal policies

such that q ∈ (θ, θ), we will accordingly consider that θ ≥ q ≡ βn.

Hazard rate analysis is useful in to capture key features of how the random network

evolves in dynamic interpretations. The hazard rate function of the random network with

distribution degree H(n) is the function r : [n, n] → R+ defined as16

r(n) ≡
h(n)

1−H(n)
. (5)

3. Main Result

Use za(p) and πa(p) to denote, respectively, the demand of the product and the profits to

the platform from the product’s sales, for price p, conditioned on advertising level a. In the

absence of advertising (a = 0), we derive (using the expression in (2)): z0(p) = 3/2− 2p for

p ≤ 3/4, which in turn leads to the profits

π0(p) =







(p− c)
[
3
2
− 2p

]
if p ∈ (0, 3

4
]

0 if p ∈ (3
4
, 1].

(6)

16For dynamic interpretations where the network evolves along several periods, the function r(n) gives us
the probability that a randomly selected consumer has approximately n neighbors in a subsequent period,
conditioned on her current neighborhood size being no less than n. In addition, note that the hazard rate
of the degree distribution underlying the random network gives us key information about the sensitivity of
the demand for the premium version of the service: r

(
n(q)

)
= −βx′(q)/x(q).



In the presence of adverting (a = 1), we derive (again, using the expression in (2)): z1(p) =

1− p for p ≤ 1, which leads to the profits

π1(p) = (p− c)[1− p] if p ∈ (0, 1]. (7)

The platform’s optimal pricing follows backwards induction through a two-stage process.

Given a degree distribution H(n), that underlines the random network, and a price q ∈ (θ, θ)

of the service, the platform’s goal is first to set a price p∗ ∈ (0, 1) for the product so as to

maximize the profits from the product’s sales

π
(
p, q

)
≡ x(q)π0(p) +

[
1− x(q)

]
π1(p). (8)

Since advertising affects (some of) the consumers’ willingness to pay for the product, the

profits from the product’s sales naturally depends on the fraction x(q) of premium version

adopters. Then, given an optimal choice p∗ ∈ (0, 1) for the price of the product, the platform

wishes to choose a price q∗ ∈ (θ, θ) for the service so as to maximize its overall profits

Π(p∗, q) ≡ qx(q) + π
(
p∗, q

)
. (9)

Existence of equilibrium is guaranteed since the profits specified in (8) and (9) are continuous

functions on compact convex sets.

Proposition 1 provides the key necessary conditions that must satisfy the platform’s op-

timal pricing strategy for interior prices in our model.

Proposition 1. Consider a random social network with degree distribution H(n) and hazard

rate function r(n). Suppose that the platform optimally chooses interior prices p∗ ∈ (0, 1),

for the advertised product, and q∗ ∈ (θ, θ), for the service, with an equilibrium fraction of

premium version adopters x(q∗) ∈ (0, 1). Then, such optimal prices must satisfy:

p∗ =
1

2

([
1 + x(q∗)/2

1 + 2x(q∗)

]

+ c

)

(10)

and

q∗ + Φ(q∗) =
β

r
(
n(q∗)

) , (11)

where Φ(q) is a function that decreases strictly in q if x(q) > 1/7 (equivalently, if H
(
n(q)

)
<

6/7) and increases strictly if x(q) < 1/7 (equivalently, if H
(
n(q)

)
> 6/7).



Since the function Φ(q) identified in the equilibrium condition (11) of Proposition 1 is

not monotone in q, uniqueness of equilibrium cannot be guaranteed in general even when

the hazard rate r(n(q)) is monotone in q. Nevertheless in our two main applications, which

capture most real-world social networks targeted by online platforms, equilibrium is unique.

4. Applications

The proof of Proposition 1 provided in the Appendix shows that the platform’s profits,

for interior optimal prices p∗, are given by

Π(p∗, q) = qx+
1

4
[η(x)− c]

[
1 +

[
1− η(x)− c

]
[1 + x]

]
, (12)

where x stands for short-hand notation of the fraction of premium version adopters at price q

(i.e., x = x(q)), and η(x) denotes the function η(x) ≡ [1+x/2]/[1+2x]. The expression above

for the platform’s profits Π(p∗, q) will be used in our two key applications. Also, the proof

of Proposition 1 gives us the expression of function the Φ(q) identified in the proposition.

Function Φ(q) will be used in the applications to compute optimal prices for the service, by

using the composite function φ(x) specified as

φ(x) ≡
1

4

[

η′(x)
[

1 +
[
1 + x

][
1− 2η(x)

]]

+
[
η(x)− c

][
1− η(x)− c

]]

,

where φ(x(q)) ≡ Φ(q). In addition, for the next two applications, consider a cost c = 1/4

and a value β = 1 for the externality premium, which implies n(q) = q.

4.1. Power Law Degree Distribution

Empirical evidence suggests that most real-world online and Internet-based social net-

works are scale-free and, therefore, that the corresponding degree distribution must follow a

power law.17 For a degree support [n,+∞), with n > 0 a power law degree distribution with

parameter σ > 1, is given by

H(n) = 1− nσ−1n−(σ−1).

Most empirical estimates propose values for the parameter σ that lie in the interval (2, 3).

The corresponding hazard rate function is r(n) = (σ − 1)/n, which decreases in n. Let us

17Also, power law degree distributions are particularly suitable to model the formation of networks that
follow a preferential attachment pattern.
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Figure 1 – Platform’s profits for the power law degree distribution.

consider σ = 5/2 and n = 1. Then, the demand of the premium version of the service is

given by x(q) = q−3/2 so that η(x) = [2 + q−3/2]/[2 + 4q−3/2]. From the expression provided

in (12), we obtain that the platform’s profit function Π(p∗, q) takes the form

Π(p∗, q) = q−1/2 +
1

4

(
2 + q−3/2

2 + 4q−3/2
−

1

4

)(

1 +

[
3

4
−

2 + q−3/2

2 + 4q−3/2

][

1 + q−3/2
])

.

The graph of such a profit function is depicted in Figure 1.

The necessary condition provided by Proposition 1 in (11) is not satisfied in this applica-

tion. We observe that the platform’s optimal choice entails a corner solution. The platform’s

profits are always decreasing in the price of the (premium version of) the service. It then fol-

lows that providing the premium version is not profitable and the platform chooses optimally

to serve only the free version of the service.

4.2. Exponential Degree Distribution

A typical degree distribution with constant hazard rate function is the exponential degree

distribution. At a theoretical level, exponential degree distributions are often used to capture

the formation of links according to uniform randomness in growing random networks.18 For

a degree support [0,+∞), an exponential degree distribution with parameter σ > 0 is given

by

H(n) = 1− e−n/σ.

18See, e.g., Jackson (2008), Chapter 5, for an insightful description of the use of the exponential degree
distribution in growing random networks.
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Figure 2 – Platform’s profits for the exponential degree distribution.

The corresponding hazard rate function is r(n) = 1/σ. Let us consider σ = 1. Then,

the demand of the premium version of the service is given by x(q) = e−q so that η(x) =

[2 + e−q]/[2 + 4e−q]. From the expression provided in (12), we obtain that the platform’s

profit function Π(p∗, q) takes the form

Π(p∗, q) = qe−q +
1

4

(
2 + e−q

2 + 4e−q
−

1

4

)(

1 +

[
3

4
−

2 + e−q

2 + 4e−q

][

1 + e−q
])

.

The graph of such a profit function is depicted in Figure 2.

The necessary condition provided by Proposition 1 in (11) yields the interior optimal price

q∗ ≈ 1.056. In this application, the platform thus optimally chooses to pursue versioning by

offering both versions of the service.

5. Concluding Remarks

We have obtained that platforms operating in social networks that feature power law

patterns have strong incentives to offer only the free version of their services, whereas social

networks governed by exponential patterns give platforms incentives to rely on both versions

of their services.

In practice, Internet-based platforms such as Google, Facebook, and Twitter only serve

the free version with advertising. On the other hand, casual observation suggests that

Application-based platforms such as Nike Training Club, Strava, or MapmyRun serve to

local networks that are certainly much smaller than the networks where Google or Twitter



operate. Furthermore, in these Application-based social networks, each user can conceivably

access the information posted by most of their local users.

Appendix

Proof of Proposition 1. Consider a random network with degree distribution H(n) and

hazard rate function r(n). Using the expressions derived in (6)–(9) for the platform’s profits,

it follows that

Π(p, q) =







qx(q) + (p− c)
[
x(q)

(
3
2
− 2p

)
+
[
1− x(q)

]
(1− p)

]
if p ∈ [0, 3

4
]

(p− c) [1− p] if p ∈ (3
4
, 1].

Take given a price q ∈ (θ, θ) of the service. Application of the first-order conditions for

interior solutions ∂Π(p, q)/∂p = 0 to both steps of the profit function above yields:

(a) for candidates to interior maximum p∗ ∈
(
0, 3

4

)
, we have

x(q) (3/2− 2p∗) +
[
1− x(q)

]
(1− p∗)− (p∗ − c) [1 + x(q)] = 0 ⇔ p∗ =

[
1+x(q)/2
1+2x(q)

]

+ c

2
;

(b) for candidates to interior maximum p∗∗ ∈
(
3
4
, 1
)
, we have

1− p∗∗ − (p∗∗ − c) = 0 ⇔ p∗∗ =
1 + c

2
.

For x ∈ [0, 1], let us specify the function η(x) ≡ [1 + x/2]/[1 + 2x], where x is used as short-

hand notation for the proportion of premium version adopters at price q, i.e., x ≡ x(q).

Observe that the candidate p∗ for interior optimum obtained above can be rewritten as

p∗ = [η(x) + c]/2 for x ∈ [0, 1] and that p∗ tends to p∗∗ = (1 + c)/2 as x tends to zero (that

is, as all consumers become free version adopters). Therefore, using the function η(x), any

candidate to interior optimum can be described by p∗ = [η(x)+ c]/2 for x ∈ [0, 1]. Note that

η′(x) = −3/2(1 + 2x)2 < 0, so that η(x) always decreases in x ∈ [0, 1], with η(0) = 1 and

η(1) = 1/2. Thus, η(x) ∈ [1/2, 1] for each x ∈ [0, 1]. Also, using the function η(x) together

with the expressions for candidates to interior optima derived above, it can be verified that

while 0 < c < 3/2 − η(x) is required for p∗ ∈ (0, 3/4) to be an interior optimum, c > 1/2

is necessary for p∗∗ ∈ (3/4, 1) to be an interior optimum. Therefore, since the production

cost is assumed to satisfy 0 < c < 1/2, we obtain that any interior optimum p∗ must



satisfy p∗ = [η(x) + c]/2, with x ∈ (0, 1) and η(x) ∈ (1/2, 1). In addition, the second-order

condition for the price choice p is automatically satisfied since Π(p, q) is strictly convex in p.

It follows that any interior optimal choice by the platform implies that it pursues versioning

by offering both versions of its service, with x(q∗) ∈ (0, 1) and (1/2 + c)/2 < p∗ < (1 + c)/2.

Since c ∈ (0, 1/2), it follows that if p∗ is an interior optimal choice by the platform for the

advertised product, then p∗ ∈ (1/4, 3/4).

By plugging the expression p∗ = [η(x)+c]/2 for the interior optimal price of the advertised

product into the platform’s profit function, it follows that

Π(p∗, q) = qx(q) +
1

4
[η(x)− c]

[
1 +

[
1− η(x)− c

]
[1 + x]

]
. (13)

Given the optimal choice p∗ ∈ (1/4, 3/4) for the advertised product, the first-order condition

for interior solutions with respect to the price q ∈ (θ, θ) of the service then leads to

∂Π(p∗, q∗)

∂q
=x(q∗) + q∗x′(q∗) +

η′(x)x′(q∗)

4

[
1 +

[
1− η(x)− c

]
[1 + x]

]

+
η(x)− c

4

[
−η′(x)[x+ 1] +

[
1− η(x)− c

]]
x′(q∗) = 0.

(14)

Since the density h(n) is strictly positive over the degree support, we have that

x′(q∗) = −(1/β)h
(
n(q∗)

)
6= 0.

Hence, by dividing over x′(q∗) the expression obtained in (14) above, we derive the necessary

condition

x(q∗)

x′(q∗)
+ q∗ +

η′(x)

4

[
1 +

[
1− η(x)− c

]
[1 + x]

]

+
η(x)− c

4

[
−η′(x)[x+ 1] +

[
1− η(x)− c

]]
= 0.

In turn, by rearranging the expression above, we obtain

q∗ +
1

4

[

η′(x)
[

1 +
[
1 + x

][
1− 2η(x)

]]

+
[
η(x)− c

][
1− η(x)− c

]]

= −
x(q∗)

x′(q∗)
. (15)

Let Φ(q) be the composite function specified as

Φ(q) = φ
(
(x(q)

)
≡

1

4

[

η′(x)
[

1 +
[
1 + x

][
1− 2η(x)

]]

+
[
η(x)− c

][
1− η(x)− c

]]

.



Application of the chain rule yields Φ′(q) = −(1/β)h(n(q))φ′(x). Furthermore, by computing

the required derivative, we obtain

φ′(x) =
1

4

[

η′′(x)
[

1 +
[
1 + x

][
1− 2η(x)

]]

+ η′(x)
[

2
(
1− 2η(x)

)
− 2η′(x)[1 + x]

]]

.

Using the specification of the function η(x), we can derive the useful identities:

η′(x) = −
3

2(1 + 2x)2
, η′′(x) =

6

(1 + 2x)3
,

1− 2η(x) =
x− 1

1 + 2x
, 1 + [1 + x]

[
1− 2η(x)

]
=

x(2 + x)

1 + 2x
.

By plugging such calculations into the expression of the derivative φ′(x) above, it follows

that:

φ′
(
x(q)

)
=

3 (7x(q)− 1)

8 (1 + 2x(q))4
> 0 ⇔ x(q) > 1/7.

Furthermore, it follows that:

Φ′(q) = −
h
(
n(q)

)

β
·
3
(
6− 7H

(
n(q)

))

8
(
3− 2H

(
n(q)

))4 < 0 ⇔ H
(
n(q)

)
< 6/7 or, equivalently, x(q) > 1/7.

Finally, by combining the implication that r
(
n(q)

)
= −βx′(q)/x(q) and the condition derived

in (15), we obtain the necessary condition for the platform’s interior optimal choice:

q∗ + Φ(q∗) =
β

r
(
n(q∗)

) ,

as stated.
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