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Abstract
In this paper we study the daily volatility of four cryptocurrencies (BitCoin, Dash, LiteCoin, and Ripple) from June

2014 to November 2018. We first show that the cryptocurrency returns are strongly characterized by the presence of

jumps as well as structural breaks (except Dash). Then, we estimate four GARCH-type models that capture short

memory (GARCH), asymmetry (APARCH), strong persistence (IGARCH), and long memory (FIGARCH) from (i)

original returns, (ii) jump-filtered returns, and (iii) jump-filtered returns with structural breaks. Results indicate the

importance to take into account the jumps and structural breaks in modelling volatility of the cryptocurrencies. It

appears that the cryptocurrency returns are well modelled by infinite persistence (BitCoin, Dash, and LiteCoin) or long

memory (Ripple) with a Student-t distribution.
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1. Introduction

Cryptocurrencies are a new breed of digital currency systems built on computer cryptology and

decentralized (peer-to-peer) network architecture. Policymakers, investors, and researchers

monitor their behavior. Cryptocurrency prices are characterized by high volatility and some

drastic shocks (see Figure 1), such as the hacking of Mt.Gox exchange platform with a negative

return of −49% for Bitcoin. Financial-market participants and policy-makers can benefit from

a better understanding of how shocks can affect volatility over time, especially whether the

shocks are persistent or short lived.

A number of studies apply GARCH-type models to describe the volatility of cryptocur-

rencies (Katsiampa, 2017; Chu et al., 2017; Baur and Dimpfl, 2018). However, as shown

by Catania and Grassi (2017), Chaim and Laurini (2018), Scaillet et al. (2018), Charles and

Darné (2019) and Trucíos (2019) cryptocurrencies are subject to a number of drastic shocks

(called large shocks, outliers or jumps). These shocks may pose difficulties for the identifica-

tion and estimation of GARCH models governing the conditional volatility of returns (Carnero

et al., 2007, 2012; Charles and Darné, 2005; Laurent et al., 2016). Further, some studies find

that cryptocurrency returns exhibit regime changes (Ardia et al., 2018; Mensi et al., 2018) or

structural breaks in the volatility process (Charfeddine and Maouchi, 2019). Ignoring regime

changes or structural breaks in the volatility dynamics can bias the estimated persistence of

volatility (see, e.g., Lamoureux and Lastrapes, 1990; Hillebrand, 2005). These previous stud-

ies do not take into account both jumps and structural breaks in the volatility process.

The aim of this paper is to fill this gap. For that, we first employ the semi-parametric procedure

to detect jumps in GARCH models proposed by Laurent et al. (2016) on four major cryp-

tocurrencies (Bitcoin, Dash, LiteCoin and Ripple), spanning June 1st, 2014 to November 11th,

2018. Second, we use an appropriate methodology to identify breakpoints and sudden shifts in

volatility with the modified iterative cumulative sums of squares (ICSS) algorithm developed

by Sansó et al. (2004). Nevertheless, Rodrigues and Rubia (2011) show that the asymptotic

distribution of the ICSS test statistics varies under jumps, indicating that neglected jumps tend

to bias the ICSS test. Therefore, we then apply the modified ICSS algorithm on filtered returns.

To show the importance to take into account both jumps and structural breaks in modelling

volatility of cryptocurrencies we estimate four GARCH-type models (GARCH, APARCH,

IGARCH and FIGARCH) from (i) original returns, (ii) jump-filtered returns, and (iii) jump-

filtered returns with structural breaks.

The remainder of this article is organized as follows. Section 2 presents the methodology.

Section 3 describes the data whereas the empirical results are presented in Section 4. Finally,

Section 5 concludes.



2. Methodology

2.2. Outlier detection

There are several methods for detecting jumps in nonlinear setting based on intervention analy-

sis as originally proposed by Box and Tiao (1975) and the iterative procedure of Chen and Liu

(1993) (e.g., Sakata and White, 1998; Franses and Ghijsels, 1999; Doornik and Ooms, 2005;

Grané and Veiga, 2010; Hotta and Tsay, 2012), the local influence method (Zhang and King,

2005; Zevallos and Hotta, 2012) or a weighted forward search approach (Crosato and Grossi,

2017), among others.1 Here we use the semi-parametric procedure to detect jumps proposed

by Laurent et al. (2016) [LLP hereafter].

Consider that the return series with an independent jump component atIt , defined as

r∗t = rt +atIt (1)

where r∗t denotes the observed returns, It is a dummy variable for a jump on day t, and at is the

jump size. rt denotes the unaffected returns, defined by rt = logPt − logPt−1, where Pt is the

observed price at time t, and described by a Normal GARCH(1,1) model:

rt = µt + εt , µt = c, (2)

εt = zt

√
σ2

t ,

εt ∼ N(0,

√
σ2

t ), zt ∼ i.i.d.N(0,1),

σ2
t = ω+αε2

t +βσ2
t (3)

In equation (1) a jump atIt will not affect σ2
t+1 (the conditional variance of rt+1), so that we

can have non-Gaussian fat-tailed conditional distributions of r∗t .

LLP use the bounded innovation propagation (BIP) to obtain robust estimates of µt and σ2
t in

equations (1) and (2), respectively. These are denoted by µ̃t and σ̃t and are robust to potential

jumps atIt . They detect the presence of jumps by testing the null hypothesis H0 : atIt = 0 against

the alternative H1 : atIt 6= 0. The null is rejected if

max
T

|J̃t |> gT,λ, t = 1, . . . ,T (4)

where gT,λ is the suitable critical value. If H0 is rejected a dummy variable is defined as

Ĩt = I
(
|J̃t |> k

)
, where I(.) is the indicator function, with Ĩt = 1 when a jump is detected at

time t and 0 otherwise. The filtered returns r̃t are obtained as follows

r̃t = r∗t − (r∗t − µ̃t)Ĩt (5)

1See Hotta and Zevallos (2013) for a review on the detection of jumps in GARCH models.



2.3. Sudden change detection

The most popular statistical methods specifically designed to detect breaks in volatility are

CUSUM-type tests. We apply the modified ICSS algorithm test proposed by Sansó et al. (2004)

which is robust to conditional heteroscedasticity by explicitly considering the fourth moment

properties of the disturbances and the conditional heteroscedasticity. Assume that the variance

within each interval is denoted by σ2
j , j = 0,1, . . . ,NT , where NT is the total number of variance

changes, and 1 < κ1 < κ2 < · · ·< κNT
< T are the set of breakpoints. Then the variances over

the NT intervals are defined as

σ2
t =





σ2
0, 1 < t < κ1

σ2
1, κ1 < t < κ2

. . .

σ2
NT
, κNT

< t < T

The cumulative sum of squares is used to estimate the number of variance changes and to detect

the point in time of each variance shift. The cumulative sum of the squared observations from

the beginning of the series to the kth point in time is expressed as Ck = ∑k
t=1 r2

t for k = 1, . . . ,T .

To test the null hypothesis of constant unconditional variance, the adjusted statistic is given by

AIT = supk|T
−0.5Gk| (6)

where Gk = λ̂−0.5
[
Ck −

(
k
T

)
CT

]
, with CT is the sum of the squared residuals from the whole

sample period, λ̂ = γ̂0 +2∑m
l=1

[
1− l(m+1)−1

]
γ̂l , γ̂l = T−1 ∑T

t=l+1(r
2
t − σ̂2)(r2

t−l − σ̂2), σ̂2 =

T−1CT , and the lag truncation parameter m is selected using the procedure in Newey and West

(1994). The value of k that maximizes AIT is the estimate of the break date.

3. Data and summary statistics

The dataset that we analyze consists of daily closing prices of four cryptocurrencies, namely

Bitcoin (BTC), Dash, LiteCoin (LTC), and Ripple (XRP). The data were collected from coin-

marketcap.com. The four cryptocurrencies were chosen based on their market capitalization

and their large sample. Even if some cryptocurrencies are available before June 2014 our

dataset covers the period from June 1st, 2014 to November 11th, 2018, to harmonize the num-

ber of observations across the cryptocurrencies (1 625 observations). This large sample allows

to well estimate the GARCH-type models, especially the FIGARCH model.

Table 3 presents the summary statistics for cryptocurrency returns (Panel A). XRP displays

the higher mean returns with about 0.296% per day whereas LTC exhibits the lower mean

returns with about 0.095% per day. The XRP returns are also the more volatile, as measured

by their standard deviation (7.07%), with the BTC returns being the less volatile (3.80%). All

returns are highly non-Normal, and show evidence of significant positive skewness, except

BTC with negative skewness, excess kurtosis, and strong conditional heteroscedasticity.

We find that the cryptocurrency returns are strongly characterized by the presence of jumps

as found by Chaim and Laurine (2018), with a proportion of detected jumps more than 3%,

except for Dash (2%). Charles and Darné (2019) show that the jumps in cryptocurrency returns

are mainly due to attacks, hacks, thefts, closings or bankruptcies of cryptocurrency exchange

platforms as well as technical issues.



Charles and Darné (2005, 2014) showed that financial assets are also affected by the presence

of jumps. Therefore, we compare the occurrence of jumps in cryptocurrency returns to other

assets, such as the spot prices of Brent crude oil market (Brent) and gold market (Gold), the

S&P500 stock index (S&P500), and the euro-dollar exchange rate (EUR/USD). The results

show that the cryptocurrency returns are more affected by jumps since we find between two

to three times more jumps than for other assets (Gold and S&P500, 1.60%; Brent, 1.07%;

EUR/USD, 0.80%) (Table 3, Panel C). Note that all the cryptocurrrencies exhibit higher mean

returns and volatility than the other assets.

The jump-filtered returns also exhibit excess skewness, excess kurtosis and conditional het-

eroscedasticity, although the excess skewness and kurtosis decrease dramatically (Table 3,

Panel B).

Finally, we test for the presence of structural breaks in volatility of cryptocurrency prices

on the filtered returns by using the modified ICSS algorithms test. As suggested by Huyng et

al. (2008) the minimum duration between two consecutive breaks is set at 20 days to reduce

the possibility that any temporary shocks is being mistaken as a break. The results show two

breaks for BTC (03/06/2017 and 08/10/2018), LTC (04/05/2017 and 09/27/2018) and XRP

(04/21/2017 and 06/03/2017) whereas no break in found for Dash.2 The BTC, LTC and XRP

display a high volatility period beginning in March-April 2017 with the strong speculation on

the cryptocurrencies. This high volatility regime is long for BTC and LTC, ending in August

and April 2018, respectively, whereas it is very short (less than 2 months) for XRP. Table 2

presents some main characteristics of the four cryptocurrencies, giving possible explanations

of the findings. BTC and LTC are very similar, and the major difference is the speed of transac-

tions since LTC requires 2.5 minutes against 10 minutes for BTC (Table 2). This difference is

stronger with XRP since its speed of transaction is 5 seconds due to its mechanism to validate

transactions. The block generation mechanism to secure and validate transactions (blocks) in

the blockchain is based on the proof-of-work (PoW or mining) for BTC and LTC, whereas XRP

uses the proof-of-correctness (PoC) approach, namely an iterative consensus. Dash employs

an hybrid system of the PoW and Proof-of-Stake (PoS) mechanisms, giving more security on

the transactions.3 Further, Ripple Labs owns two-thirds of the existing 100 billion XRP, giving

a centralized control.4 Finally, the strong differences between Dash and the three other cryp-

tocurrencies are its low market capitalization and its low circulation supply.

4. Estimation results

We now estimate four different GARCH-type models, namely the (symmetric) GARCH model,

the Asymmetric Power ARCH (APARCH) model capturing the asymmetric effect, the Inte-

grated GARCH (IGARCH) model capturing the strong persistence, and the Fractionaly IGARCH

(FIGARCH) model capturing long memory, with the Normal and Student-t distributions. A

2Note that we had found five breaks for BTC (03/06/2017, 12/08/2017, 03/14/2018, 08/10/2018 and

09/27/2018) and three breaks for LTC (04/05/2017, 04/27/2018 and 09/27/2018). Following Aggarwal et al.

(1999), dummy variables representing the different volatility regimes were introduced in the condition variance

equation of the GARCH-type models to account for the significant volatility level shifts. We found that all the

dummy variables are not significant and included only the significant dummies.
3See Ciaian et al. (2018) for a discussion on the block generation mechanisms.
4All the XRP are not mineable and are considered as “pre-mined”.



brief presentation of the models is given in Table 1.5 The parameters of the volatility models

are estimated by the quasi-maximum likelihood (QML) method – producing robust standard

errors – and the quasi-likelihood function is maximized using the BFGS algorithm from the

G@RCH 8.0 package for Ox.

We compare the estimations in three ways: (1) original returns, (2) filtered returns, and (3)

filtered returns with structural breaks identified from the modified ICSS algorithm. For the

third approach, we introduce identified breaks into the GARCH-type models by incorporating

dummy variables that take a value of one from each point of structural change of variance

onwards and take a value of zero elsewhere. The comparison between the volatility models

is evaluated from various in-sample criteria: LogLikehood (LL), Akaike (AIC) and Hannan-

Quinn (HQ) criteria.

Tables 4-7 show the estimation results of the GARCH-type models on the raw returns (Panel

A), filtered returns (Panel B), and filtered returns with dummies (Panel C) for the BTC, Dash,

LTC and XRP returns, respectively.

When estimating GARCH-type models on original returns we find that the IGARCH process

with a Student-t distribution captures the best temporal pattern of volatility for the BTC, LTC

and XRP return series (Panel A, Tables 4, 6 and 7, respectively), whereas the APARCH model

with a Student-t distribution is the best specification for the Dash return series (Table 5).

The estimation results of the GARCH-type models on the filtered returns (Panel B) show that

the four cryptocurrency return series are better modelled by an IGARCH model with a Student-

t. Finally, when introducing structural breaks in the GARCH-type models (Panel C) we find

that the BTC and LTC return series are well specified by the IGARCH model with a Student-t

distribution whereas the FIGARCH model with a Student-t distribution is the best specification

for the XRP return series.

Overall, the results show the importance to take into account the jumps as well as the structural

breaks in modelling volatility of the cryptocurrencies as shown by the in-sample criteria and

also by the number of GARCH-type models rejected due to their regularity and non-negativity

conditions not satisfied. Further, the BTC, Dash and LTC return series seem to be well modelled

by an IGARCH model, implying that the shocks to the conditional variance persist indefinitely,

whereas the XRP return series appears to be well specified by a FIGARCH model, implying a

long-memory behavior and a slow rate of decay after a volatility shock. Moreover the Student-t

distribution is the better distribution for the four cryptocurrency return series by capturing the

fat tails. Note that all the asymmetric volatility models are rejected when estimating GARCH-

type models on filtered returns, suggesting that the asymmetric effect is not appropriate for the

cryptocurrencies.

5. Conclusion

We have studied the volatility of four cryptocurrencies (BitCoin, Dash, LiteCoin, and Ripple)

from June 2014 to November 2018. Results show that the cryptocurrency returns are strongly

characterized by the presence of jumps as well as structural breaks (except Dash). We have

estimated four GARCH-type models (GARCH, APARCH, IGARCH and FIGARCH) from (i)

original returns, (ii) jump-filtered returns, and (iii) jump-filtered returns with structural breaks.

5We have also considered GJR-GARCH, EGARCH and FIAPARCH models. To save space the results are

given in the Online Appendix.



Results indicate the importance to take into account the jumps and structural breaks in mod-

elling volatility of the cryptocurrencies. It appears that the cryptocurrency returns are well

modelled by infinite persistence (BitCoin, Dash, and LiteCoin) or long memory (Ripple) with

a Student-t distribution. These results are potentially relevant for financial-market participants

and policy-makers to better understand of how shocks can affect volatility over time. Policy-

makers and regulators are concerned about two important issues in volatility. First, what level

of volatility is excessive, relatively to some agreed benchmark of acceptable or non-excessive

volatility, knowing that the level of volatility which is considered to be excessive may will dif-

fer across different markets, especially for cryptocurrencies. Second, what measures can be

adopted to reduce financial volatility without impacting adversely upon the efficient workings

of the financial markets. Volatility is also important for cryptocurrency users and investors who

are both concerned about managing the risk (e.g., Value-at-Risk) associated with sharp changes

in cryptocurrency prices. Furthermore, the ability of modelling and forecasting cryptocurrency

volatility has important application for hedging. Lastly, the Securities Exchange Commission

(SEC) and the Commodity Futures Trading Commission (CFTC) set to collaborate to regulate

Bitcoin ETFs and other investment products, making the volatility dynamic of cryptocurrencies

to play a crucial role in any potential derivatives pricing and trading.
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Figure 1: Bitcoin prices, returns and squared returns - July 2010 to October 2016.



Table 1: GARCH(1,1)-type models.

Constraints

Models Equations positivity stationarity

GARCH σ2
t = ω+αε2

t−1 +βσ2
t−1 ω > 0, α ≥ 0, α+β < 1

β ≥ 0

IGARCH σ2
t = ω+αε2

t−1 +(1−α)σ2
t−1 ω > 0, α ≥ 0,

β ≥ 0

APARCH σδ
t = ω+α(|εt−1|− γεt−1)

δ +βσδ
t−1 δ > 0, αE(|z|− γz)δ +β < 1

−1 < γ < 1 ω > 0

FIGARCH σ2
t = ω+

{
1− [1−βL]−1(1−αL)(1−L)d

}
ε2

t ω > 0, β−d ≤ α ≤ 2−d
3 0 ≤ d ≤ 1

d
(
α− 1−d

2

)
≤ β(α−β+d)

Notes: The existence of the fourth moment for the GARCH(1,1) model implies that E[ε4
t ]< ∞, which is satisfied if kα2 +2αβ+β2 < 1. Under

a Normal distribution k = 3. See Ling and McAleer (2002) for the Student-t distribution. For the APARCH model Ding et al. (1993) and

Lambert and Laurent (2001) derived a closed form solution to κ = E(|z| − γz)δ for a Normal and Student-t distributions, respectively. The

conditions on the FIGARCH(1,d,1) model are sufficient to ensure that the conditional variance is positive almost surely for all t. However,

occasionally it fails to satisfy theses conditions that all parameters should be positive to ensure the nonnegativity of conditional variance.

Therefore, Conrad and Haag (2006) introduced another set of conditions that guarantees the nonnegativity of the conditional variance in all

situations.

Table 2: Characteristics of cryptocurrencies.
Date of Duration of a Block generation Maximum Market Circulation

release block creation mechanism supply capitalization supply

BTC 2009 10 min Proof-of-Work 21 million $70.85 billion 17.6 million

DASH 2014 2.5 min Proof-of-Work 22 million $0.80 billion 8.7 million

& Proof-of-Stake

LTC 2011 2.5 min Proof-of-Work 84 million $3.66 billion 61.0 million

XRP 2012 5 sec Proof-of-Correctness 100 billion $12.81 billion 41.7 billiona

Notes: The information on the market capitalization and the circulation supply comes from coinmarketcap in March 25, 2019. a denotes that

all the XRP are not mineable.



Table 3: Descriptive statistics.

Mean Min Max Std. Skew Ex.Kurt JB Q∗(10) ARCH(10) jumps

(%) (%) (%) (%)

Panel A: Original

BTC 0.143 -23.8 22.5 3.796 -0.346∗ 5.904∗ 2392.2∗ 10.5 18.6∗ 3.2%

DASH 0.163 -42.7 76.8 6.589 1.370∗ 15.62∗ 17023.0∗ 5.60 14.8∗ 2.0%

LTC 0.095 -51.4 51.0 5.818 0.726∗ 14.64∗ 14659.0∗ 18.5∗ 7.49∗ 3.7%

XRP 0.296 -61.6 102.7 7.073 2.834∗ 39.25∗ 106500∗ 13.0 19.0∗ 3.5%

Panel B: Filtered

BTC 0.192 -17.4 14.4 3.188 -0.226∗ 3.350∗ 773.9∗ 8.0 28.2∗

DASH -0.044 -22.1 26.0 5.393 0.134∗ 2.415∗ 400.0∗ 10.9 14.6∗

LTC -0.034 -21.2 20.1 4.256 0.330∗ 4.279∗ 1269.0∗ 11.9 23.6∗

XRP -0.026 -25.4 33.5 4.949 0.844∗ 7.703∗ 4210.1∗ 10.1 47.5∗

Panel C: Other assets

Brent -0.052 -8.69 8.82 2.147 0.099 1.915∗ 173.5∗ 17.91 16.89∗ 1.07%

Gold 0.002 -3.41 4.65 0.868 0.276∗ 2.965∗ 425.6∗ 24.1∗ 2.94∗ 1.60%

EUR/USD -0.015 -2.84 2.97 0.548 0.024 2.264∗ 240.0∗ 10.38 3.07∗ 0.80%

S&P500 0.031 -4.18 3.83 0.810 -0.603∗ 3.505∗ 642.8∗ 13.4 24.62∗ 1.60%

Notes: ∗ denotes significance at the 5% level. Original and Filtered indicate that the descriptive statistics are calculated on the original and

jump-filtered returns, respectively. Q∗(10) denotes heteroscedasticity-robust Ljung-Box statistic at 10 lags. jumps denotes the proportion of

detected jumps.



Table 4: Estimates of GARCH-type models for BTC returns.
Parameters In-sample criteria

Distrib. ω α β γ δ d LL

Panel A: Original

GARCH Gaussa 0.260∗
(1.90)

0.137
(4.80)

0.861
(31.6)

-4236.8

Studenta 0.138∗∗
(1.53)

0.301
(3.71)

0.838
(33.1)

-4019.7

APARCH Gauss nc

Student 0.051∗
(1.68)

0.226
(4.41)

0.865
(38.3)

−0.090
(−1.23)

∗∗ 1.005
(3.81)

-4012.2

IGARCH Gauss 0.253
(2.30)

0.139
(5.13)

0.861
(−−)

-4236.8

Student 0.159
(2.07)

0.154
(6.22)

0.846
(−−)

-4028.0

FIGARCH Gauss 0.250
(1.97)

0.264
(2.76)

0.802
(17.7)

0.753
(6.75)

-4228.0

Student 0.390∗∗
(0.49)

−0.887
(−6.53)

−0.868
(−5.72)

0.340
(16.5)

-4042.0

Panel B: Filtered

GARCH Gaussa 0.082
(2.40)

0.159
(7.04)

0.848
(47.4)

-3832.8

Studenta 0.047∗∗
(1.60)

0.209
(6.19)

0.839
(42.7)

-3758.4

APARCH Gaussa 0.085
(2.23)

0.157
(6.39)

0.845
(39.1)

−0.007
(−0.13)

∗∗ 2.126
(5.06)

-3832.7

Studenta 0.047∗∗
(1.45)

0.207
(5.89)

0.836
(30.4)

−0.036
(−0.76)

∗∗ 2.147
(3.95)

-3758.1

IGARCH Gauss 0.091
(2.78)

0.151
(8.45)

0.849
(−−)

-3833.2

Student 0.069
(2.27)

0.154
(7.94)

0.846
(−−)

-3762.8

FIGARCH Gauss 0.100
(2.45)

0.084∗∗
(1.33)

0.788
(18.6)

0.862
(10.6)

-3831.7

Student nc

Panel C: Breaks

GARCH Gauss 0.132
(2.77)

0.147
(6.93)

0.836
(44.3)

-3823.9

Studenta 0.107
(2.33)

0.192
(6.24)

0.820
(36.5)

-3742.0

APARCH Gauss 0.150
(2.40)

0.140
(5.38)

0.827
(33.8)

0.001∗∗
(0.02)

2.327
(4.25)

-3823.4

Student 0.115
(2.01)

0.187
(5.56)

0.813
(27.7)

−0.029∗∗
(−0.56)

2.255
(3.94)

-3748.8

IGARCH Gauss 0.106
(2.89)

0.164
(8.72)

0.836
(−−)

-3825.2

Student 0.114
(2.64)

0.180
(7.97)

0.820
(−−)

-3749.2

FIGARCH Gauss 0.117
(2.36)

0.084∗∗
(1.09)

0.757
(14.3)

0.827
(7.97)

-3823.3

Student nc

Notes: nc means “not computed” due to convergence problem. a The conditions for positivity and stationarity constraints or the existence of

the fourth moment are not observed. ∗ and ∗∗ indicate that the null hypothesis is rejected at the 5% and 10% level, respectively. The robust

t-ratios appear in parentheses. The best likelihood (LL) appear in bold.



Table 5: Estimates of GARCH-type models for Dash returns.
Parameters In-sample criteria

Distrib. ω α β γ δ d LL

Panel A: Original

GARCH Gaussa 2.570∗
(1.32)

0.219
(2.67)

0.748
(7.12)

-5155.3

Studenta 2.471
(2.81)

0.286
(3.88)

0.730
(12.9)

-4991.9

APARCH Gauss 0.928∗∗
(1.46)

0.223
(3.16)

0.763
(7.94)

−0.053
(−0.56)

∗∗ 1.380
(4.32)

-5150.9

Student 0.853∗
(1.71)

0.283
(4.72)

0.756
(15.2)

0.114
(1.95)

∗ 1.428
(5.41)

-4987.9

IGARCH Gauss 1.985∗∗
(1.55)

0.239
(2.74)

0.761
(−−)

-5156.8

Student 2.480
(2.84)

0.268
(4.75)

0.732
(−−)

-4992.0

FIGARCH Gaussa 1.515∗∗
(0.74)

0.518∗∗
(1.24)

0.640∗∗
(1.56)

0.462
(3.20)

-5138.0

Student 8.156
(2.75)

−0.981
(−103.8)

−0.984
(−119.5)

0.357
(8.76)

-4988.8

Panel B: Filtered

GARCH Gaussa 1.064∗∗
(1.58)

0.165
(3.04)

0.808
(11.9)

-4876.9

Studenta 1.216
(2.46)

0.212
(4.13)

0.774
(15.0)

-4825.7

APARCH Gauss 1.400∗∗
(1.17)

0.168
(3.00)

0.797
(11.0)

0.044∗∗
(0.89)

2.164
(6.41)

-4876.3

Student 0.952∗
(1.74)

0.225
(4.76)

0.773
(16.4)

0.090
(1.61)

∗∗ 1.812
(6.02)

-4824.1

IGARCH Gauss 0.676∗
(1.74)

0.172
(2.93)

0.828
(−−)

-4879.3

Student 1.137
(2.47)

0.225
(4.31)

0.775
(−−)

-4825.9

FIGARCH Gauss 1.400∗
(1.87)

0.018∗∗
(0.11)

0.311∗∗
(1.45)

0.469
(4.40)

-4869.2

Student 1.760
(2.40)

0.012∗∗
(0.10)

0.413
(2.65)

0.589
(5.86)

-4822.0

Notes: nc means “not computed” due to convergence problem. a The conditions for positivity and stationarity constraints or the existence of

the fourth moment are not observed. ∗ and ∗∗ indicate that the null hypothesis is rejected at the 5% and 10% level, respectively. The robust

t-ratios appear in parentheses.The best likelihood (LL) appear in bold.



Table 6: Estimates of GARCH-type models for LTC returns.

Parameters In-sample criteria

Distrib. ω α β γ δ d LL

Panel A: Original

GARCH Gauss 1.576∗
(1.89)

0.089
(3.97)

0.865
(26.7)

-4953.3

Studenta 0.545∗∗
(1.16)

0.670
(1.97)

0.860
(26.0)

-4449.4

APARCH Gauss 0.334∗∗
(0.70)

0.100
(4.17)

0.875
(34.0)

−0.381
(−0.78)

∗∗ 1.008∗∗
(1.07)

-4942.1

Studenta 0.106∗∗
(1.43)

0.382
(3.23)

0.866
(34.7)

−0.104∗∗
(−1.30)

1.106
(6.18)

-4440.5

IGARCH Gauss 1.285
(1.97)

0.133
(4.51)

0.867
(−−)

-4970.6

Student 0.198∗
(1.72)

0.123
(4.87)

0.877
(−−)

-4465.5

FIGARCH Gauss 12.94∗
(1.81)

−0.770
(−7.17)

−0.686
(−4.09)

0.249∗
(1.90)

-4965.2

Studenta −0.041∗∗
(−0.20)

0.358
(4.20)

0.712
(9.16)

0.594
(6.40)

-4456.4

Panel B: Filtered

GARCH Gaussa 0.234
(2.99)

0.186
(7.38)

0.819
(40.7)

-4255.9

Studenta 0.211
(2.23)

0.340
(4.12)

0.794
(23.8)

-4155.2

APARCH Gaussa 0.262
(2.05)

0.183
(7.37)

0.815
(31.7)

−0.017∗∗
(−0.32)

2.132
(6.70)

-4255.6

Studenta 0.166∗
(1.78)

0.325
(4.02)

0.805
(21.5)

−0.022∗∗
(−0.32)

1.772
(7.07)

-4154.9

IGARCH Gauss 0.244∗
(3.50)

0.180
(8.96)

0.820
(−−)

-4256.0

Student 0.223
(2.94)

0.191
(6.83)

0.809
(−−)

-4162.9

FIGARCH Gauss 0.253
(2.58)

0.126∗
(1.70)

0.716
(6.47)

0.253
(4.94)

-4253.2

Student 0.195∗∗
(0.30)

−0.985
(−116.5)

−0.990
(−162.9)

0.350
(15.4)

-4169.5

Panel C: Breaks

GARCH Gauss 0.295
(3.02)

0.174
(7.09)

0.802
(31.8)

-4244.3

Studenta 0.363
(2.43)

0.305
(4.13)

0.754
(16.8)

-4421.9

APARCH Gauss 0.396
(2.06)

0.163
(6.20)

0.789
(24.8)

−0.010∗∗
(−0.17)

2.361
(6.97)

-4243.3

Student 0.316
(2.09)

0.301
(4.21)

0.762
(16.3)

−0.010∗∗
(−0.13)

1.846
(7.41)

-4143.8

IGARCH Gauss 0.251
(3.35)

0.197
(8.06)

0.803
(−−)

-4246.3

Student 0.368
(2.70)

0.246
(5.56)

0.754
(−−)

-4144.8

FIGARCH Gauss 0.260
(2.59)

0.095∗∗
(1.02)

0.715
(5.17)

0.822
(3.95)

-4244.8

Student 0.571∗∗
(0.76)

−0.735
(−2.47)

−0.777
(−2.82)

0.356
(9.41)

-4148.9

Notes: nc means “not computed” due to convergence problem. a The conditions for positivity and stationarity constraints or the existence of

the fourth moment are not observed. ∗ and ∗∗ indicate that the null hypothesis is rejected at the 5% and 10% level, respectively. The robust

t-ratios appear in parentheses. The best likelihood (LL) appear in bold.



Table 7: Estimates of GARCH-type models for XRP returns.

Parameters In-sample criteria

Distrib. ω α β γ δ d LL

Panel A: Original

GARCH Gaussa 4.482
(2.20)

0.441
(2.04)

0.548
(3.62)

-5002.3

Studenta 4.738∗∗
(1.52)

1.364∗
(1.89)

0.566
(5.89)

-4682.7

APARCH Gauss 1.846∗∗
(0.87)

0.404
(3.00)

0.562
(4.11)

−0.265
(−1.86)

∗ 1.374∗
(1.66)

-4986.3

Studenta 0.616∗
(1.89)

0.606
(3.51)

0.643
(9.39)

−0.049∗∗
(−0.76)

0.918
(4.64)

-4674.1

IGARCH Gauss 4.490
(2.24)

0.458
(3.60)

0.542
(−−)

-5002.4

Student 2.649∗
(1.82)

0.397
(3.26)

0.603
(−−)

-4694.1

FIGARCH Gauss 9.501
(2.65)

−0.334
(−2.43)

−0.302∗
(−1.95)

0.615
(5.83)

-4970.6

Student 0.754∗∗
(0.83)

0.225∗∗
(0.89)

0.118∗∗
(0.50)

0.344
(7.53)

-4662.1

Panel B: Filtered

GARCH Gaussa 0.937
(2.26)

0.210
(4.48)

0.769
(15.2)

-4255.9

Studenta 1.339
(2.28)

0.488
(3.37)

0.680
(10.1)

-4421.9

APARCH Gauss 1.103∗
(1.85)

0.209
(3.95)

0.759
(13.4)

−0.065∗∗
(−1.08)

2.070
(5.87)

-4569.3

Studenta 0.716∗
(1.90)

0.435
(3.91)

0.709
(11.8)

0.016∗∗
(0.28)

1.559
(6.76)

-4420.8

IGARCH Gauss 0.829
(2.53)

0.231
(4.58)

0.769
(−−)

-4571.8

Student 1.280
(2.67)

0.309
(4.73)

0.691
(−−)

-4425.4

FIGARCH Gauss 2.209∗
(0.71)

−0.302∗∗
(−0.25)

−0.041∗∗
(−0.03)

0.488
(2.82)

-4561.7

Student 0.860∗∗
(1.51)

0.222∗∗
(1.49)

0.388
(2.66)

0.480
(6.39)

-4413.8

Panel C: Breaks

GARCH Gauss 1.063
(2.35)

0.223
(4.45)

0.716
(10.6)

-4544.9

Studenta 1.504
(3.10)

0.457
(4.39)

0.604
(10.0)

-4406.8

APARCH Gauss 1.401
(2.07)

0.227
(3.78)

0.689
(8.55)

−0.088∗∗
(−1.33)

2.140
(5.35)

-4542.5

Student 0.952
(2.25)

0.419
(4.67)

0.633
(10.4)

0.004∗∗
(0.06)

1.608
(5.68)

-4406.1

IGARCH Gauss 0.830
(2.43)

0.286
(4.18)

0.714
(−−)

-4549.8

Student 1.487
(3.29)

0.395
(6.58)

0.605
(−−)

-4407.2

FIGARCH Gauss 1.287∗∗
(0.69)

0.020∗∗
(0.04)

0.446∗∗
(0.51)

0.707∗
(1.67)

-4547.7

Student 2.985∗
(1.89)

−0.861
(−31.3)

−0.886
(−33.9)

0.419
(7.57)

-4399.0

Notes: nc means “not computed” due to convergence problem. a The conditions for positivity and stationarity constraints or the existence of

the fourth moment are not observed. ∗ and ∗∗ indicate that the null hypothesis is rejected at the 5% and 10% level, respectively. The robust

t-ratios appear in parentheses. The best likelihood (LL) appear in bold.


