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1. Introduction 
 

According to Chen et al. (2013, p. 39), a large and growing body of theoretical work in 

macroeconomics and finance models the preferences of economic agents using a recursive 

utility function similar to the one explored by Epstein and Zin (1989, 1991) and Weil 

(1989). One reason for the growing interest in such preferences is that they provide a useful 

generalization of the standard power utility method. Under the recursive representation, the 

coefficient of relative risk aversion does not need to equal the inverse of the elasticity 

intertemporal substitution, as it must in standard power utility models with constant relative 

risk aversion. 

 

 In this note, we develop a stock valuation model with recursive preferences and long-

run risks. 

 

 As noted by Ferson et al. (2013), the long-run risk model following Bansal and Yaron 

(2004) and Bansal et al. (2005) has been a phenomenal success. Indeed, Bansal and Yaron 

(2004) revealed that long-run risks represent a potential resolution of asset pricing puzzles. 

In addition, Bansal et al. (2005) showed that cash flow betas, obtained from the long-run 

covariance between dividends and aggregate consumption, account for more than 60% of 

the cross-sectional variation in risk premia. Moreover, many subsequent studies confirmed 

the importance of the long-run risk approach. Examples include, Hansan et al. (2008), Da 

(2009), Bansal and Kiku (2011), Bergeron (2013a, and 2013b), Bansal et al. (2016), and 

Li and Zhang (2017).  

 

 However, none of the above-mentioned studies integrates the long-run concept of risk 

into the stock valuation process, using recursive preferences.  

 

 In this regard, our motivation comes from the following observations: (1) the growing 

interest in recursive preferences; (2) the success of the long-run risk approach; (3) the 

numerous studies related to stock valuation;1 and (4) the absence of a theoretical stock 

valuation model with recursive utility and long-run risks. 

 

 Our main result indicates that the intrinsic value of a stock is negatively related to (i) 

the long-run covariance between dividends and aggregate consumption, and (ii) the long-

run covariance between dividends and market returns. This theoretical finding suggests 

that the sensitivity of dividends to market returns and aggregate consumption affects the 

long-run risk of a firm and its equity value.  

 

2. The model 
 

In this section, we construct our extension model. We first refer to the fundamental 

equation of asset pricing with stochastic discount factors. Next, we introduce a recursive 

                                                      
1 As mentioned by Sharafoddin and Emisia (2016, p. 128), one of the most significant issues in investment 

management is stock valuation (Procedia Economics and Finance). 



 

 

 

 

 

 

 

 

 

utility function. Then, we sum over several periods to integrate two long-run risk measures 

into the valuation process. Our development follows Bergeron (2013a, and 2013b). 

However, in this paper, we do not assume a restrictive power utility function, a constant 

relative risk aversion, a time separable utility function or a specific linear dividend 

multifactor process.  

 

2.1 Long-lived asset prices 
 

At time � ሺ� = Ͳ, ͳ, ʹ, … , ܶ − ͳሻ, for a long-lived asset such as a stock, the law of one price 

stipulates that:2 
 

 

 (1) 

 
 

where �ܲ� is the price of asset � at time �, ̃ܦ�,�+� is the dividend of asset � at time � + �, and ܵ̃�+� is the stochastic discount factor (SDF) between time � and � + � ሺ� = ͳ, ʹ, ͵, … , ∞ሻ.3 

Since the dividend value of asset � at time �, ܦ��, is known, we can write: 
 

 

 (2) 

 
 

where the stochastic variable ̃ܨ�� represents the sum of the discounted dividend growth 

��ܨ̃) ≡ ∑ ሻ∞�=ଵ��ܦ/�+�,�ܦ̃�+�̃ܵ . To simplify the price valuation, we assume, as in Bergeron 

(2013a, and 2013b), that the sequence of variables ̃ܨ�� is independent and identically 

distributed (i.i.d.). More precisely, we assume that ̃ܨ�� = � for) �ܨ̃ = Ͳ, ͳ, ʹ, … , ܶ − ͳ). This 

assumption is similar to the classic assumption of a stationary process for the price-

dividend ratio.4 Thereby, we can establish that: 

 

 �ܲ� =  (3) ,[�ܨ̃]�ܧ��ܦ

 

or, taking the expectation on each side of equation (3), that; 

 

 �ܲ� = [�ܨ̃]ܧ��ܦ =  (4) ,����ܦ

 

with [�ܨ̃]ܧ ≡ ��. Given the available information at time �, we also have:  

 ܲ̃�,�+ଵ =  ଵ��, (5)+�,�ܦ̃

                                                      
2 See, for example, Campbell (2017, Chapter 4). 
3 In this section, the tilde (~) indicates a random variable. Operators Et, Vt, and COVt refer respectively to 

mathematical expectations, variance and covariance, where index t implies that we consider the available 

information at time t. 
4 In the classic Gordon Growth Model, the dividend-price ratio is stationary. See also Rubinstein (1976, p. 

409).  

�ܲ� = �ܧ ∑ ∞�+�,�ܦ̃�+�̃ܵ
�=ଵ , 

�ܲ� = �ܧ��ܦ ∑ ∞�+�,�ܦ̃�+�̃ܵ
�=ଵ ��ܦ/   =  ,[��ܨ̃]�ܧ��ܦ



 

 

 

 

 

 

 

 

 

 

where ܲ̃�,�+ଵ represents the random price of asset � at time � + ͳ. 

 

 This last relationship simply reveals that prices and dividends are stochastically 

related, as in Rubinstein (1976, p. 410).  

 

2.2 Recursive preferences and asset pricing   
 

Following Restoy and Weil (2011), we consider a standard asset pricing model with a 

representative agent and recursive preferences as in Epstein and Zin (1989) and Weil 

(1989).5 Indirect utility at time �, �ܸ, is given recursively as:  

 

 �ܸ = {ሺͳ − �−ଵ�ܥሻߜ + �{�/ሻଵ[ଵ+�ܸ̃]�ܧሺߜ
, (6) 

where ܥ� is consumption at time �, Ͳ < ߜ < ͳ is the time discount factor, � > Ͳ is the 

elasticity parameter of intertemporal substitution, ܸ̃�+ଵ is the indirect utility at time � + ͳ, 

and � is such that � ≡ ሺͳ − ሻ/ሺͳߛ − �ሻ, where ߛ > Ͳ denotes the relative risk aversion 

coefficient. Using the above preferences, Epstein and Zin (1989) demonstrate that the 

return of asset �, ܴ̃�,�+ଵ, must satisfy the following agent’s Euler equation:  
 

 ͳ = ଵ−��ܴ̃�,�+ଵ�−ଵ+�ܩ̃�ߜ]�ܧ ܴ̃�,�+ଵ], (7) 

where ̃ܩ�+ଵ  represents consumption growth, and ܴ̃�,�+ଵ represents the return on wealth, 

between time � and � + ͳ. More precisely, we have:  

 ܴ̃�,�+ଵ ≡ �̃�,�+1+஽̃�,�+1��� ଵ+�ܩ̃  ,   ≡ ஼̃�+1஼�  ,  ܴ̃�,�+ଵ ≡ �̃�+1��−஼� ,  

where ̃ܥ�+ଵ denotes consumption at time � + ͳ, �ܹ represents the wealth level at time �, 

and ܹ̃�+ଵ is the wealth value at time � + ͳ. In accordance with Epstein and Zin (1991), the 

return on wealth corresponds to the return on the market portfolio (ܴ̃�,�+ଵ), which includes 

many types of assets. In this manner, equation (7) indicates that:  

 

 ͳ = ଵ−��ܴ̃�,�+ଵ�−ଵ+�ܩ̃�ߜ]�ܧ ܴ̃�,�+ଵ], (8) 

 

where the SDF between time � and � + ͳ (ܵ̃�+ଵ) now corresponds to the following value: ܵ̃�+ଵ = ଵ−��ܴ̃�,�+ଵ�−ଵ+�ܩ̃�ߜ .  

 

 Taking the expectation on each side of equation (8) allows us to release index � of the 

conditional operator, to exhibit: 

                                                      
5 See also Chung (2012), or Campbell et al. (2018). 



 

 

 

 

 

 

 

 

 

 

 ͳ = ଵ−��ܴ̃�,�+ଵ�−ଵ+�ܩ̃�ߜ]ܧ ܴ̃�,�+ଵ]. (9) 

 If consumption and returns are jointly lognormal, and if we accept the existence of a 

safe one-period bond with a return equal to �ܴ,�+ଵ, we can obtain, after log-linearizing, the 

usual expression for the approximate return on any asset, that is:6 

 

[ଵ+�,�̃�]ܧ  − ��,�+ଵ  

 = ,ଵ+�̃�]ܸܱܥ�� �̃�,�+ଵ] + ሺͳ − �ሻܸܱܥ[�̃�,�+ଵ, �̃�,�+ଵ] − ܸ[�̃�,�+ଵ]/2, (10) 

where lowercase letters denote the logarithm of their uppercase counterpart, namely: 

 �̃�,�+ଵ ≡  lnሺܴ̃�,�+ଵሻ ,  ��,�+ଵ ≡  ln(��,�+ଵ),  �̃�+ଵ ≡ lnሺ̃ܩ�+ଵሻ,  �̃�,�+ଵ ≡  lnሺܴ̃�,�+ଵሻ.  

 As mentioned by Restoy and Weil (2011), this relationship is often interpreted as a 

combination of the Capital Asset Pricing Model (CAPM) and the Consumption-CAPM, 

since each asset’s risk premium must equal a weighted average of the asset’s covariance 

with consumption growth (as in the Consumption-CAPM) and market return (as in the 

CAPM). 

 

 Introducing equations (4) and (5) into the definition of asset returns, indicates, after 

simple manipulations, that:  

 

 ܴ̃�,�+ଵ = �஽̃�,�+1+஽̃�,�+1�஽�,� = ሺͳ + ͳ/��ሻ̃ܩ�,�+ଵ,  

 

where ̃ܩ�,�+ଵ represents the dividend growth value of asset �, between time � and � + ͳ, 

ଵ+�,�ܩ̃)  :Taking the logarithm of returns shows that .(��ܦ/ଵ+�,�ܦ̃ ≡

 

 �̃�,�+ଵ = lnሺͳ + ͳ/��ሻ + �̃�,�+ଵ,  

 

with �̃�,�+ଵ ≡ lnሺ̃ܩ�,�+ଵሻ. Thus, introducing equations (4) and (5) into equation (10), and 

using basic covariance or variance properties, allows us to write, after simplification: 

 

lnሺͳ]ܧ  + ͳ/��ሻ + �̃�,�+ଵ] − ��,�+ଵ  

 = ,ଵ+�̃�]ܸܱܥ�� �̃�,�+ଵ] + ሺͳ − �ሻܸܱܥ[�̃�,�+ଵ, �̃�,�+ଵ] − ܸ[�̃�,�+ଵ]/2. (11) 

 

Equation (11) identifies an equilibrium asset pricing condition in which the only future 

random variable of a particular asset corresponds to dividend growth. 

 
                                                      
6 See, for example, Restoy and Weil (2011, p. 4). 



 

 

 

 

 

 

 

 

 

 Multiplying by ܸ[�̃�+ଵ] and ܸ[�̃�,�+ଵ] on each side of equation (11) indicates, after 

manipulations, that: 

 

lnሺͳ]ܧ  + ͳ/��ሻ + �̃�,�+ଵ] − ��,�+ଵ = ������� + ������� − ܸ[�̃�,�+ଵ]/2, (12) 

where  

 

 ��� ≡ ��ܸ[�̃�+ଵ] > Ͳ, 
 

 ��� ≡ ሺͳ − �ሻܸ[�̃�,�+ଵ] > Ͳ, 
 

 ���� ≡ ,ଵ+�̃�]ܸܱܥ �̃�,�+ଵ]/ܸ[�̃�+ଵ], 
 

 ���� ≡ ,ଵ+�,�̃�]ܸܱܥ �̃�,�+ଵ]/ܸ[�̃�,�+ଵ]. 
 

Here, resulting coefficient ���� represents the dividend sensitivity to aggregate 

consumption, for asset � at time �, while coefficient ���� represents the dividend sensitivity 

to market returns, for asset � at time �. These coefficients are defined for a specific period 

only. In the next subsection we define the corresponding coefficients (��� and ���) over 

many periods. 

 

2.3 Market and consumption risks over the long-run 
 

In the long run, the upper equilibrium condition can be easily extended by summing from 

time zero (� = Ͳ) to time ܶ − ͳ (� = ܶ − ͳ), as shown below: 
 

 

 

  

 
 

 

 (13) 

 

 

Rearranging equation (13), we can write: 

 

lnሺͳ ݔ ܶ  + ͳ/��ሻ 
  

 

 

 (14) 

 

 
Multiplying by scalar values ∑ ����−ଵ�=଴  and ∑ ����−ଵ�=଴  on each side of equation (14), implies 

that: 
  

∑ lnሺͳ]ܧ + ͳ/��ሻ + �̃�,�+ଵ]�−ଵ
�=଴  ,= ∑ ��,�+ଵ +�−ଵ

�=଴ ∑ ������� +�−ଵ
�=଴ ∑ ������� −�−ଵ

�=଴ ∑ ܸ[�̃�,�+ଵ]/ʹ�−ଵ
�=଴ . 

 ,
= ∑ ��,�+ଵ +�−ଵ

�=଴ ∑ ������� +�−ଵ
�=଴ ∑ ������� − ͳʹ�−ଵ

�=଴ ∑ ܸ[�̃�,�+ଵ] −�−ଵ
�=଴ ∑ ଵ−�[ଵ+�,�̃�]ܧ

�=଴ . 
 ,



 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 (15) 

 

 

where ݓ�� ≡ ���/ ∑ ����−ଵ�=଴ , with Ͳ < ��ݓ < ͳ, and where ݓ�� ≡ ���/ ∑ ����−ଵ�=଴ , with Ͳ < ��ݓ < ͳ. Dividing by ܶ on each side of equation (15), we get: 
 

 

 

 

 
 

 

 (16) 

 

 

or, equivalently: 

 

 lnሺͳ + ͳ/��ሻ = �� + ����� + ����� − Ͳ.5��ଶ − �� (17) 

where: 

 

 �� ≡ ∑ ଵ�=଴−�[ଵ+�,�̃�]ܧ /ܶ,  �� ≡ ∑ ��,�+ଵ�−ଵ�=଴ /ܶ ,   ��ଶ ≡ ∑ ܸ[�̃�,�+ଵ]/ܶ�−ଵ�=଴ , 
 

 �� ≡ ∑ ���/ܶ�−ଵ�=଴  ,  �� ≡ ∑ ���/ܶ�−ଵ�=଴ , 
 

 ��� ≡ ∑ ��������−ଵ�=଴  ,  ��� ≡ ∑ ��������−ଵ�=଴ . 

 

Estimators ��, ��, ��ଶ, ��, and �� correspond to arithmetic averages, while ���, and ��� 
correspond to weighted averages (over ܶ periods). In particular, ��� and ��� are viewed as 

the long-run sensitivity of the asset’s dividends to aggregate consumption and market 

returns. Taking the exponential on each side of equation (17), we have: 

 

 ͳ/�� = ��}�ݔ� + ����� + ����� − Ͳ.5��ଶ − ��} − ͳ. (18) 

At time � = 0, equation (4) indicates that: �� = �ܲ଴/ܦ�଴. Integrating equation (4) into 

equation (18) allows us to write: 

 

/଴�ܦ  �ܲ଴ = ��}�ݔ� + ����� + ����� − Ͳ.5��ଶ − ��} − ͳ. (19) 

Therefore, we can easily isolate the price of a long-lived asset, as is shown below:  
 

lnሺͳ ݔ ܶ + ͳ/��ሻ = ∑ ��,�+ଵ +�−ଵ
�=଴ ∑ ����−ଵ

�=଴ ∑ ������� +�−ଵ
�=଴ ∑ ����−ଵ

�=଴ ∑ ��������−ଵ
�=଴  

 ,− ͳʹ ∑ ܸ[�̃�,�+ଵ] −�−ଵ
�=଴ ∑ ଵ−�[ଵ+�,�̃�]ܧ

�=଴ , 
 ,
lnሺͳ + ͳ/��ሻ = ͳܶ ∑ ��,�+ଵ +�−ଵ

�=଴
ͳܶ ∑ ����−ଵ

�=଴ ∑ ������� +�−ଵ
�=଴

ͳܶ ∑ ����−ଵ
�=଴ ∑ ��������−ଵ

�=଴  

 ,− ͳʹ ͳܶ ∑ ܸ[�̃�,�+ଵ] −�−ଵ
�=଴

ͳܶ ∑ ଵ−�[ଵ+�,�̃�]ܧ
�=଴ , 

 ,



 

 

 

 

 

 

 

 

 

 

 (20) 

 
 

 Equation (20) represents our main result. Using recursive utility, this equation indicates 

that the equilibrium price of a stock is negatively related to the long-run sensitivity of the 

asset’s dividends to market returns, as well as to aggregate consumption. Given that the 

two sensitive parameters (��� and ���ሻ are negatively related to the theoretical asset value, 

they thus represent a rightful measure of risks. To estimate these two measures, investors 

must make a prediction for each period, and then compute the average. If the covariance 

between dividends and market returns is equal to zero (��� = Ͳ), then the corresponding 

stock value is similar to the one obtained in Bergeron (2013a). Under conditions of 

certainty, variances and covariances equal zero, and equation (20) is similar to the classic 

Gordon Growth Model. 

 

 Note that the derivation of equation (20) does not require the restrictive constant 

growth assumption for dividends. This approach is consistent with the familiar notion that 

firms have different stages of growth and risk, in the long run (see, for example, Mac an 

Bhaird and Lucey, 2011). This approach is also consistent with the long-run measure of 

risk adopted by Bansal et al. (2005), for which the covariance between dividend growth 

and aggregate consumption varies over time. 

 

 In sum, our model indicates that the intrinsic current value of a stock can be easily 

estimated with a practical formula that integrates two dimensions of risk: market risk and 

consumption risk, over the long run.  

 

3. Conclusion 
 

The recursive utility framework and long-run risk concept represent two major innovations 

in financial economics. In this paper, we integrate the long-run risk concept into the stock 

valuation process, using recursive preferences. Our model reveals that stock values are 

influenced by the long-run covariance between dividends and market returns, as well as by 

the long-run covariance between dividends and consumption. The main contributions of 

this paper can be summarized as follows. First, we combine recursive preferences and long-

run risk for stock valuation. Second, we suggest that long-run risk is defined by two factors: 

market returns and aggregate consumption. Third, we demonstrate that two long-run risk 

parameters affect the market equity value of a firm.  

 

 Our extension model also presents other interesting characteristics. For example, our 

development indicates the value of the dividend-price ratio under equilibrium conditions. 

Moreover, the final formula is easy to apply for common stock investors. Furthermore, the 

model does not assume a constant dividend growth rate, which allows us to refine the 

valuation process (period by period). Likewise, the model offers new predictions to test the 

validity of the long-run concept of risk empirically.  

 

�ܲ଴ = ��}�ݔ�଴�ܦ + ����� + ����� − Ͳ.5��ଶ − ��} − ͳ . 
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