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Abstract
Electricity planning is a key strategic business in the mining industry. Thus, this paper assesses the electricity demand
in the Brazilian iron ore industry with an emphasis on electricity prices and the production value chain to address the
sector-specific behavioral patterns, using daily data from December 2018 to April 2020. By employing impulse
response functions and variance decomposition analysis, the paper shows that electricity demand is primarily
determined by internal factors of the ore production rather than exogenous variables, such as the electricity price and
weather conditions. Moreover, short and long-run electricity price elasticities are computed, providing further insights
into the dynamics of the sector, and indicating that price is inelastic with similar values for both time frames. This
suggests from an energy policy perspective that any price movements (taxes) are bound to have a fairly limited effect
as they may cause financial turmoil given the long-term characteristic of delivery contracts in the sector.
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1 Introduction

The industrial sector accounts for about one-third of the world’s final energy demand, with the mining sector being one

of the most energy-intensive industries, which makes electricity planning a key strategic business priority as it affects

productivity, financial performance, and safety, especially when the sector faces an increasingly competitive global

business environment. Thus, increased energy management in this area will remain critical to businesses in matters

of attaining a stable supply, cost control, and meeting the standard quality requirements for finished products (OECD,

2015; Calvo et al., 2016; Palacios et al., 2019).

Despite extensive empirical studies investigating residential electricity demand, the literature on industry-level is

scarce (Labandeira et al., 2017). The vast majority of these studies are built on aggregate demand models that are

useful in formulating macroeconomic policies, normally based on panel data (Otsuka, 2015; Cialani and Mortazavi,

2018; Sharimakin et al., 2018) and time-series approaches (Inglesi-Lotz and Blignaut, 2011; Arisoy and Ozturk, 2014),

but fail to capture the potentially more diverse energy consumption behavior of disaggregated sectors of the economy.

Indeed, electricity loads for all horizons, that is, in the short, medium and long terms, are highly variable in nature on

both macroeconomic and sectoral levels, highlighting the need to use data at the lowest level of aggregation possible

(Henriksson et al., 2014; Bernstein and Madlener, 2015). Hence, the detailed information and understanding required

for formulating specific energy-related policies can be provided.

In addition to the investigation of electricity demand functions, several studies simultaneously discuss the impor-

tance of the price elasticities in the industrial sector. Cialani and Mortazavi (2018), based on panel data for 29 European

countries, indicate that the electricity demand is price inelastic for both short- and long-run horizon. Similarly, Otsuka

(2015) analyzing the Japanese industrial sector, argues that price elasticity is not a key determinant of electricity de-

mand functions whereas production factors are. Inglesi-Lotz and Blignaut (2011) also employ a panel framework to

examine the South African economic sector’s electricity demand responses to electricity prices and verify that agri-

culture, transport, and mining are not affected by price variations. Similarly, Bernstein and Madlener (2015) estimate

sub-sector-specific electricity demand elasticities with regard to German industry by employing single-equation error

correction models based on a log-linear demand function. Their results suggest that the short-run price elasticities

range from -0.20 to -0.83 and are significant only in the non-metallic and transport equipment sectors. Moreover, the

sizes of the short-run elasticities are in accordance with the corresponding long-run elasticity in a sector.

Business strategies and policy efforts aiming to increase energy efficiency in industrial sectors should be built on

an in-depth understanding of energy demand behavior. Thus, this research takes advantage of a unique data set that

permits the inference of the electricity demand at the firm level in the Brazilian mining industry, with special emphasis

on the impact of spot electricity prices and on the production value chain, to assess industry-specific behavioral pat-

terns, whereas the majority of studies use aggregate data. In this sense, this paper’s contributions are twofold. First, to

trace the dynamic behavior of the electricity demand on the basis of a multivariate VAR framework, impulse response

functions and variance decomposition analysis are computed, indicating that the electricity price impulse has no ma-

jor impacts whereas the sub-stages of the iron ore value chain, wet route processing (production), and the pipeline

transport system are the most relevant to the electricity demand and production stability. Second, short- and long-run

price elasticities are estimated using the auto-regressive model with distributed lags (ARDL), and the results indicate

that the price is inelastic with similar values in both time frames, implying from an energy policy perspective that

electricity price increases (taxes) are not a good instrument for discouraging the electricity demand in the Brazilian

mining sector as they would cause financial imbalances and negatively affect long-term contracts’ profitability.

2 The Brazilian iron ore industry

The global production of iron ore is concentrated in a few countries, of which Australia and Brazil are the largest

producers, making 930 and 480 million metric tons, respectively, in 2019. Indeed, from 2013 to 2019, these two

countries combined increased their global production share, from 45% to 55%, as shown in Figure 1a. Despite being

the world’s leading iron ore-consuming country, China’s usable ore production has decreased by 5% due to the low-

grade of its ore, which makes it expensive to process and increases domestic prices compared with foreign ones, even

when considering overseas freight costs. Thus, China’s iron ore imports are expected to increase, particularly from

countries with high-grade ores, such as Brazil and Australia (USGS, 2020).



From 2013 to 2019, Brazil’s iron ore exports represented, on average, 84% of the country’s mineral production,

although this rate has reached its lowest value, 70%, in the last year due to the major VALE dam rupture in the state

of Minas Gerais (Brazil, 2020). Despite the accident, which reduced VALE’s export levels by 20% between 2018 and

2019, the company remains the main Brazilian exporter, with more than 80% of the total foreign trade share (Figure

1c). The second largest ore producer in Brazil is Anglo American, exporting nearly 25 million tons in 2019 and

representing 7% of the total exports. From 2013 to 2017 the firm consistently expanded its market share, but in 2018,

two pipeline leaks forced Anglo to stop operations at its mine site for eight months, resuming then in November of

the same year. As for Samarco and MMX, the former stalled its operation in November 2015 at its highest level of

production due to the Fundão dam collapse and has been struggling to obtain all the required licenses to restart mining

since then and the latter, it has filed for bankruptcy in 2015 and has ceased its operations.

Figure 1: Brazil: Iron ore industry dashboard
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(b) Brazil: Electricity consumption by industry (GWh)
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Industrial production in Brazil relies significantly on electricity for processing raw materials and refining and

shaping material goods. It is therefore crucial to assess this input demand properly, making companies less vulnerable

to turmoil on the electricity open market. Regarding the mining industry, the four-year historical trend indicates that it

accounts for roughly 10% of the total electricity consumed in the manufacturing sector, averaging 1.019 million MWh

monthly, as displayed in Figure 1b (Brazil-EPE, 2020). Furthermore, it is clear from Figure 1d, that the electricity

spot prices (Brazil-CCEE, 2020) for the industrial sector have a higher variance than the ore prices, mostly associated

with rainfall shortages and government regulation; however, it presents a lower average price, US$55.71, compare to

US$70.86 of the rock. On practical matters, it has cash flow implications that may increase the firm financial risk level

as the demand side does not seem to be sensitive to variations in the wholesale price of electricity in the short term.

In this context, this highlights the need to propose a model that takes into account the characteristics of the mineral’s

production process at the firm level and thereby reduces the need to trade electricity on the free market and keep the

production costs as stable as possible. This is the contribution that this paper aims to make.



3 Data and Methodology

This paper takes advantage of a unique daily data set from an iron ore processing plant in Brazil with a slurry pipeline;

it combines the electricity demand, production process, a measure of climatic conditions, such as temperature, and

electricity prices for a specific market (Southeast) in the Brazilian energy system from December 23, 2019 to April 12,

2020. This data set has two advantages with respect to existing industrial sub-sector data sources: first, it minimizes

the risk of measurement errors as the data are very accurate and based on actual readings of the production process;

and, second, the use of the sectoral electricity price is an advantage over the use of the aggregate national price as a

proxy (Bernstein and Madlener, 2015; Cialani and Mortazavi, 2018), allowing research to extend the understanding of

the demand side of the electricity market and thereby facilitating efforts to improve efficiency energy planning.

The iron ore production value chain involves extraction, blasting, crushing, grinding, processing (wet route pro-

duction), and transportation to the ports for exporting and local consumption; among these, the electricity requirements

of grinding and processing account for more than 50% of the total energy consumed in open pit mines (Jeswiet and

Szekeres, 2016). In particular, the amount of rock produced in each stage could present a minimum of 0 tons (t);

that is, on a specific date when the sub-stage operation was shut down, normally related to maintenance requirements.

As for the transportation pipeline system, it operates continuously, that is, up to 24 hours daily. Table 1 presents the

summary statistics of the variables.

Table 1: Descriptive statistics

Variables Description Unit Mean S.D. Min Max

ED Electricity demand MWh 2207.11 398.15 193 2571

EP Electricity price US$ 56.01 31.22 7.41 138.30

temp Average temperature at site ◦C 22.63 2.82 12.38 29.22

crush Primary crushing t 117490.20 35434.97 0.00 178101.70

grind Grinding feed t 117926.11 31770.12 0.00 158883.70

wet Wet route production t 58626.21 17310 0.00 84211.44

pipe Pipeline hours of operation h 23.79 1.69 0.05 24.00

The average daily electricity demand during the time frame considered was 2200 MWh, and Figure 2 reveals no

cycle trend as the electricity load curves are similar on different days of the week – see Figure 5 in the Appendix. In

addition, the series show large, sudden level shifts, mainly due to maintenance procedures, which normally take place

on weekdays. Therefore, when they happen in the crushing and grinding stages, the electricity demand reduces to

1000–1700 MWh daily, whereas, when there is an operational stop in the pipeline, drastic power reduction takes place

due to a ripple effect throughout the entire production process. Furthermore, since March 2020, the global economy

has been experiencing an economic slowdown as a result of the COVID-19 pandemic. However, a visual inspection

of the electricity demand time series suggests that the effects on mining operations have been minimal to date when

compared with other economic sectors, such as transportation and the textile industry, mainly due to the high level of

digitalization and industrial automation in the sector and increased storage areas that help to mitigate this risk.

Figure 2: Daily Electricity Demand (MWh)
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Therefore, the microeconomic framework underlying the econometric specification of the mining industry elec-

tricity demand follows Lin and Ouyang (2014), Bernstein and Madlener (2015) and Cialani and Mortazavi (2018) and

uses the Cobb-Douglas demand function, EDt = A(EP
β1

t )(temp
β2

t )(Xβn

n,t), in which Xn denotes the sub-stages of

the production value chain. A logarithmic transformation of this demand function yields:

lnEDt = β0 + β1 lnEPt + β2 ln tempt + β3 ln crusht + β4 ln grint + β5 lnwett + β6 ln pipet + εt, (1)

where β1, ..., βn are the industrial sub-sector demand elasticities, which can be useful for ex-ante evaluation of the

impact of the pricing policy on the demand-side management of electricity. Then, to check for stationarity behavior in

each transformed time series, the Augmented Dickey-Fuller (ADF) test is conducted. The results are summarized in

Table 4 (in Appendix), which shows that, in general, the ADF statistics are smaller than the 1% critical value, except

for the price indicator. Thus, the test performed on its first difference demonstrates that the time series is stationary at

the 1% significance level.

Assuming this stationary characteristics, to evaluate the dynamic behavior of the electricity demand at the firm

level, this paper specifies a multivariate VAR framework as follows (Enders, 2008):

yt = ν +A1yt−1 + . . .+Aρyt−ρ + εt, (2)

where yt is a vector of jointly determined endogenous variables, ν is a k × 1 vector of constants, yt−i, i = 1, . . . , ρ is

specified as a linear combination of past observations of the same variables, and Ai, i = 1, . . . , ρ are a K ×K matrix

of parameters, interpreted as the sensitivity of a predictor to the lag of another variable, hence, generating impulse-

response functions (IRFs). In addition, εt ∼ N(0,Σε) is conditional on past values and initial conditions, which are

useful for variance decomposition analysis (VDA).

Formally, the VAR approach is used for model evaluation and prediction. In this sense, an IRF indicates how

long, and to what extent, a shock uj (an external change in any input) to one endogenous variable may affect on the

independent variable. In this paper, it indicates how the electricity demand reacts to an unanticipated change in any

other endogenous variable. VDA is a statistical method to uncovered structural changes, defined as a change in variable

y at time t that could not have been forecast between t− 1 and t; that is, it quantifies the importance of each shock in

explaining the variation in each of the variables in the system. Thus, the VAR approach is highly flexible in terms of

identifying important dynamic relationships among the electricity demand data set. Simultaneously, it can capture the

temporal autocorrelation in a specific variable and allows dynamic cross-correlation between different predictors. That

is, the estimation of the parameters is performed by imposing as restrictions the structure of the production process,

the choice of the relevant set of variables, and the maximum number of lags involved in the relationships between

them.

Furthermore, assuming Equation 1 and the results displayed in Table 4, this paper uses the autoregressive dis-

tributed lag error correction approach (ARDL) to estimate short- and long-run electricity elasticities in the mining

industry as it overcomes the restriction in traditional cointegration approaches that all the variables must be integrated

of the same order (Pesaran et al., 2001; Kripfganz and Schneider, 2016). From an operational perspective, the first

step is to investigate the existence of a long-run linkage among the variables by the bounds F − test, and, if this is

the case, then the short-run and long-run elasticities can be computed. A general ARDL model with an ordinary least

squares (OLS) estimation technique is specified as:

∆yt = c0 + c1t− α (yt−1 − θxt−1) +

ρ−1∑

i=1

φyi∆yt−i +

ρ−1∑

i=1

β′

xi∆xt−i + ut, (3)

where α = 1 −

∑ρ
j=1

φi is the speed of adjustment from convergence to equilibrium, θ =
∑q

i=0
βj

α
are the long-run

coefficients, β are the short-run multipliers, ρ lags of yt and q lags of k variables xj,t for j = 1, ..., k. are selected

by the Akaike information criterion (AIC). Thus, if α is statistically significant and presents a negative sign for the

coefficient, any long-run disequilibrium among the dependent variables and k independent variables will converge

back to the long-term equilibrium association.



4 Empirical analysis

To trace the dynamic behavior of the electricity demand in response to one-time innovations in the variables listed

in Table 1, this paper performs an impulse response and variance decomposition analysis on the basis of a VAR

specification. First, the optimal choice of lag length is set at ρ = 4 as defined by the AIC methodology; onetheless,

a number of diagnostic tests are computed on the orthogonalized VAR residuals to test for autocorrelation (Lagrange

multiplier test: the p-value at lag 1 (0.28) is greater than the 5% level) and normality (Jarque-Beta statistic: for all

variables p = 0.00), suggesting that the K disturbances in the VAR are normally distribute. Figure 3 displays the

fitted values for the electricity demand of the VAR model over the actual data, indicating considerable adherence of

the model to the data.

Figure 3: (Log) Differenced Daily Electricity demand (actual) and Predicted VAR Model
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Further, to explore the IRF analysis, the VAR model needs to be tested for stability. From Figure 6a (in Appendix),

it can be seen that the absolute values of all the unit roots are inside the unit circle; that is, the specification meets the

stability conditions. Hence, these results indicate the VAR approach’s capacity to be used as a technical instrument for

predicting and assessing the electricity demand. Figure 4 displays the cumulative responses in the electricity demand

due to impulses in the other control variables. In general, the figure indicates that the shocks appear to be transitory and

the system approaches the equilibrium relatively fast, which is a typical characteristic of technologically consolidated

mining processes.

Figure 4: Response to Cholesky One S.D. Innovations
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The results of this exercise are twofold. Firstly, the electricity price impulse has no major significance as it has

stabilized around the zero level from the beginning, reinforcing the evidence that the industrial electricity demand

has been highly inelastic (Bernstein and Madlener, 2015; Cialani and Mortazavi, 2018). A peculiar situation of the

iron ore industry in Brazil corroborates the idea that, due to the high quality of the ore grade and economies of scale,

the processing and refining require less costly technology and use less energy when compared with other world top

producers (China and Russia), which is a crucial determinant of its competitiveness. Moreover, the main energy source

is hydropower, so that, whatever its price, it will be acquired to meet the contract agreements. Thus, this productive

context causes the electricity price to have minimum effects on its demand.

Secondly, for the production value chain, all the variables present transitory effects as they are all integrated of

order 0. Given that, convergence to the equilibrium occurs after approximately five to seven days, depending on the

stage-specific speed of adjustment. Specifically, in the primary crushing, a set of techniques aims to reduce, through

external and sometimes internal mechanical action, a solid of a certain size into fragments of a size small enough to be

taken into the next stages of production. It can be noticed that it has little effect on the energy demand. Similarly, at the

grinding feed stage, despite a small negative effect due to buffer storage piles that ensure regularity in the production

process, mitigating the probability of ore outages , the electricity demand shifts back to its smooth pattern after no

more than three days. As for wet route production (processing) and continuous pipeline operations, the IRF approach

corroborates the perspective that they are the most relevant equipment to electricity consumption and production

stability. That is, depending on the quality and size of the ore that feeds the wet route processing stage, the electricity

demand tends to drop if it is operating below its maximum capacity level. Once that level is reached, the electricity

demand tends to stabilize again, which can take up to 7 days. The impulse induced by the ore transport equipment

generates the biggest short-term fluctuation in the electricity demand due to a ripple effect in the production process.

It rises at the first moment to compensate for any higher level of production or the necessity to maintain shipment

deadlines at the port, quickly returning to the standard electricity demand level.

From the variance decomposition results presented in Table 2, the fluctuation in the electricity demand from 0 to

7.75% can be explained by pipeline operation noise, although the need for continuous improvement in maintenance

requirements tends to reduce this share. The innovations in the production sub-stages of crushing, grinding, and wet

route production combined account for nearly 10% of the variation in the energy demand in the long run, indicating

that the actual technology level contributes to a small part of it, once the designed nameplate production capacity of the

plant is achieved, although reducing the level of ore grade variation and electricity efficiency through the improvement

of facilities’ usage is still a key factor in reducing the energy costs. As for the price innovation, the results corroborate

the IRF evidence, suggesting that its long-term influence on the electricity demand is minimal. Thus, the empirical

analysis shows that electricity demand movements are conditioned more by internal factors of the ore value chain than

by exogenous variables, such as the electricity price and weather conditions.

Table 2: Variance Decomposition Analysis: ln(ED)

Period (days) ED EP Temp Crush Grind Wet Route Pipe

1 100.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 88.2259 0.0119 1.0379 1.0580 2.0063 3.0906 5.5694

3 83.5160 0.0338 1.0496 1.2832 3.4016 3.1688 7.5471

4 82.2729 0.0364 1.0522 1.3814 3.5482 4.1725 7.5293

5 82.0858 0.0369 1.0524 1.3808 3.5843 4.1731 7.6847

6 82.0204 0.0368 1.0525 1.3827 3.5901 4.1737 7.7437

7 82.0162 0.0368 1.0532 1.3840 3.5904 4.1737 7.7458

8 82.0134 0.0368 1.0544 1.3841 3.5904 4.1737 7.7472

9 82.0105 0.0369 1.0558 1.3841 3.5904 4.1737 7.7487

10 82.0092 0.0369 1.0568 1.3841 3.5905 4.1737 7.7487

15 82.0060 0.0369 1.0598 1.3841 3.5908 4.1737 7.7487

20 82.0045 0.0369 1.0613 1.3841 3.5909 4.1737 7.7487

30 82.0036 0.0369 1.0622 1.3841 3.5910 4.1737 7.7488



Econometric analyses of the price elasticity at the industrial sub-sector level of the electricity demand are scarce.

Therefore, by employing an ARDL framework, short-run and long-run price elasticities are estimated to gain a better

understanding of the relationship between them over time. As the first step of the ARDL technique, the long-run

relationship of the underlying variables is detected through a bounds-testing procedure based on the joint F−statistic

(Kripfganz and Schneider, 2016) —- the calculated F-value is 25.02, above the upper bound at the 5% significance

level of 3.63. Then, Equation 3 is estimated to obtain the elasticities. Table 3 presents the results.

Table 3: Brazilian iron ore industry: Price elasticities

Elasticities Speed of adjustment

Short-Run Long-Run α

Ln(EP)
-0.0203**

(0.009)

-0.0312**

(0.011)

-0.6541***

(0.055)

Note: Standard deviations are in parentheses. ** → p < .05.; *** → p < .01

The findings are economically reasonable in terms of both sign and magnitude with respect to the industrial sector

(Bernstein and Madlener, 2015; Labandeira et al., 2017), and the values for the short-run and long-run elasticities are

only slightly different, indicating that the relationship between the two variables remains practically stable over time.

In addition, the ARDL framework measures the speed of adjustment (α) at which the electricity demand restores the

equilibrium path, and the results imply that about 65.4% (statistically significant at the 1% level) of any movements

into disequilibrium are corrected within one day; that is, short-term movements of the electricity demand in the mining

industry, due to the price and sub-stages’ production-level variations, are rapidly reduced. Further, stability diagnostics

for the coefficients of the estimated ARDL model are tested by applying the cumulative sum of recursive residuals

(CUSUM). The results in Figure 6b (in the Appendix) show that all the parameters are stable over time, suggesting

that there are no structural breaks over the sample period.

These results have implications for both public policies and business planning. Following Inglesi-Lotz and Blig-

naut (2011) and Henriksson et al. (2014), from an energy policy perspective, the results indicate that price increases

(taxes) are bound to have a fairly limited effect; that is, the increases may have to be unfeasibly large to have sub-

stantial effects and may generate severe financial and cash flow impacts. This situation stems from the fact that the

main energy source is hydropower, which makes a firm extremely dependent on this input to fulfill its long-term

constructs. In this context, the Brazilian mining sector should be encouraged to engage in a process of cogeneration

of renewable energy sources due to their ecological, economic, political, and social advantages; consequently, their

electricity demand from the national supplier will tend to drop. Thus, an energy policy must prioritize incentives for

the development of these renewable energy projects, whether through favorable credit lines, greater legal security for

companies, or royalty payments, mainly because these projects face high initial costs and longer payback times.

5 Conclusion

Reliable energy sources are essential to the iron ore mining industry. However, despite the fundamental importance of

energy, the day-to-day focus on meeting operational targets at a mine often means that energy is not used efficiently.

Thus, this paper adopts a VAR model to analyze the electricity demand dynamics in the Brazilian mining industry, with

special emphasis on electricity prices and the production value chain, using a daily data set from an iron ore plant based

on a log-linear demand function. The results indicate that the electricity demand movements are mostly conditioned

by internal factors related to the production process rather than exogenous variables, such as the electricity price and

weather conditions. Moreover, short-run and long-run price elasticities are calculated through an ARDL model, and

the values obtained confirm the presence of price inelasticity that is persistent over time in this industrial sector.

These results are important for providing realistic baseline assessments for future evaluations of energy policies as

the empirical evidence suggests that a stimulus through electricity prices has a limited effect on the mining industry

and that other instruments should be considered, such as the promotion of co-generation projects. Future research

should consider collecting data from other plants globally to enable a detailed comparison with the results achieved in

this research.
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Appendix

Figure 5: Weekdays electricity Demand (MWh)

Table 4: Augmented Dickey-Fuller test for unit root

ADF Statistics 1% Critical Value 5% Critical Value p-value

ln(ED) -12.847 (1) -3.442 -2.871 0.000

Ln(EP) -1.987 (1) -3.442 -2.871 0.292

D(ln(EP)) -19.499 (1) -3.442 -2.871 0.000

ln(Temp) -4.218 (1) -3.442 -2.871 0.001

ln(crush) -14.052 (1) -3.442 -2.871 0.000

ln(grind) -14.137 (1) -3.442 -2.871 0.000

ln(wet) -14.241 (1) -3.442 -2.871 0.000

ln(pipe) -15.199 (1) -3.442 -2.871 0.000

Note: Lag lengths are in parenthesis. Experiments with more lags in the augmented regression yield

the same conclusion. Test specification includes both intercept and trend.

Figure 6: Post estimation tests
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