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Abstract

In this paper, we propose a robust optimization framework for drawdown-based performance measures that
substantially improves upon conventional portfolio choices. In particular, we motivate and develop a robust
optimization method that is typically used with conventional robust statistical estimation techniques, directly and
explicitly addressing the estimation errors in the portfolio optimization process of the drawdown-based performance
measures. Empirical analyses validate the proposed methodologies and confirm that robust drawdown-based
performance measures yield better out-of-sample performance than their classic versions.
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1. Introduction

Optimal portfolio allocation is one of the classic uncertain decision-making problems that
involve parameters estimation and distributional properties of sets of investment opportu-
nities. The most well-known performance measure for optimal portfolio selection is the
Sharpe ratio (Sharpe, 1994), a reward-risk measure that optimizes the relationship between
the mean and the standard deviation of the returns generated by a given portfolio. While
the Sharpe ratio considers the portfolio’s standard deviation (which is not a risk measure), it
penalizes both negative and positive deviations from the mean symmetrically (Rachev et al.,
2008). Moreover, it is theoretically justified under the Gaussian assumption of asset returns.
Thus, it leads to incorrect investment decisions when the returns distribution presents heavy
tails or skewness. Indeed, unrealistic distributional assumptions of asset returns combined
with the implications of estimation error usually negatively impacts the overall performance.
During the last decades, many alternatives to the Sharpe ratio have been proposed (Sortino
& Price, 1994; Konno & Yamazaki, 1991; Biglova et al., 2004; Farinelli et al., 2008; Orto-
belli et al., 2019). A common argument for proposing alternative reward-risk measures is
the presence of asymmetry and fat tails in returns. Drawdown-based measures are a special
class of these alternative reward-risk performance measures. While having the same reward
measure as the Sharpe ratio, this special class of performance measures differs in terms of
the measure used to quantify risk (Bacon, 2008; Auer & Schuhmacher, 2013).

In most practical situations, however, the statistical input parameters are unknown and
approximated using available economic data. Thus, the reward-risk performance measures
are likely sensitive to estimation errors and may provide poor out-of-sample performance
(Chopra & Ziemba, 1993; DeMiguel & Nogales, 2009; Behr et al., 2012). In particular,
the problem of parameter estimation increases as the number of assets increases. Several
authors have accordingly developed alternative approaches to deal with this practical prob-
lem, including, for example, naive diversification, shrinkage estimators, constraining portfo-
lio weights, and robust optimization (see, e.g., Wang, 1998; Ledoit & Wolf, 2004; Pflug et
al., 2012; Anderson & Cheng, 2016).

The aim of this paper, therefore, is to develop a robust portfolio framework for drawdown-
based performance measures and minimize the negative impact of estimation errors on op-
timal portfolio weights. Two commonly accepted ways to robustify portfolio optimizations
are to assume a certain structure for uncertainty sets or optimize portfolios under the worst-
case analyses (Ben-Tal & Nemirovski, 1998; Goldfarb & Iyengar, 2003). Other methods
involve robustification via the Bayes and Black-Litterman models or the adoption of robust
statistical techniques (Schottle et al., 2010; Anderson & Chen, 2016). Existing empirical
studies provided by several authors suggest that robust portfolios improve the out-of-sample
performance and are more stable than their non-robust versions (see, e.g., DeMiguel & No-
gales, 2009; Sehgal & Mehra, 2020; Kouaissah, 2021). The main contribution of this paper is
to develop a robust portfolio optimization for drawdown-based performance measures that
directly addresses the estimation errors in the optimization problem itself. In particular, two
specific constraints are designed to achieve this purpose: one is based on robust estimators
and one assumes that the true mean lies with a certain confidence. Thus, the proposed port-



folio strategies combine the ability of two well-recognized robust methods (see, e.g., Fabozzi
et al., 2007, DeMiguel & Nogales, 2009). The effectiveness of the proposed robust portfolio
optimization is evaluated by applying it to the S&P 500 components. The empirical results
confirm that the robust drawdown-based performance measures improve upon their classical
non-robust versions in terms of out-of-sample performance.

The paper is structured in four sections. Section 2 introduces robust portfolio optimiza-
tion for drawdown-based performance measures. Section 3 applies the proposed portfolio
selection methodologies to the S&P 500 components. Finally, Section 4 summarizes our
conclusions.

2. Methodology: robust drawdown-based performance
measures

This section proposes robust portfolio formulations for drawdown-based performance mea-
sures. Consider n risky assets with a vector of gross returns' z = [z,..., 2z, and define
portfolio returns as 2’2, where z = [z1,...,2,] is the vectors of portfolio weights among n
risky assets. Moreover, we assume no short sales are allowed (i.e., z; > 0), thus the vector of
portfolio weights x belongs to the simplex C = {z ¢ R"| > " | x; = L;2; > 0;Vi=1,...,n}.
In this context, investors choose a portfolio that optimizes a given drawdown-based perfor-
mance measure. In particular, when the reward v and drawdown measure ¢ are both positive
measures, the market portfolio is the solution to the following optimization problem:

v(x'z — zp)

X q(z'z — z)

st Sa=1 (2.1)
=1

r; >0;1=1,...,n

where z, denotes the returns of a given benchmark (that generally represents a risk-free as-
set) and 2’z = )" | x;z; computes the portfolio returns. Depending on the drawdown type
measure used to quantify risk we can define various drawdown-based performance mea-
sures; for recent state-of-the-art surveys, readers should refer to Bacon (2008) and Auer and
Schuhmacher (2013). The analytical and numerical assessments of drawdown magnitudes
have been widely discussed in the literature (see, e.g., Schuhmacher & Eling, 2011; Auer,
2015; Goldberg & Mahmoud, 2017; and literature therein). This paper focuses on four well-
known drawdown-based performance measures: the Calmar, Sterling, Martin, and Burke
ratios. For instance, the Calmar ratio measures risk based on the maximum drawdown,
while the Sterling ratio quantifies risk by the average of the K-most important drawdowns.

!We define the i-th gross return between time ¢ — 1 and time ¢ as z;; = PP?: and the i-th log return as

In(z;+) where P, is the price of the i-th asset at time ¢.



Four well-known drawdown-based performance measures that are considered in the empirical
analysis are formalized and reported in Table 1.

Table 1: Drawdown-based performance measures: reward and drawdown measures

Performance measure | Reference Reward measure | Drawdown measure
Calmar ratio (CR) Young (1990) | E(z'z — z) El’é?dedt(ﬁlz)
Sterling ratio (SR) Bacon (2008) | E(x'z — z) |+ Zszl lddg(z'z)|
Burke ratio (BR) Burke (1994) | E(z'2' — z) \/25:1 1d2(2'z)
Martin ratio (MR) Bacon (2008) | E(z'z — z) \/% S DDP(a'z)

where E(2'z) is the portfolio’s expected return, dd,(z'z) = inaxTws(x’z)—wt(m’z), zs(2'z) =

et AR

22:1 a'zs — zep, t = 1,...,T, lddy is the kth-largest drawdown, ldd} is the square of the
kth-largest drawdown, DDP,, t = 1,...,T are drawdowns from a previous peak and are
defined as the cumulated uncompounded excess returns since the previous peak, which can
be defined as DDP, = max (—(z;i—2)). Following performance measurement literature, this

paper considers K = 5 to calculate the Sterling, Martin, and Burke ratios (see, e.g., Auer
& Schuhmacher, 2013; Kouaissah & Hocine, 2021; and references therein).

A large body of literature has confirmed the negative impact of estimation errors on
the optimal portfolios (see, e.g., Chopra & Ziemba, 1993; DeMiguel & Nogales, 2009). Our
contribution here consists of proposing a simple robust portfolio optimization for drawdown-
based type performance measures that render them less prone to estimation errors. In
particular, two specific constraints are designed: one is based on robust estimators and one
assumes that the true mean lies with a certain confidence. Thus, we integrate into a single
portfolio optimization two types of robustification one based on robust estimators (DeMiguel
& Nogales, 2009) and one based on a robust methodology proposed by Ceria and Stubbs
(2006) (see also Fabozzi et al., 2007). In general, there is a consensus that robust portfolios
have better stability properties than their traditional version and usually provide better
out-of-sample performance (Anderson & Cheng, 2016; Sehgal & Mehra, 2020). In doing so,
we follow a “standard” robust optimization approach proposed by Ceria and Stubbs (2006)
(see also Fabozzi et al., 2007), where the vector of true mean p = [uy, ..., i) is assumed
to be normally distributed. Then, given an estimate of the mean i and a covariance matrix
>, it can be been shown that the true mean lies inside the confidence region:

(b= p)2" (=) < A° (2.2)

with probability 100n percent, where k? = x3(1 —7) and x?2 is the inverse cumulative

distribution function of the chi-squared distribution with d degrees of freedom. Further,
inspired by robust estimators’ literature (see, e.g., DeMiguel & Nogales, 2009), we consider
the following portfolio constraint:

T

1 'z —m

L3 () s o
t=1



where z; is the vector of asset returns at time ¢, 7" is the sample size, p is a convex symmetric
loss function, S is the expectation of this loss function evaluated at a standard normal
random variable, m is the M-estimator of portfolio return and s is the S-estimator for risk
as suggested in DeMiguel and Nogales (2009). For more details about the robust statistics,
readers should refer to Maronna et al. (2006) and Huber and Ronchetti (2009). Under these
conditions, the portfolio optimization problem (2.1) can be reformulated as robust portfolio
optimization. In particular, any optimal robust portfolio can be obtained a solution to the
following optimization problem:

(2.4)

where p(z) = 2’1 — kV2'Yx is the corrected mean and represents an alternative reward
measure. In practical applications, k = 0 yields the non-robust performance measures,
whilst, for the robust versions, we use a significance level of n = 0.95. This extension allows
for the establishment of a simple robust optimization that assumes the true mean lies with a
certain confidence and incorporates certain robust estimators known as M- and S-estimators,
which have better properties than the classical mean absolute deviation thereby the proposed
portfolios are constructed using robust methodologies that are commonly justified from
previous studies (Fabozzi et al., 2007; DeMiguel & Nogales, 2009).

3. Empirical Results

This section presents ex-ante empirical analyses and discusses the behavior of robust and
non-robust portfolio selection problems on a real data set. For both problems, we consider all
active components in the S&P 500 index available in Thomson Reuters DataStream between
January 2010 and December 2020 and as a risk-free asset the U.S. 3-Month Treasury Bill.
We use a moving average window of 500 trading days (about two years) of observations to
compute each optimal portfolio, and we recalibrate the portfolio either monthly or every
three months to explore the sensitivity of optimal portfolios to recalibration time (Ortobelli
et al., 2019). Further, to guarantee minimal diversification, we invest no more than 20% in
a single asset (i.e., x; > 0.2; Vi =1,...,n) (see, e.g., Statman, 2004; Ortobelli et al., 2017).
Thus, investing an initial wealth of Wy = 1 on December 1, 2011, we evaluate the out-
of-sample performance by optimizing four different drawdown-based performance measures
either using robust portfolio optimization (2.4) or non-robust portfolio optimization (2.1).



In particular, at each kth optimization, three steps are performed to compute the ex-ante
final wealth:

Step 1: Approximate the expected returns using Fama and French standard five-factor
model (Fama & French, 2015), where its data is freely available on the French Data Library
website.

Step 2: Determine the optimal portfolio z); that optimizes a given drawdown-based per-
formance measure, i.e. the solution of optimization (2.4) for robust portfolios or the solution
of optimization (2.1) for non-robust versions. In practice, optimization problems (2.1) and
(2.4) may present more local optima, as argued by Ortobellli et al. (2019). Therefore,
to optimize these performance measures in an acceptable computational time, a heuristic
algorithm proposed by Angelelli and Ortobelli (2009) is used as a starting point. Further-
more, the obtained solution is further improved by applying the Matlab heuristic function
pattern-search to approximate the global optimum (Ortobelli et al., 2017).

Step 3: Compute the ex-ante final wealth taking into account 20 basis points as proportional
transaction costs as suggested in several studies (see, e.g., Ortobelli et al., 2019; Kouaissah
et al., 2020).

Steps 1-3 are repeated until all observations are available for every drawdown-based per-
formance measure. Further, we consider the behavior of the S&P 500 index, the equally
weighted portfolio (EWP) (i.e. 1/n in each component), and the Sharpe ratio during the
examined period as the classic benchmarks of the market (Sharpe, 1994; Pflug et al., 2012).
The results of this empirical analysis are described in Tables 2-3 and Figures 1-2. Tables 2-3
report five different statistics (mean, standard deviation (SD), value at risk (VaR5%), con-
ditional value at risk (CVaR5%), and final wealth) and two performance measures (Sharpe
(mean/SD) and STARR (mean/CVaR5%) ratios) of the ex-ante log-returns of all optimized
portfolios. In particular, for simplicity, we denote the robust version of a given drawdown-
based performance measure (PM) as R-PM.



Table 2: Statistics of the ex-ante returns obtained by optimizing drawdown-based performance

measures with and without robust formulations: monthly recalibration.

PM Mean SD VaR5% | CVaR5% | Final W | Sharpe | STARR
S&P 500 | 0.0448% | 1.093% | 1.843% | 2.739% 2.8916 4.098% | 1.636%
Sharpe 0.0491% | 1.168% | 1.971% | 2.634% 3.1980 4.200% | 1.863%
EWP 0.0402% | 1.109% | 1.864% | 2.766% 2.5881 3.621% | 1.451%
Robust portfolios
R-CR 0.0732% | 1.255% | 2.138% | 2.985% 5.6544 5.828% | 2.450%
R-SR 0.0589% | 1.249% | 2.113% | 2.934% 4.0344 4.714% | 2.007%
R-BR 0.0602% | 1.201% | 2.036% | 2.883% 4.1626 5.013% | 2.088%
R-MR 0.0628% | 1.205% | 2.044% | 2.916% 4.4257 5.212% | 2.154%
Non-robust versions
CR 0.0488% | 1.214% | 2.046% | 2.878% 3.1757 4.017% | 1.695%
SR 0.0487% | 1.159% | 1.955% | 2.671% 3.1673 4.199% | 1.822%
BR 0.0508% | 1.169% | 1.973% | 2.666% 3.3309 4.346% | 1.905%
MR 0.0515% | 1.188 % | 2.007% | 2.731 % | 3.3817 4.327% | 1.883%

meast

Table 3: Statistics of the ex-ante returns obtained by optimizing drawdown-based performance

ures with and without robust formulations: three months recalibration.

PM Mean SD VaR5% | CVaR5% | Final W | Sharpe | STARR
S&P 500 | 0.0448% | 1.093% | 1.843% | 2.739% 2.8916 4.098% | 1.636%
Sharpe 0.0367% | 1.100% | 1.847% | 2.745% 2.3872 3.338% | 1.338%
EWP 0.0402% | 1.109% | 1.864% | 2.766% 2.5881 3.621% | 1.451%
Robust portfolios
R-CR 0.0579% | 1.208% | 2.045% | 2.941% 3.9384 4.791% | 1.968%
R-SR 0.0601% | 1.241% | 2.102% | 2.961% 4.1549 4.844% | 2.030%
R-BR 0.0685% | 1.156% | 1.971% | 2.676% 5.0677 5.924% | 2.560%
R-MR 0.669% | 1.218% | 2.070% | 2.914% 4.8737 5.491% | 2.295%
Non-robust versions
CR 0.0539% | 1.259% | 2.125% | 3.081% 3.5801 4.276% | 1.748%
SR 0.0532% | 1.115% | 1.888% | 2.650% 3.525 4.768% | 2.007%
BR 0.0625% | 1.152% | 1.957% | 2.745% 4.3902 5.422% | 2.275%
MR 0.0505% | 1.130 % | 1.909% | 2.660 % | 3.3053 4.467% | 1.897%

From Tables 2—-3, we can observe that robust strategies perform much better than their
respective versions. In particular, robust strategies present the highest mean return, fi-
nal wealth, SR, and STARR ratios compared to their respective non-robust strategies, as
well as comparable risks (SD, VaR5%, and CVaR5%); thus, robust formulations improve
their relatively good out-of-sample performance. These results confirm the superiority of
robust portfolio optimization as stressed by several studies (see, e.g., Goldfarb & Iyengar,
2003; DeMiguel & Nogales, 2009). Moreover, the S&P 500, Sharpe, and EWP benchmarks
present comparable results to non-robust strategies but lower risk-adjusted returns and final



wealth than those based on robust strategies. The empirical investigation also highlights
the sensitivity of portfolio strategies to recalibration times, which remains an open question
in the financial economics literature. For further confirmation and stress obtained results,
Figures 1-2 depict the sample paths of the ex-ante wealth obtained by optimizing two per-
formance measures (MR and BR) that respectively recalibrate the portfolio on a monthly
basis and every three months.

MR

4.5 R-MR
S&P 500

0.5
01-Dec-2011 11-Dec-2014 21-Dec-2017 31-Dec-2020

Fig. 1 Ex-ante wealth obtained by maximizing the MR with and without robust
approach, compared with the S&P 500 benchmark.
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Fig. 2 Ex-ante wealth obtained by optimizing the BR with and robust approach,
compared with the S&P 500 benchmark.

According to Figures 1-2, the portfolio strategies based on robust drawdown-based per-
formance measures outperform their respective non-robust versions. Thus, these results con-
firm and strongly support the assertion that portfolio managers and investors must account
for the negative effects of estimation errors through robust methodologies. Furthermore,
all examined portfolios show better results than the S&P 500 benchmark. These obser-
vations confirm the importance of the proposed robust optimization for drawdown-based
performance measures. Performing various types of sensitivity analyses always supports the
usefulness of the proposed methodologies

4. Conclusions

The problem of portfolio choice under uncertainty involves unknown parameters that have
to be estimated using available economic data. Therefore, in this paper, we develop a robust
portfolio optimization for drawdown-based performance measures. In particular, we robus-
tify the drawdown-based performance measures to address the estimation errors directly and
explicitly in the portfolio optimization problem itself. To this end, two specific constraints
are designed to assume that the true mean lies with a certain confidence and to lessen es-
timation errors through robust estimation techniques. Empirical analyses on the S&P 500
components confirm that the robust portfolio selection models of drawdown-based perfor-
mance measures yield the best out-of-sample performance and outperform their respective
non-robust versions. Thus, this study supports the importance of robust optimization tech-
niques for portfolio selection problems. A promising direction for future research would be to



apply robust and non-parametric statistical methods to portfolio selection problems. In this
respect, it has been shown that errors with a heavy-tailed distribution can significantly affect
the approximated returns. For this reason, following Ortobelli et al. (2019), we consider a
non-parametric regression analysis that relaxes the assumptions of linearity in the financial
data set used to estimate the returns and is suitable even for non-Gaussian distributions.
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