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Abstract
We model the behavior of a decision maker (DM) who is psychologically constrained from choosing according to her
tastes by her normative preferences that capture her values and ideals. In any menu, choosing the worst alternative
according to her normative preferences may produce overwhelming feelings of guilt. Hence, to mitigate such feelings,
she eliminates this alternative and chooses the best amongst the remaining ones according to her tastes. We formally
define this sequential choice procedure and behaviorally characterize it. We show that the parameters of the model—
the DM's tastes and norms—can be (almost) uniquely identified from choices. We also highlight the model's
implications for "non-standard" choices.
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1. Introduction

Consider a decision maker (DM) with tastes captured by a strict preference ranking over
a given set of alternatives as is standard. But, additionally, suppose this DM also has
normative preferences that capture her values and ideals in terms of how she thinks she
should behave. In any menu, the DM wants to choose the best alternative according to
her tastes like a standard agent. But, unlike such an agent, suppose our DM experiences
an overwhelming sense of guilt if the chosen alternative happens to be the worst one in
the menu according to her normative preferences. Such guilt brought about by acting in
complete dissonance with her values may be psychologically quite costly. Hence, it is not
unreasonable to imagine that to avoid experiencing such feelings of guilt, she may simply
eliminate this alternative from her consideration and choose the best one amongst the
remaining alternatives according to her tastes.

Such a way of choosing may be behaviorally quite plausible in many choice settings and
capture empirically relevant departures from the rational choice model. For instance,
consider a DM on a diet whose normative goal is to minimize her calorie intake. Suppose
she has to choose between foregoing dessert or having a 200 calorie apple pie. In this
case, although according to her tastes, she may want to have the dessert, doing so may
make her feel guilty given that her normative preference is to minimize her calorie intake.
Therefore, she may forgo having the dessert. Now, suppose the menu is expanded and
along with the apple pie a 1000 calorie chocolate chip cookie sundae is also available.
In this case, eliminating the decadent sundae from her consideration may be enough to
assuage her feelings of guilt and she may end up having the apple pie. This pattern
of choices illustrates the compromise effect, which is a leading example of menu effects.
Such menu effects, of course, violate the rational choice benchmark, characterized by the
weak axiom of revealed preferences (WARP).

In this note, we formally define such a sequential choice procedure and provide a be-
havioral characterization for it. We show that amongst its desirable properties is the
fact that the parameters of the model—the DM’s tastes and norms—can be (almost)
uniquely identified from behavior. In the next section, we set up the primitives and for-
mally define our choice procedure. In Section 3, we behaviorally characterize the model
and establish the extent of its identification. Finally, in Section 4, we conclude with a few
comments situating our model in the literature, especially in terms of its implications for
non-standard choices. Proofs of results appear in the Appendix.

2. Primitives

Let X be a finite set of alternatives with typical elements denoted by x, y, z etc. X
denotes the set of non-empty, non-singleton subsets of X with typical elements denoted
by S, T etc., which we refer to as menus. A choice function c : X → X is a mapping
that, for any menu S ∈ X , specifies the alternative c(S) ∈ S that the DM chooses in that
menu. In our model, the DM makes these choices following a sequential procedure that
is based on a pair of strict preference rankings (By a strict preference ranking, we mean



a binary relation that is total, asymmetric and transitive). The ranking ≻ ⊆ X × X
captures her tastes; and the ranking ≻∗ ⊆ X × X captures her normative preferences.
Faced with any menu S ∈ X , first, she eliminates the worst alternative in S according
to ≻∗. Then, amongst the remaining alternatives, she chooses the best one according to
≻. Since ≻∗ and ≻ are strict preference rankings, the ≻∗-worst and ≻-best elements of
any ∅ 6= S ⊆ X are unique and the procedure results in a decisive choice in any menu.
In the way of notation, denote the ≻∗-worst and ≻-best elements of any ∅ 6= S ⊆ X by
min(S;≻∗) and max(S;≻), respectively. Before defining the procedure formally, note
that in the subsequent analysis we abuse notation by often suppressing set delimiters;
e.g., we write S \min(S;≻∗) instead of S \ {min(S;≻∗)}, c(xy) instead of c({x, y}), etc.

Definition 2.1. A choice function c : X → X is a choice after eliminating the normative
worst (CENT) if there exists an ordered pair of strict preference rankings (≻∗,≻) on X
such that for any menu S ∈ X ,

c(S) = max(S \min(S;≻∗);≻)

3. Behavioral foundation and identification

We now draw on three well-understood behavioral conditions to characterize a CENT.
The first, referred to as never chosen (NC), says that if an alternative in a menu is not
chosen in pairwise choice comparisons with any other alternative from that menu, then
it cannot be the choice in that menu.

Axiom (NC). For all S ∈ X and x ∈ S:

[c(xy) 6= x, ∀y ∈ S \ x] =⇒ c(S) 6= x

The second, referred to as no binary cycles (NBC), requires that there are no pairwise
choice cycles.

Axiom (NBC). For all x1, . . . , xn+1 ∈ X:

[c(xixi+1) = xi, i = 1, . . . , n] =⇒ c(x1xn+1) = x1

The standard WARP condition fails to hold in our set-up as seen with the compromise
effect example in the Introduction, which our model can accommodate. Recall that
WARP imposes the following consistency on a DM’s choices: for all S, T ∈ X and
x, y ∈ S ∩ T , x 6= y, if c(S) = x then c(T ) 6= y. That is, if x is chosen in the presence of
y, then y is not chosen in the presence of x. If choices satisfy WARP, then they can be
rationalized by a single strict preference ranking that can be uniquely elicited from these
choices. In the example from the Introduction, denoting the alternatives no dessert, apple
pie and chocolate chip cookie sundae by x, y and z, respectively, we see that c(xy) = x
and c(xyz) = y. That is, introducing z to the menu {x, y} changes the choice from x to
y. In the context of our model, with the DM’s norms and tastes specified by, say, the
preference rankings x ≻∗ y ≻∗ z and z ≻ y ≻ x, respectively, this is so because in the
menu {x, y}, y is the worst alternative according to ≻∗ and gets eliminated, resulting in
the choice of x. On the other hand, in {x, y, z}, z being the ≻∗-worst alternative gets



eliminated, and of the two remaining alternatives x and y, y ≻ x; hence y is chosen. From
a revealed elicitation perspective, this means that when an outside observer sees x being
chosen in the presence of y, this does not necessarily imply that x ≻ y. Instead, it may be
the case that y is the worst alternative in the menu according to ≻∗ and gets eliminated,
with possibly y ≻ x. We now propose an axiom that weakens WARP to acknowledge
this distinction.

Axiom (WARP-CENT). For all S, T ∈ X and x, y ∈ S ∩ T , x 6= y:

[x = c(S), y = c(S ′), S ′ ⊆ S, x = c(T ′), T ′ ⊆ T ] =⇒ c(T ) 6= y.

Observe that if y is chosen in some subset S ′ of S, then it reveals that y is not the
normatively worst alternative in S ′ so as to get eliminated and, accordingly, neither is it
in S. Since y survives elimination in S and x = c(S), it can be inferred that x is preferred
to y according to the DM’s tastes. Likewise, x = c(T ′), T ′ ⊆ T , reveals that x is not
eliminated in T . Hence, in the presence of x, choice from T is not y.

Theorem 3.1. A choice function is a CENT iff it satisfies NC, NBC and WARP-CENT.

Proof: Please refer to Section A.1.

As it turns out, a CENT can also be characterized in terms of the acyclicity of a binary
relation defined from primitive choices. To establish this, first, note that we call a menu
T to be a normatively no worse expansion of menu S if S ⊆ T and z ∈ T \ S ⇒ ∃ T ′

⊆ T s.t. c(T ′) = z. In other words, when the menu S is expanded to the menu T , since
each of the “new” alternatives in T \ S is chosen in some sub-menu of T , it reveals that
none of them is normatively so unacceptable as to induce prohibitive guilt in T . Hence,
no normatively inferior alternatives are introduced through this expansion and we can
infer that the worst alternative in S according to the DM’s norms continues to be so in
T .1 With this background, consider the following binary relation on X .

• ∀x, y ∈ X , x 6= y, xPcy if ∃ S, T ∈ X , with x, y ∈ S, x = c(S), and T a normatively
no worse expansion of S s.t. y = c(T̂ ) for some T̂ ⊆ T .

To understand the definition of Pc, first, note that since y = c(T̂ ), T̂ ⊆ T , we can
infer that y is not the normatively worst alternative in T̂ so as to get eliminated and,
accordingly, neither is it in T . We can further infer that, since T is a normatively no worse
expansion of S, y is not the normatively worst alternative in S as well and, hence, receives
consideration in this menu. Given that x = c(S), therefore, xPcy has the interpretation
of a revealed preference.

Theorem 3.2. A choice function c is a CENT if and only if Pc is acyclic.

Proof: Please refer to Section A.2.

Finally, we address the issue of how uniquely the parameters underlying a CENT can
be identified. In the way of notation, note that if B is a binary relation on X , then we
denote the restriction of B to S ⊆ X by BS.

1It is worth pointing out that, trivially, any menu S is a normatively no worse expansion of itself.



Proposition 3.1. If (≻∗,≻) and (≻̃
∗
, ≻̃) are both CENT representations of a choice

function, then ≻∗= ≻̃∗
and ≻X\min(X;≻∗) = ≻̃X\min(X;≻̃∗).

Proof: Please refer to Section A.3.

In other words, the DM’s normative preferences are uniquely identified; and her tastes
are identified almost uniquely with only the position of the worst alternative in X under
the normative preferences being indeterminate.

4. Comments on the literature

We now compare our model with few prominent behavioral choice models in the literature,
especially in the context of its implications for non-standard choices. When it comes
to observed violations of rational choice theory seen in experiments and field studies,
three prominent classes of violations have often been highlighted—those of no binary
cycles (NBC), never chosen (NC) and always chosen (AC).2 As we have seen, a CENT
satisfies NBC and NC. Of the three, the only type of violation it can accommodate is
that of AC. This observation immediately establishes that our model is distinct from
the influential Rational Shortlist Method (RSM) or, more generally, the sequentially
rationalizable model that Manzini and Mariotti (2007) introduce. An RSM satisfies AC
and NC but can accommodate violations of NBC. An RSM is characterized by two axioms:
weak WARP and expansion. Weak WARP is a key axiom in the behavioral choice theory
literature.3 Several important models in the literature are characterized by it, e.g., the
Rationalization model of Cherepanov et al. (2013), the Categorize then Choose model of
Manzini and Mariotti (2012) and the Overwhelming Choice model of Lleras et al. (2017).
In this context, it is worth noting that a CENT satisfies weak WARP (Refer to Section A.4
for a proof). Therefore, a CENT is a special case of these three aforementioned models.
In terms of accommodating non-standard choices, all three models can accommodate
violations of NC, AC and NBC. This last observation establishes that there exist choice
functions that satisfy weak WARP but are not a CENT. Another prominent model in the
literature involving choice from consideration sets is the Choice with Limited Attention
(CLA) model of Masatlioglu et al. (2012). This model is characterized by the WARP(LA)
axiom.4 A CENT satisfies WARP(LA) and, hence, is a special case of a CLA (Refer to
Section A.4 for a proof). Finally, we would like to point out that another model that
accommodates violations of AC but not those of NBC and NC is the Two-Stage Chooser
model of Bajraj and Ülkü (2015). It can be shown that neither of these models are special
cases of one another.

2A choice function c : X → X satisfies AC if for all S and x ∈ S, c(xy) = x, ∀y ∈ S \ {x} =⇒
c(S) = x. Manzini and Mariotti (2007) show that all violations of WARP can be categorized as either
violations of AC or violations of NBC (or both).

3A choice function c : X → X satisfies weak WARP if for all S, T ∈ X and x, y ∈ X , {x, y} ⊆ S ⊆ T ,
x = c(xy) = c(T ) =⇒ y 6= c(S).

4A choice function c : X → X satisfies WARP(LA) if for any S, there exists x∗ ∈ S such that, for
any T including x∗, if c(T ) ∈ S and c(T ) 6= c(T \ x∗), then c(T ) = x∗.



A Appendix

A.1 Proof of Theorem 3.1

Necessity: Let c : X → X be a CENT with (≻∗,≻) as the ordered pair of strict
preference rankings. We show below that c satisfies NC, NBC and WARP-CENT.

NC : Consider x ∈ S, s.t., x 6= c(xy), for all y ∈ S \ x. This implies that y ≻∗ x, for all
y ∈ S \ x and, accordingly, x = min(S;≻∗). Therefore, x 6= c(S).

NBC : Consider x1, . . . , xn+1 ∈ X with c(xixi+1) = xi, i = 1, . . . , n. This implies that
xi ≻∗ xi+1, for all i = 1, . . . , n. Since, ≻∗ is transitive, it follows that x1 ≻∗ xn+1.
Accordingly, c(x1xn+1) = x1.

WARP-CENT : Let x, y ∈ S ∩ T , x 6= y, be s.t. x = c(S), y = c(S ′), S ′ ⊆ S, and
x = c(T ′), T ′ ⊆ T . Since y = c(S ′), it follows that there exists z ∈ S ′ such that
y ≻∗ z and, accordingly, y 6= min(S;≻∗). Hence, x ≻ y. Similarly, since x = c(T ′),
a similar argument establishes that x 6= min(T ;≻∗) and, hence, x ∈ T \ min(T ;≻∗).
Now, if y ∈ T \min(T ;≻∗), since x ≻ y, we can conclude that y 6= c(T ). Of course, if
y /∈ T \min(T ;≻∗), the conclusion is obvious.

Sufficiency: Let c : X → X satisfy NC, NBC and WARP-CENT. We show below that
we can identify strict preference rankings ≻∗ and ≻ on X such that with respect to the
ordered pair (≻∗,≻), c is a CENT.

Define ≻∗⊆ X×X as follows: for any x, y ∈ X , x 6= y, x ≻∗ y if x = c(xy). We establish
that ≻∗ is a strict preference ranking, i.e., ≻∗ is:
Total: c(xy) 6= ∅, for all x, y ∈ X , x 6= y. Thus, either x ≻∗ y or y ≻∗ x.
Asymmetric: Suppose, towards a contradiction, x ≻∗ y and y ≻∗ x. Then by definition,
x = c(xy) and y = c(xy)!
Transitive: Let x ≻∗ y and y ≻∗ z. This implies x = c(xy) and y = c(yz). Since c satisfies
NBC, it follows that x = c(xz). Hence x ≻∗ z.

Define ≻ ⊆ X × X as follows: for any x, y ∈ X , x 6= y, x ≻ y if either (i) there exists
S ∈ X with x, y ∈ S such that x = c(S) and y = c(S ′), for some S ′ ∈ X , S ′ ⊆ S; or (ii)
y 6= c(S) for any S ∈ X . We establish that ≻ is a strict preference ranking, i.e., ≻ is:
Total: First note that, since X is a finite set and c satisfies NBC, there exists a unique
alternative, call it z, such that c(zz) 6= z for all z ∈ X \ z. Now take any x, y ∈ X , x 6= y.
First, consider the case x, y 6= z and the menu {x, y, z}. Since, x = c(xz) and y = c(yz),
by NC, we know that c(xyz) 6= z. If c(xyz) = x, then x ≻ y, otherwise y ≻ x. Next,
consider the case that one of x or y, wlog say y, is z. Accordingly, since c(yz) 6= y, for
any z ∈ X \ y, by NC it follows that there exists no S ∈ X such that c(S) = y. Hence,
x ≻ y. This establishes that ≻ is total.
Asymmetric: Suppose x ≻ y. Clearly, x 6= z since by NC there exists no S ∈ X such that
c(S) = z, and z is the only alternative for which this is true. On the other hand, if y = z,
then for the same reason, ¬[y ≻ x]. Now consider the case y 6= z. Then, x ≻ y implies
that there exists S ∈ X with x, y ∈ S such that x = c(S) and y = c(S ′), for some S ′ ∈ X ,



S ′ ⊆ S. WARP-CENT then implies that there does not exist T ∈ X with x, y ∈ T , such
that y = c(T ), x = c(T ′), for some T ′ ∈ X , T ′ ⊆ T . Hence, ¬[y ≻ x].
Transitive: Let x ≻ y and y ≻ z, for some x, y, z ∈ X . Clearly, by the argument made
above, x, y 6= z. Further, if z = z, then clearly x ≻ z and our desired conclusion is
immediate. So, assume z 6= z. Now, consider the menu {x, y, z, z}. We know that
a = c(az), for a = x, y, z. Therefore, by NC, z 6= c(xyzz). Further, since x = c(xz) and
y = c(yz), by WARP-CENT it follows that y, z 6= c(xyzz). Hence, x = c(xyzz) and it
follows that x ≻ z.

To show: (≻∗,≻) is a CENT representation of c.

Pick any menu S ∈ X and let x = c(S). Since ≻∗, as shown above, is a preference
ranking, there exists a unique ≻∗-worst alternative in S, denote it by min(S;≻∗). First,
consider the case when |S| = 2, i.e., S = {x, y} for some y 6= x. By the definition of
≻∗, it follows that x ≻∗ y; therefore, {x} = S \ min(S;≻∗) and the desired conclusion
follows. Next, consider the case |S| > 2. Since c satisfies NC, there exists z ∈ S, such
that, c(xz) = x. This implies x ≻∗ z. Thus, x ∈ S \ min(S;≻∗). Now consider any
y ∈ S \ min(S;≻∗), y 6= x; i.e, y ≻∗ z or, equivalently, y = c(yz), for some z ∈ S. In
other words, there exists S ′ ⊆ S such that c(S ′) = y. Hence, x ≻ y and we have,

c(S) = x = max(S \min(S;≻∗);≻)

A.2 Proof of Theorem 3.2

It is straightforward to establish that if c is a CENT, then Pc is acyclic. To establish the
converse, we show that Pc acyclic implies that c satisfies NBC, NC and WARP-CENT.

To show that c satisfies NBC, we prove the contrapositive, i.e., if c violates NBC then Pc is
not acyclic. The proof is by induction on the number of alternatives involved in the NBC
violation, denote this number by k. First, consider the case of k = 3. Let c(x1x2) = x1,
c(x2x3) = x2, c(x1x3) = x3 and wlog suppose c(x1x2x3) = x1. The menu {x1, x2, x3}
is a normatively no worse expansion (NNWE) of itself. Hence, c(x1x2x3) = x1 and
c(x1x3) = x3 implies that x1Pcx3. Now w.r.t. the menu {x1, x3}, note that {x1, x2, x3} is
a NNWE since c(x2x3) = x2. Further, c(x1x3) = x3 and c(x1x2x3) = x1 together imply
that x3Pcx1. Hence, Pc is not acyclic and the desired conclusion follows for k = 3. Now
suppose the result has been proven for k = n − 1. We wish to prove it for k = n. To
that end, suppose c(x1x2) = x1, c(x2x3) = x2, . . . , c(xn−1xn) = xn−1 and c(x1xn) = xn.
Now, either (a) c(x1x3) = x3 or (b) c(x1x3) = x1. If (a), then c(x1x2) = x1, c(x2x3) = x2,
c(x1x3) = x3 and the conclusion that Pc is not acyclic follows from the case of k = 3. If
(b), then c(x1x3) = x1, c(x3x4) = x3, . . . , c(xn−1xn) = xn−1 and c(x1xn) = xn. This is a
violation of NBC with n− 1 alternatives and the conclusion that Pc is not acyclic follows
from the case of k = n− 1.

To show that c satisfies NC, we again prove the contrapositive, i.e., if c violates NC
then Pc is not acyclic. So assume that for some menu S and x ∈ S, x 6= c(xy) for all
y ∈ S \ x and c(S) = x. Consider the menu {x, ŷ} with c(xŷ) = ŷ, for some ŷ ∈ S \ x.
It is straightforward to verify that S is a NNWE of {x, ŷ}, since c(xy) = y for any
y ∈ S \ {x, ŷ}. Since c(xŷ) = ŷ and c(S) = x, it follows that ŷPcx. On the other hand,



S is a NNWE of itself. Hence, c(S) = x and ŷ = c(xŷ) together imply that xPcŷ and
brings us to the conclusion that Pc is not acyclic.

Finally, suppose c violates WARP-CENT, i.e., ∃ S, T ∈ X and x, y ∈ S ∩ T , x 6= y s.t.,
x = c(S), y = c(S ′), for some S ′ ⊆ S, and y = c(T ), x = c(T ′), for some T ′ ⊆ T . Since, S
and T are NNWE-s of themselves, we have xPcy and yPcx, violating acyclicity of Pc.

A.3 Proof of Proposition 3.1

Let (≻∗,≻) and (≻̃∗
, ≻̃) be two CENT representations of a choice function c. Then, for

any x, y ∈ X , x 6= y,
x ≻∗ y ⇐⇒ x = c(xy) ⇐⇒ x ≻̃

∗
y

Further, for any x, y ∈ X , x 6= y, x, y 6= z := min(X ;≻∗) = min(X ; ≻̃∗
),

x ≻ y ⇐⇒ x = c(xyz) ⇐⇒ x ≻̃ y

A.4 Claims in Section 4

Proposition A1. A CENT satisfies weak WARP.

Proof. Let c be a CENT with (≻∗,≻) as the ordered pair of strict preference rankings.
Further, let {x, y} ⊆ S ⊆ T and x = c(xy) = c(T ). x = c(xy) implies x ≻∗ y. If
y = min(S;≻∗), then clearly y 6= c(S). Alternatively, if y 6= min(S;≻∗), then y 6=
min(T ;≻∗); and x = c(T ) implies x ≻ y. Further, since x ≻∗ y, x 6= min(S;≻∗). Hence,
y 6= c(S).

Proposition A2. A CENT satisfies WARP(LA).

Proof. To show this, we draw on Lemma 1 in Masatlioglu et al. (2012) that establishes
that a choice function c satisfies WARP(LA) iff the binary relation P̃ on X defined next
is acyclic: xP̃y if there exists S ∈ X s.t. x = c(S) 6= c(S \ y). Let c be a CENT with
(≻∗,≻) as the ordered pair of strict preference rankings and consider x1, . . . , xn ∈ X
s.t. xiP̃ xi+1, for i = 1, . . . n − 1. xiP̃ xi+1 implies that there exists Si s.t. xi = c(Si) 6=
c(Si \ xi+1). This implies that xi+1 = min(Si;≻

∗) and, accordingly, xi ≻
∗ xi+1, for all

i = 1, . . . , n − 1. Since ≻∗ is transitive, we have x1 ≻∗ xn. This means there does not
exist S s.t., xn = c(S) 6= c(S \ x1) for this would imply that xn ≻∗ x1. Thus, ¬[xnP̃ x1]
and, hence, P̃ is acyclic.
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