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Abstract

We propose using the multivariate logistic transform to re-parameterize the Autoregressive Conditionally
Heteroscedastic model such that the necessary stationarity constraints are automatically imposed, thereby allowing for
unconstrained optimization when computing quasi-maximum likelihood estimates. A few simulations and a standard R
data set of daily closing prices (Germany DAX) provide illustrations of the re-parameterization. We offer some
numerical comparisons to available R packages (fgarch and rugarch), and comment on the potential advantages of the
new technique.
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1 Introduction

The Autoregressive Conditionally Heteroscedastic (ARCH) process, and its generalization (GARCH),
are useful for modeling time series data that exhibit stochastic volatility (Bollerslev, 1986). The
basic conceit of the ARCH process is that its conditional variance, viewed as a stochastic process,
is expressible as a linear combination of past squares of the data. Imposing that the coefficients be
non-negative, and that their sum is less than one, is sufficient to guarantee positivity of the condi-
tional variance and strict stationarity of the process. A more general condition for strict stationarity,
involving the Lyapunov exponent, is discussed in Francq and Zakoian (2019), but the stricter sum-
mation condition of Bollerslev (1986) is necessary for the unconditional variance to be finite; thus,
any pseudo-likelihood method for fitting a finite-variance ARCH or GARCH model must in principle
enforce these positivity and summation conditions on the parameters.

State of the art software, such as the rugarch R package (Ghalanos, 2014), apparently approach
the problem using solvers that allow for box and inequality constraints. However, as pointed out in
Pinheiro and Bates (1996), nonlinear optimization with box constraints is a numerically inefficient
method for fitting a stochastic model. It is preferable to re-parameterize the stochastic process,
essentially by obtaining a bijection between the parameter manifold and some Euclidean space, and
then proceed via unconstrained numerical optimization with respect to the new parameters. As an
example, a variance o2 has the inequality constraint that o2 > 0; the new parameter ¢ € R defined
by the logarithm bijection ¢ = log(c?) is a commonly-used device.

A bijection (between the parameter manifold and Euclidean space) for ARCH and GARCH pro-
cesses based on the multivariate logistic transform (Aitchison and Shen, 1980) was explored in Exercise
11.17 of McElroy and Politis (2020), and is here developed and implemented. This article describes
the bijection in Section 2, makes some numerical comparisons (Section 3), and summarizes the impli-
cations (Section 4). R functions for simulation and fitting of ARCH and GARCH are available from
the author’s GitHub: https://github.com/tuckermcelroy/GARCH-param.

2 A Bijection for ARCH and GARCH

The ARCH process {X;} of order p is defined via
p
Xt = O¢ Zt7 Ut2 :a0+zant2—j’
j=1

where {Z;} are i.i.d. (0,1) random variables; letting F* __ be the information set of present and past
value of {X,}, we assume that Z; is independent of F'_! for each t. The parameters of a stationary
ARCH(p) process must satisfy ay > 0 and

p

a;€(0,1) 1<j<p, > a;€(0,1). (1)
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The positivity condition in (1) can be relaxed, allowing zero values for a; (for 0 < j < p), but

for purposes of re-parameterization we shall assume positivity of all the parameters. Let the space

described by (1) be denoted A,. We propose a bijection 2 from 4, to R?, which is described in the

case that p > 1 as follows. (Note that when p = 1, there is only the one constraint, and we set
a1

a; = (1+e ™) for z; € R.)



Proposition 1 Forp > 1, the mapping Q2 : A, — RP is a bijection, where
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Proof of Proposition 1. That the inverse of € is the stated Q! is easily checked. To see that both
maps are surjective, we proceed by the following argument. First, take a € A,, and set r = Z§:1 a;,
which will take values in (0,1). Let a; = a;/r, and note that >°* | a; = 1. Define z via

1 =—log(r~' —1), z;=—log(a;/aq) 2<j<p.

Clearly, as r ranges over (0, 1) we see that x; ranges over R, and we can obtain any value z € R? by
choice of a corresponding a € A,. Thus ) is surjective. Inverting this mapping, we obtain for any

given z € R?
-y

1 e
Y e AR S, ek
along with 7 = (14 e )", which is also in (0,1). It follows that each a; belongs to (0,1) and
Z§:1 a; = 1 holds. Setting a; = r «; for 1 < j < p, we verify that the resulting a € A,. This shows
that Q7! is surjective. O
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We can write the ARCH pseudo-likelihood as a function of z € RP, where ¢ = Q7 !(z) (and
ag = e*, for zo € R). This approach avoids two problems: (i) evaluating the pseudo-likelihood at
values a € A, would result in an evaluation difficulty (or meaningless parameters), and (ii) the failure
to explore the entire space A,,.

Remark 1 Zero Parameters If some parameters are known to equal zero, then we apply the
bijection to the remaining free parameters, noting that the summability condition is unchanged when
some parameters are fixed to be zero. In practice, one can fit both an unconstrained ARCH model and
a constrained model with some zero values, and then compare the models via information criteria — see
Tsay (2005) for further discussion. Potential zero restrictions can first be identified by determining the
asymptotic variances of QMLEs from the unconstrained model. Alternatively, if one wants to allow
for zero estimation, i.e., taking each a; € [0, 1), one could proceed by using the logistic transform on
the set (—e, 1) for some very small € > 0 (Nelson and Cao (1992) show that negative coefficients can
still produce a stationary solution).

Remark 2 The GARCH Extension The GARCH(p,q) process (with p > 0 assumed) generalizes
the ARCH(p), as GARCH(p,0) = ARCH(p), and the equation for the variance becomes
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In place of (1) we now have the constraints

p q
a; €(0,1) 1<j<p, be(01) 1<j<q Y aj+Y b€(01). (2)
j=1 j=1



Hence, the bijection €2 can also be used for the GARCH process, as the parameters a; and b; can be
treated alike — we extend the re-parameterization to RPT9,

Viewing the pseudo-likelihood as a function of the new parameters z, central limit theory can be
established under standard conditions in the literature (Tsay, 2005). Applying the delta method with
Q! provides the central limit theorem for the original parameters. More precisely, suppose that Z is
the QMLE for a true parameter Z, and correspondingly a = Q7(Z) and a = Q~*(Z). From a sample
of size T, suppose that /T (Z — Z) N N(0,V) as T — oo. Then with J the Jacobian matrix of
Q' (evaluated at Z), by the delta method we obtain v/T' (2 — @) LN (0, J V' J"). Direct calculation
yields
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In applications, V can be estimated as a numerical Hessian, a common by-product of finding the
QMLEs with numerical optimization routines such as BFGS (Golub and Van Loan, 2012).

3 Numerical Illustrations

To illustrate the utility of the new method, we demonstrate that the new parameterization offers
superior QMLEs to current methods. (Our code is not available in Repp, which would enable fair
speed comparisons with available GARCH software.) The author’s Github repo has a R Markdown
Notebook detailing simulation and fitting of Gaussian and Student t ARCH and GARCH models.

First we simulate ARCH processes with Gaussian innovations, and fit correctly specified models
using the stationary parameterization of this article, and compare to results from using the tseries
garch, fgarch, and rugarch packages. The new method provides a comparable, or somewhat better,
fit to these simulations. For illustration, with a particular simulation the value of the divergence (—2
times the log likelihood) for the Gaussian ARCH(10) evaluated at the true parameter is 7501.034,
and the minimal value of the divergence (at the QMLE) is 7490.944. Fitting with tseries garch yields
7494.234 at the QMLE, and for fgarch 7490.977 is obtained; rugarch gives 7490.987. The values for
fgarch and rugarch are close to our results, indicating that constrained optimization and stationary
parameterization can yield similar results when the true parameters are in the stationary region.

Examining a Student t ARCH with 4 degrees of freedom, the divergence is 10439.47 at the true
parameter, and is 10426.39 at the QMLE. The tseries garch is quite a bit higher at 10999.77, because
it does not have capability to fit non-Gaussian distributions. However, fgarch and rugarch can be
fitted with a scaled Student t distribution, and we obtain 10820.05 and 10866.61 respectively. Here
we notice that estimates of ag are too high, but the degrees of freedom and other parameters are
estimated well. In these comparisons, we allow fgarch and rugarch to estimate the mean as well,
whereas in our code the mean is assumed to be zero.

The results for GARCH processes are similar. For Gaussian innovations, our simulation has
divergence 2124.892 at the true parameter, and is 2124.695 at the QMLE. Results for the tseries garch
package are slightly better, at 2123.873; 2121.842 is obtained by fgarch and 2124.861 by rugarch. These
are in the same vicnity, and the discrepancies might be explicable through the fact that fgarch and
rugarch estimate the mean. In any case, the new parameterization is quite accurate in its estimation



of the GARCH parameters; in the other three packages the ag value is too low: 0.0529 for tseries
garch, 0.0307 for fgarch, and 0.0003 for rugarch, whereas the true value is .1421, and our estimate is
.1660.

In the Student t case (with 5 degrees of freedom) the divergence is 3019.559 at the true parameter
and 3014.981 at the QMLE. The divergence for tseries garch is 3178.027 at the QMLE, which is
substantially worse because of the non-Gaussian data. fgarch and rugarch perform similarly, with
divergences of 3169.724 and 3198.343 respectively; although both are estimating the degrees of freedom
well, some of the GARCH parameter estimates are somewhat far from the true values.

For an empirical illustration, we examine the EuStockMarkets data set of base R!, consisting
of daily closing prices of major European stock indices: Germany DAX (Ibis), Switzerland SMI,
France CAC, and UK FTSE. The time period is 1991-1998, with weekends and holidays omitted.
We fit a GARCH(1,1) using both the Gaussian tseries garch package, which yields a divergence of
—11917.38 at the QMLE, with parameters estimated to be ag = 0.000005, a7 = 0.068329, and
f1 = 0.889067. Our own fit (using the above estimates as initial values in the optimization routine)
has a divergence of —12110.84 at the QMLE, with parameters estimated to be ap = 0.000001, a; =
0.050284, 5; = 0.908902, and 7 = 6.200205, where v is the degrees of freedom parameter for the
Student t. For comparison, the results from fgarch are: divergence —12019.65 at the QMLE, with
parameter estimates o = 0.000002, a; = 0.079022, 5; = 0.903585, and 7 = 6.038375. For rugarch
we have —12018.86 for the divergence, with parameter estimates oy = 0.000002, a; = 0.079047,
B1 = 0.903785, and 7 = 6.016333. Again, our own encoding does not do a mean estimation, whereas
the other packages provide this (omitted). We note that whereas there is good agreement about the
degrees of freedom, ultimately the new parameterization provides a lower divergence.

4 Conclusion

This article presents a re-parameterization of the GARCH process using the multivariate logistic
transform, such that the stationarity constraints of the finite-variance model are automatically en-
forced. We believe this is advantageous in numerical computation of QMLESs, because unconstrained
optimization can then be utilized — and this is generally preferable to using constrained optimization.
Essentially, the implicit constraints on the parameters are “built in” through the re-parameterization.
We remark that there are contexts where a larger parameter set might be entertained; the Lya-
punov exponent condition of Nelson (1990) shows the summation constraint in (2) — in the case of
p = q = 1 — can be violated, while still ensuring strict stationarity, but at the cost of the variance
no longer being finite. Interestingly, results by Jensen and Rahbek (2004a, 2004b) and Francq and
Zakoian (2012) show that larger compact super-sets of the true parameter spaces can be utilized in
nonlinear optimization, in the sense that convergence of parameter estimates can still be guaranteed
— albeit, the limiting value of the parameter estimates may correspond to an infinite variance process.
However, if finite-variance models are desired, then the parameter constraints employed in this
article are appropriate. Our examples demonstrate the possible benefits: the new parameterization
can yield improved fitting results, especially when working with non-Gaussian innovations. What has
been proposed, of course, is not a competitor to established packages such as fgarch and rugarch, but
rather this article’s parameterization could be considered for incorporation into such software.

"https://www.rdocumentation.org/packages/datasets/versions/3.6.2/topics/EuStockMarkets
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