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Abstract
Using the stochastic meta-frontier approach, this study compares the technical efficiency (TE) and technology gap

ratio (TGR) of different climate sub-regions in Bangladesh with heterogeneous technology adoption among rice

farmers using nationally representative cross-sectional data from 13,113 rice plots across all climatic sub-zones. This

particular method enabled the calculation of comparable TE and TGR for rice farms operating under different

technologies. Empirical results shows that the mean TE ranged from 68% to 78% across the climatic zones.

Accordingly, the farmers in the northwestern zone were the most technically efficient (78%) and had the highest mean

TGR (83%), implying that these farmers adopted the most advanced technologies. Contrastingly, the farmers in the

southeastern zone had the lowest adoption of advanced technology. Moreover, this study found that household head

age, education, land ownership, and agriculture as major income are the major drivers of TE. Increasing investment in

research and development, strong extension services including farmer training need to diffuse climate zone-specific

technologies, crop management practices, and efficient use of resources at the farm level. However, the diversity of

characteristics of region explains the use of various types of production technologies, resulting in a technology gap that

slows the economic convergence of these regions.
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1. Introduction 

Rice is the primary staple food in Bangladesh. In a global context, Bangladesh is the most 
densely populated country, and its agriculture sector is the pillar of the food and livelihood 
security of its ever-growing population. The contribution of this sector is approximately 
14.23% of the gross domestic product (GDP) and employs approximately 40.60% of the total 
labor force in Bangladesh (BBS, 2019). However, the population of Bangladesh continues to 
grow by two million every year; thus, the additional population will require additional food; 
hence, the rice yield must be increased by adopting advanced technologies and reducing the 
technological gap across the climatic sub-zones (Bangladesh Rice Knowledge Bank). 
Bangladesh's overall rice production and technical efficiency (TE) are affected by considerable 
regional differences (Bäckman, et al. 2011) such as environmental conditions, farming 
practices, and techniques, availability of irrigation, farmers' economic conditions, etc. The 
country has seven climatic sub-regions, each having distinct economic and environmental 
conditions and resource endowments (Sarker et al. 2019). For instance, there are differences 
within and between zones in soil quality, water availability, temperature, rainfall, water 
salinity, humidity, farmers’ socioeconomic resource base, and the composition of inputs. 
Consequently, not all farmers can equally access globally available technologies. Farms in 
various regions select from various sets of probable input-output combinations for their specific 
production opportunities and situations (Alem et al. 2019). Consequently, comparing farms' 
performance in various climate zones using TE scores calculated from sole estimates across all 
climate zones may produce confusing results as benchmarks for distinct farms and as basis for 
policy interventions (Kumbhakar et al. 2015). Given these backdrops, farmers across the 
climate zones might be incapable to achieve high productivity levels because of the physical 
constraints imputed by their production environments and different farmers’ economic 
capabilities to achieve higher productivity. This study intends to investigate the significance of 
regional technical efficiency and technology gap differences of rice farms across the subregions 
of Bangladesh. Specifically study will be addressing the determining frontiers and the 
metafrontier specific to each region and assessing the level of technological gap among the 
regions. This article will help test the technological gap catch-up hypothesis among the sub-
regions of Bangladesh with a low level of technology and the ones with a high one. 
 

Moreover, different research institutes in Bangladesh have developed region-and 
season-specific high-yielding rice varieties that make it interesting to study potential regional 
TE and technology gap ratio (TGR) differences. For example, the Bangladesh Integrated 
Household Survey 2015 (BIHS2015) indicates that the rice yield in the western zone is 67% 
higher than in the southeastern zone; notably, farmers in the western zone use more than double 
the fertilizer compared to the southeastern zone. Understanding the regional level rice 
production performance could assist policymakers to introduce suitable agricultural policies 
and systems for sustainable development. Many studies have examined the TE and technology 
gap in different countries using the stochastic meta-frontier approach. This method was first 
introduced by Hayami (1969) and Hayami and Ruttan (1971) to assess efficiency, based on the 
hypothesis that farms in different agro-ecological zones have access to the same technology 
(O’Donnell, Rao, and Battese, 2008). However, stochastic meta-frontier frequently involves 
regional or group studies to analyze the TE and TGR in different aspects. For example, Mariano 
et al. (2011), Alem et al. (2019), and Gero (2020) examined the regional differences in TE and 
TGR; Uddin et al. (2014), Anang et al. (2017), and Bravo-Ureta et al. (2020) examined the 
farm's performance under different production systems by using stochastic meta-frontier 
analysis. In the case of Bangladesh, several studies estimated the TE (e.g., Hasnain et al. 2015; 
Jalilov et al. 2019; Anwar et al. 2021) of rice farms, but the available literature did not compare 



 

 

the TE and technology gap among the climatic subregions in Bangladesh. So, this study 
focused on the TE and TGR differences among the subregions by applying a stochastic meta-
frontier approach using the latest rural household survey data. Accordingly, this approach 
provided new evidence on the TE and technology gaps across the seven climate subregions in 
Bangladesh.  

 
 

2. Analytical framework 

2.1 Study area coverage 

Rice production depends on environmental conditions such as rainfall, temperature, and water 
sources, which can differ among climate zones, production seasons, etc. We decomposed total 
factor productivity (TFP) into the TE and TGR for farmers in seven climatic zones that might 
use various production technologies according to climatic conditions. The climatic conditions 
were geographically classified into seven climatic sub-zones in Bangladesh [Fig. 1; Sarker et 

al. (2019)]. The major distinguishing features of the seven climatic subregions are listed in 
Table 1.  
 

 
              
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Climate zones of Bangladesh. Source: Sarker et al. (2019) 

 

 



 

 

Table 1. Major characteristics of the climatic sub-regions  

Name of climate zone  Major characteristics 

Southeastern  Hilly area (height over 300 m); small range of temperature; heavy 
rainfall (usually over 2,540 mm); and high cyclone risk.  

Northeastern  Mild summer temperature; average humidity (relatively higher 
than the southeastern zone); fog in winter; cloudiest part of 
Bangladesh; and moderate cyclone and cold wave risk.  

Northern part of the 
northern region 

Heavy rainfall (2,000 to 3,000 mm); hot summer temperatures; and 
cold in winter, high cold wave risk.  

Northwestern Moderate rainfall and hot summer temperatures.  

Western zone Driest and hottest temperature in Bangladesh; low rainfall and 
summer humidity of less than 50%. 

Southwestern Fewer extremes with hot temperature and heavy rainfall; and 
moderate water salinity. 

South-central zone Mild summers and abundant rainfall. 

  

 

2.2 Empirical model 

The farms operating under different climatic zones, the TE is not comparable under the same 
production frontier, as production units make choices among various combinations of input-
output (Melo-Becerra and Orozco-Gallo 2017). Battese and Rao (2002) introduced a meta-
frontier, followed by Alem et al. (2019) and Mariano et al. (2011) to estimate comparable 
group-wise TE under different technologies. Recently, Huang et al. (2014) introduced a new 
two-step technique using a stochastic frontier analysis (SFA) to estimate the specific group 
frontier estimation in the first step and the meta-frontier method in the second step. This study 
followed the two-step procedure by Huang et al. (2014), Jiang and Sharp (2015), and Melo-
Becerra and Orozco-Gallo (2017) to estimate the TE and technological gap among the climatic 
zones of rice farms in Bangladesh, where TE is obtained from estimating a production frontier 
from each group and the meta-frontier using the Battese and Coelli (1995) approach. The 
general stochastic production frontier model is as follows:  ௜ܻ௞ =  ݂௞(ܺ௜௞, ݆ ,௞)݁௏��−௎�� whereߚ = ͳ, ʹ, ͵, Ͷ … . ;ܬ   ݅ = ͳ, ʹ, ͵,Ͷ, … ௝ܰ      (1) 

where ௜ܻ௞ denotes the output of rice, ܺ௜௞ represents the vector of inputs for the ݅௧ℎ rice farm in 

the group of ݇௧ℎ, ߚ௞ denote a vector of ݇௧ℎ group’s unknown parameter to be estimated. The 

term ௜ܸ௞ is the stochastic error term that is an independently and identically distributed (݅݅݀ሻ 

random variable as ௜ܸ௞~ܰሺͲ, �௩௞ଶ ሻ that captures the stochastic noise. The term ௜ܷ௞ is a one-

sided error representing the technical inefficiency of farm ݅ and group ݇ and is assumed to be ݅݅݀ as ௜ܷ௞~ܰ+(Ͳ, �௨௞ଶ (ܼ௜௞) ), where ܼ௜௞ represents the inefficiency variable. Thus, the 

inefficiency obtained from each production group model is associated with the inefficiency 

variables, ܼ௜௞ specific to each farm within the group, as defined:  ܶܧ௜௞ = ௒��௙�(௑��,��)௘ೇ�� = ௙�ቀ௑��,��ቁ௘ሺ−ೆ��ሻ௙�(௑��,��) =  ݁−௎��                           (2) 

where ܶܧ௜௞ indicates TE, which measures the each farm ݅ performance relative to the specific 

group frontier and the meta-frontier production function is defined as ݂�(ܺ௜௞ ,  that envelops (ߚ

all the k groups’ frontiers ݂௞(ܺ௜௞,  ௞) and is expressed as SFA following Huang et al. (2014)ߚ

in the second step:  ݂̂௞(ܺ௜௞, (௞ߚ = ݂�(ܺ௜௞, (ߚ + ௜ܸ� −  ௜ܷ�                                                 (3) 



 

 

where ݂̂௞(ܺ௜௞ ,  ,௞) denotes the prediction from the first step in (1) of specific group frontiersߚ

which explains that the frontier prediction of individual groups is pooled together into one 

vector of the whole sample. The term ௜ܸ� denotes the error term and assumed to be ݅݅݀ as ௜ܸ�~ܰሺͲ, �௏�ଶ ሻ and the one-sided error term ௜ܷ� that represents technical inefficiency as ௜ܷ�~ܰ+ሺͲ, �௨�ଶ ሺܼ௜�ሻ ሻ, where ܼ௜� represents the specific determinant for the technology-gap 

components, and β is the vector of the unknown parameter to be calculated for the meta-

frontier. The term ௜ܷ� ൒ Ͳ and therefore ݂�ሺ∙ሻ ൒ ݂௞ሺ∙ሻ and the relationship of the  ݇௧ℎ production frontier to the meta-frontier is defined as the TGR as follows: ܶ��௜௞ =  ௙�ቀ௑��,��ቁ௙�(௑��,�) =  ݁−௎�� ൑ ͳ                                (4) 

According to Huang et al. (2014) and Alem et al. (2019), at a given level of inputs ܺ௜௞, 

the observed output ௜ܻ௞ of the ݅௧ℎ farm relative to the meta-frontier (
௒��௙�(௑��,�)ሻ consists of three 

components: the technological gap ratio is defined as ܶ��௜௞ =  ௙�ቀ௑��,��ቁ௙�(௑��,�) , where the TE is 

represented as ܶܧ௜௞ =  ௙�ቀ௑��,��ቁ௘ቀ−ೆ��ቁ௙�(௑��,��) =  ݁−௎�� and the random noise component represents ݁௏�� =  ௒��௙�(௑��,�)௘ቀ−ೆ��ቁ. The TE of each unit of production with respect to the meta-frontier, the 

meta-frontier technical efficiency (MTE) is expressed as  ܧܶܯ௜௞ =  ௒��௙�(௑��,�)௘ቀೇ��ቁ =  ܶ��௜௞ ×  ௜௞                            (5)ܧܶ

The error estimation of the group-specific frontiers proposed by Huang et al. (2014) that is, ݂̂௞(ܺ௜௞, ݇ ௞), for allߚ = ͳ, ʹ,͵, … . ,the groups from the first step are expressed as:  ݈�݂̂௞(ܺ௜௞ ,ܭ (௞ߚ − ݈�݂௞(ܺ௜௞, (௞ߚ =  ݁௜௞ − ݁̂௜௞                       (6) 

Defining the estimation error as ௜ܸ� = ݁௜௞ − ݁̂௜௞, the meta-frontier relation can be written as:  ݈�݂̂௞(ܺ௜௞, (௞ߚ = ݈�݂�(ܺ௜௞, (௞ߚ − ܷ௞௜� + ௞ܸ௜� ,   ∀௜, ݇ = ͳ, ʹ,͵, … .  (7)    ܭ

This regression resembles conventional stochastic frontier regression and is therefore called 
the stochastic meta-frontier (SMF) regression, in which the element of the technological gap ܷ௞௜� ൒ Ͳ is assumed to be a truncated half-normal distribution and independent of ௞ܸ௜�. Thus, a 
two-step procedure to estimate the meta-frontier can be summarized in the estimation of two 
stochastic frontier approach regressions:  ݈� ௜ܻ௞ =  ݂௞(ܺ௜௞, (௞ߚ + ௜ܸ௞ − ௜ܷ௞,    ݅ = ͳ, ʹ, ͵, … … … , ௞ܰ                  (8) ݈�݂̂௞(ܺ௜௞, (௞ߚ =  ݂�(ܺ௜௞ , (ߚ + ௜ܸ� − ௜ܷ� ݇ = ͳ, ʹ, ͵, … … … ,  (9)         ܭ

where ݂̂௞(ܺ௜௞ ,  ௞) is the calculate of the group-specific frontier from equation (8), andߚ

regression (8) is estimated ܭ times. The estimates of output from all ܭ regions are then 
combined to estimate in (9). To confirm that the meta-frontier is equal to or greater than the 

group-specific frontiers ݂௞(ܺ௜௞ , (௞ߚ ൑ ݂�(ܺ௜௞ ,  ௞) , the calculated TGR must be smaller thanߚ 

or equal to unity: ܶ��̂௜௞ = ܧ̂ ቀ݁−௎���|ߝ௞̂௜�ቁ ൑ ͳ                             (10) 

where ߝ௞̂௜� = ݈�݂̂௞(ܺ௜௞, (௞ߚ −  ݈�݂̂�(ܺ௜௞,  are the calculated composite residuals of (9). The (ߚ

technical efficiency of the ith farm to the meta-frontier is equal to ܧ̂ܶܯ௜௞ =  ܶ��̂௜௞ ×  ௜௞ܧ̂ܶ
Following similar studies in Bangladesh (e.g., Gautam and Ahmed 2019), this study 

adopts a parametric approach and estimates SPFs by specifying the translog stochastic frontier 
model for the production system k frontier (8) is as follows: 



 

 

݈ n ௞ܻ௜ ݈� = ଴௞ߚ + ∑ �௝௞݈ߚ ௝ܺ௜௞ହ௝=ଵ + Ͳ.ͷ ∑ ∑ ௝௜௞ߚ  (݈� ௝ܺ௜௞)(݈�ܺ�௜௞ )ହ�=ଵହ௝=ଵ + ௜௞ܦߛ + ௜௞ܧ� + ௜ܸ௞ −௜ܷ௞                                                                                             (11) 

where the technical inefficiency model as: ௜ܷ = ଴ߜ  + ∑ ௝௞ܼ௜௝�௝=ଵߜ              (12) 

where variables ௜ܻ, ܺଵ௜ , ܺଶ௜, ܺଷ௜, ܺସ௜ and ܺହ௜ denote rice output (kilogram), land (decimal), 
labor (hours), fertilizer cost (taka), other input costs (taka), and farm capital1 (taka), 
respectively. Variable ܦ௜ includes dummy variables for rice production season (Aman and 
Boro), and rice varieties such as high-yielding variety (HYV) and hybrid variety. Variable ܧ௜ 
includes the environmental variables such as average monthly rainfall and temperature, 
respectively, while β, γ, and � are unknown parameters to be estimated. In the inefficiency 
model, the variable ܼ௜௝ includes the age of the household head (decision maker), education, 

family size, land ownership, and whether agriculture is the main source of income. The term ߜ 
is the unknown parameter to be estimated and variables ݒ௜ and ݑ௜ are assumed uncorrelated. 
To estimate unknown parameters with the stochastic production frontier and the inefficiency 
effect function, the maximum likelihood method is used to simultaneously.  
 

 

3. Data and variable comparison among the climate zones 

The empirical analysis utilized a dataset from the Bangladesh Integrated Household Survey in 
2015 (BIHS15), which provides plot-level information on rural rice farms in Bangladesh under 
the direction of researchers from the International Food Policy Research Institute (IFPRI). This 
dataset is statistically and nationally representative of rural households in Bangladesh. The total 
sample size was 6,436 households in 325 primary sampling units (PSUs [i.e., villages]) from 
seven administrative divisions of Bangladesh, followed by two stages of stratified sampling 
using the sampling frame based on the population census. In the first sampling stage, the total 
BIHS sample of 325 PSUs/villages was allocated among the seven administrative divisions2 
based on probability proportional to size (PPS) sampling using the number of households in 
the population census data. Twenty households were randomly selected from each PSU/village 
in the second stage. Since BIHS15 survey data contains village and Upazila levels, we easily 
generated our data according to climate subregions (Fig. 1).  After dropping plots for non-rice 
crops and missing information, 3,052 households cultivated 13,113 rice plots in different 
seasons during the 12 months from December 2013 to November 2014. We then constructed a 
dataset according to the seven agro-climate zones by following Sarker et al. (2019) to estimate 
regional TE differences.  

The summary statistics of the variables are presented in Table 2. Interestingly, we 
found that the southeastern (3,315 kg/ha), northeastern (3,899 kg/ha), northern (4,877 kg/ha), 
northwestern (5,193 kg/ha), western (5,539 kg/ha), southwestern (4,810 kg/ha), and south-
central (4,447 kg/ha) yields of rice, respectively, were high enough to show variability in rice 
production across the climate zones. Moreover, the western zone used the highest fertilizer 
and farm capital; also, it strongly depended on groundwater irrigation for rice production and 
had the highest dependency on agriculture. As a result, the farmers in this region are more 
likely to engage in farming activities that could influence the purchasing of flexible inputs 
and use resources more efficiently, resulting in higher yields than other regions. Contrastingly, 
the southeastern zone produced the lowest yield because of lower education, lower land 
ownership, strong dependence on rain-fed irrigation, and lower adoption of hybrid varieties. 
Consequently, different farm management, technology adoption, weather conditions, input 

 

1 Farm capital is considered the total current value of farm assets at the household level. 
2The administrative structure of Bangladesh consists of divisions, districts, upazilas, and unions, in decreasing 

order by size. There are 7 divisions, 64 districts, 484 upazilas, and 4,498 unions (all rural). 



 

 

uses, etc. create yield variations among the regions. Moreover, the northern part of the 
northern region’s farmers did not cultivate local variety, plant in the Aus rice season, and have 
surface water for irrigation that could influence yield variation. On average, the northwestern 
zone had the highest land ownership, while less land ownership was found in the southeastern 
region. So, larger families have fewer opportunities to invest in rice production and may be 
more prone to concentrate on other income sources for their livelihood; hence, the farmers 
with larger family sizes in the northeastern zone of Bangladesh produce lower yields. Finally, 
the highest rainfall but the lowest temperature is found in the northeastern region, while the 
lowest rainfall and temperature are found in the southwestern region, which could cause yield 
variation. 



 

 

Table 2. Variations in output, the input used, and relevant variables by climatic zones 
Variable Southeastern Northeastern Northern part 

northern 
Northwestern Western Southwestern Southcentral All areas 

Output (kg/plot) 451 (471) 820 (1138) 550 (526) 486 (534) 611 (721) 491 (545) 530 (613) 534 (629) 

Yield (kg/ha) 3315 (1538) 3899 (1452) 4877 (1655) 5193 (1767) 5539 (1770) 4810 (1772) 4447 (1903) 4612 (1873) 
Land (ha) 0.145 (0.152) 0.206 (0.255) 0.115 (0.106) 0.092 (0.089) 0.112 (0.123) 0.104 (0.115) 0.118 (0.112) 0.119 (0.123) 
Labor (hours/ha) 670.7 (680.1) 615.8 (264.8) 840.0 (374.5) 942.1 (474.4) 914.6 (622.7) 1025.5 (796.4) 893.7 (510.5) 888.0 (588.7) 
Fertilizer (USD/ha) 74.00 (62.20) 64.43 (64.07) 133.71 (75.37) 150.15 (85.45) 150.52 (165.3) 147.01 (116.0) 99.93 (73.72) 117.7 (99.3) 
Other costs (USD/ha) 197.84 (120.61) 198.08 (98.16) 214.38 (108.9) 256.4 (124.0) 250.7 (141.7) 237.62 (135.0) 251.94 (139.7) 240.1 (133.4) 
Farm asset (USD/ha) 948.77 (2809.3) 583.3 (1227.3) 1915.4 (6909.3) 1729.0 (5537.3) 3602.2 (10428) 1604.8 (4552) 1779.9 (12548) 1793.4 (9201.9) 
Aus rice 0.223 (0.416) 0.149 (0.356) --- 0.041 (0.198) 0.018 (0.133) 0.020 (0.140) 0.034 (0.180) 0.052 (0.221) 
Aman rice 0.648 (0.478) 0.374 (0.484) 0.602 (0.490) 0.534 (0.499) 0.503 (0.500) 0.620 (0.485) 0.421 (0.494) 0.508 (0.500) 
Boro rice 0.129 (0.335) 0.477 (0.500) 0.398 (0.490) 0.425 (0.495) 0.479 (0.500) 0.360 (0.480) 0.546 (0.498) 0.441 (0.497) 
Local variety 0.402 (0.490) 0.040 (0.196) --- 0.010 (0.099) 0.028 (0.166) 0.083 (0.276) 0.133 (0.340) 0.109 (0.312) 

HYV 0.566 (0.496) 0.891 (0.312) 0.867 (0.340) 0.879 (0.326) 0.868 (0.338) 0.864 (0.343) 0.777 (0.416) 0.807 (0.395) 
Hybrid  0.032 (0.177) 0.069 (0.254) 0.133 (0.340) 0.111 (0.315) 0.104 (0.305) 0.053 (0.225) 0.089 (0.285) 0.084 (0.277) 
Rain fed 0.766 (0.423) 0.524 (0.500) 0.306 (0.461) 0.187 (0.390) 0.064 (0.245) 0.282 (0.450) 0.363 (0.481) 0.337 (0.473) 
Ground water 0.066 (0.248) 0.088 (0.284) 0.694 (0.461) 0.711 (0.454) 0.918 (0.275) 0.670 (0.470) 0.449 (0.497) 0.531 (0.499) 
Surface water 0.168 (0.374) 0.387 (0.488) --- 0.102 (0.303) 0.018 (0.133) 0.048 (0.213) 0.188 (0.391) 0.132 (0.338) 
Clay  0.039 (0.194) 0.032 (0.177) 0.004 (0.062) 0.025 (0.156) 0.001 (0.028) 0.041 (0.197) 0.024 (0.153) 0.025 (0.156) 
Loam  0.032 (0.177) 0.252 (0.434) 0.248 (0.432) 0.250 (0.433) 0.126 (0.332) 0.189 (0.391) 0.170 (0.376) 0.176 (0.381) 
Sandy  0.119 (0.323) 0.047 (0.212) 0.087 (0.282) 0.080 (0.271) 0.024 (0.154) 0.054 (0.226) 0.056 (0.229) 0.063 (0.242) 
Clay loam 0.625 (0.484) 0.507 (0.500) 0.372 (0.484) 0.404 (0.491) 0.605 (0.489) 0.474 (0.499) 0.516 (0.500) 0.503 (0.500) 
Sandy loam 0.184 (0.388) 0.162 (0.369) 0.290 (0.454) 0.242 (0.428) 0.244 (0.430) 0.243 (0.429) 0.235 (0.424) 0.233 (0.423) 
Head age  49.80 (12.56) 49.92 (13.21) 45.52 (13.16) 48.26 (12.15) 46.83 (12.32) 48.18 (12.40) 48.65 (12.60) 48.31 (12.59) 
Head education 3.283 (3.810) 3.860 (3.742) 3.311 (3.632) 4.387 (4.254) 3.915 (4.305) 4.101 (4.209) 3.428 (3.925) 3.720 (4.039) 
Own land  0.427 (0.495) 0.677 (0.468) 0.700 (0.458) 0.838 (0.369) 0.584 (0.493) 0.670 (0.470) 0.534 (0.499) 0.612 (0.487) 
Family size 4.741 (1.823) 6.122 (2.241) 4.305 (1.673) 4.312 (1.502) 4.351 (1.467) 4.529 (1.730) 4.766 (1.869) 4.906 (1.981) 
Income source (Agril. = 1) 0.572 (0.495) 0.646 (0.479) 0.468 (0.499) 0.559 (0.497) 0.685 (0.465) 0.605 (0.489) 0.621 (0.485) 0.604 (0.489) 
Negative shocks (0/1) 0.409 (0.492) 0.205 (0.404) 0.306 (0.461) 0.343 (0.475) 0.663 (0.473) 0.353 (0.478) 0.425 (0.494) 0.405 (0.491) 
Migration (0/1) 0.357 (0.479) 0.285 (0.452) 0.272 (0.445) 0.148 (0.355) 0.273 (0.446) 0.145 (0.352) 0.306 (0.461) 0.255 (0.436) 
Market distance (km) 4.056 (5.063) 5.07 (5.586) 4.65 (3.37) 4.46 (6.44) 4.96 (3.77) 4.45 (4.37) 4.52 (6.09) 4.54 (5.43) 
Average monthly rainfall  156.84(14.16) 235.06 (53.90) 162.33 (12.30) 133.31 (16.93) 122.15(9.05) 144.06 (5.601) 163.16 (32.46) 149.65 (37.76) 
Average temperature  25.33 (0.199) 23.89 (1.06) 24.69 (0.208) 25.35 (0.336) 25.51 (0.180) 25.83 (0.280) 25.05 (0.464) 25.21 (0.610) 
Observations  1172 660 790 1735 1275 2291 5190 13113 

Note: Standard deviations are in parentheses. All costs are measured at Bangladesh taka, which is approximately equal to $ 0.012.



 

 

4. Empirical results and discussion 

4.1 Parameter estimates of the SPF model 

The maximum likelihood estimates (MLE) of the translog stochastic frontier parameters, 
pooled, and meta-frontiers are reported in Table 3. The values of the explanatory variables ௝ܺ௜ 
(݆ = ͳ,ʹ,͵, … ,ͷሻ, are divided by their respective means. Therefore, the coefficients ߚ௝ of l� ௝ܺ௜ 
(݆ = ͳ,ʹ,͵, … ,ͷ) can be interpreted as the elasticities of output of the corresponding inputs 
evaluated at their means. The size of the output elasticities differed among the climate zones. 
All first-order estimated coefficients have values from zero to one in the pooled dataset, 
indicating that the monotonicity conditions are satisfied. The return to scale shows that the 
different structures of production among the climate zones and all of the rest are operating 
under increasing returns to scale, except for the northeastern area. The gamma parameters (ߛ =�௨ଶ/ሺ�௨ଶ + �௩ଶ) measure the extent to which the variation in the composite error term is 

attributed to the inefficiency component (�௨ଶ) as a proportion of the combined error (�௨ଶ + �௩ଶ). 
The translog function (Table 3) produced different gamma values. For example, there was 0.83 
for the southeastern area and 0.94 for the northeastern area, indicating the percentage variation 
in frontier output as a result of the presence of inefficiency effects (group-specific variable). 
This indicates that external factors stimulates rice production in Bangladesh.  

The contribution of land area is the highest concerning rice production in Bangladesh, 
with the elasticity of output ranging from 0.603 to 0.924 among climate zones, including the 
meta-frontier model. Notably, labor is the most crucial contributor, and the elasticity of labor 
is positively significant in all climate regions except the northwestern and southwestern zones, 
implying that a marginal increase in the hours of employed farm labor will increase rice output. 
The elasticity of fertilizer was found to be a positive and significant contributor in all climate 
zones. However, fertilizer and other variable costs in the southeastern zone show the highest 
contribution among the climate zones. The elasticity of farm assets in the northern part of the 
northern region was found to be negative and significant, suggesting that farmers should be 
careful when selecting farm capital to invest in because rice output reduces excess investment 
in farm capitals. These estimates are compatible with those of other studies on Bangladeshi 
rice farmers (Asadullah and Rahman 2009; Gautam and Ahmed 2019). In the case of the meta-
frontier model, the coefficients for all the primary variables were positive and statistically 
significant, suggesting that all key inputs positively influenced rice production, which is 
consistent with Asante et al. (2019.  

The coefficient of HYV, hybrid variety, and the Boro rice season was positive and 
statistically significant in all climate zones except the northern part of the northern zone. These 
results revealed that the HYV, hybrid variety, and Boro rice season shifted the production 
frontier upwards, leading to higher rice productivity in all climate zones. Specifically, rice 
production in the western zone mostly depends on groundwater irrigation (see Table 2), and it 
is produced during the dry winter season with little rainfall. In this case, we naturally found no 
difference between rain-fed and surface or groundwater as water sources; also, the negative 
effect of surface water use shows its disadvantage against groundwater use. Subsequently, rice 
production in the southeastern zone is grown mainly depending on rainfall and is produced in 
the rainy season with abundant rainfall. In this case, we naturally expect no advantage of 
ground or surface water against rain-fed farming, and the negative effect of surface water use 
shows its disadvantage against groundwater use. We found that average monthly rainfall had a 
significantly negative impact on rice production in all climate zones. This is because 
unnecessary and excessive rainfall at an appropriate time creates a barrier to rice production. 
Conversely, the monthly average temperature significant and positively affected rice 
production in all climate zones, except in the northeastern and western zones.   



 

 

4.2 Factors affecting TE in rice production across climatic zones 

The MLE of the factors influencing TE in rice production among the climate zones are 
presented in Table 3. The determinants of TE vary across climate zones. In the pooled model, 
except for household head education, all parameters were statistically significant. In the context 
of Bangladesh, household head is the decision-maker who has the final say and better knows 
about new technology than other family members. The significant and positive sign of 
household head age shows that older farmers tend to be more inefficient, indicating that 
younger farmers pay more attention to rice production, which is in line with Mariano et al. 
(2011). We found that the education coefficient was positively and significantly associated 
with the inefficiency in the western and southern central zones, revealing that educated farmers 
have little engagement in farming practices as they have different alternative sources of 
income. However, higher education levels increase TE in the northern part of the northern, 
northwestern, and southwestern zones. Generally, northeastern, western, and south-central 
farmers pay more attention to their own land farm practices than sharecropping, but farmers in 
the northern part of the northern region give more attention to sharecropping than their own 
farming. This indicates that sharecroppers are more efficient than owner-operators because of 
their eagerness to maximize their return on investment, which is consistent with Anik and 
Salam (2017). The number of household members was also negatively associated with TE in 
the southeastern zone, suggesting that probably reflecting underemployment of family 
members is consistent with Mariano et al. (2011). Depending on farm activity alone as a 
primary source of income increases TE in all climate zones except the southwestern one, 
indicating that farmers pay more attention to adopting and applying modern technology in 
production practices. When a farmer faces negative shocks, his/her efficiency decreases. 
Barrett et al. (2006) reported that the negative shocks can divert a farmer’s managerial 
attention, which in effect reduces farm production, causing transitory decreases in efficiency, 
and consequently, the farmer produces below the potential level of output. The findings for 
western and southwestern regions indicate a significant adverse effect of  migration on farming 
efficiency, indicating that households with better educated family worker, suggesting the 
presence of labor market imperfections with farm households relying also exclusively on 
family labor, which inline with Sauer et al. (2015). The negative and significant coefficient of 
migration for southeastern region, meaning that migration leads to a reduction in farming 
inefficiency because income generated from migration allows farmers to purchase better inputs 
while working within own counties still allows them to be able to take care of own farm work 
especially during the most critical production seasons. This result is consistent with Yang et al. 
(2016). Long market distance influences to increase technical inefficiency due to long distances 
could be barriers to timely purchasing inputs. Subsequently, southwestern farmers seek out 
other non-farm jobs and businesses outside of rice production. 
 
 
 

 
 



 

 

Table 3. MLE for first-order parameters of the translog production frontier by climatic zone  
 South-

eastern 
North-
eastern 

Northern 
part 
northern 

North-
western 

Western South-
western 

South 
central 

All zones Meta-frontiers 

Constant  4.634*** 
(1.716) 

9.256*** 
(1.371) 

-3.550 
(2.820) 

5.286* 
(3.079) 

98.467*** 
(19.682) 

4.121*** 
(1.601) 

6.130*** 
(0.543) 

7.455*** 
(0.332) 

6.708*** 
(0.092) 

Land ሺxଵሻ 0.599*** 
(0.055) 

0.642*** 
(0.078) 

0.788*** 
(0.055) 

0.889*** 
(0.035) 

0.918*** 
(0.031) 

0.922*** 
(0.023) 

0.842*** 
(0.019) 

0.861*** 
(0.011) 

0.854*** 
(0.003) 

Labor ሺxଶሻ 0.152*** 
(0.042) 

0.173*** 
(0.057) 

0.149*** 
(0.041) 

-0.029 
(0.028) 

0.033 
(0.027) 

0.005 
(0.018) 

0.032* 
(0.017) 

0.019** 
(0.009) 

0.030*** 
(0.003) 

Fertilizer ሺxଷሻ 0.114*** 
(0.025) 

0.044** 
(0.023) 

0.061* 
(0.036) 

0.099*** 
(0.020) 

0.023 
(0.021) 

0.035*** 
(0.013) 

0.081*** 
(0.009) 

0.081*** 
(0.006) 

0.072*** 
(0.002) 

Other costሺxସሻ 0.195*** 
(0.047) 

0.082** 
(0.053) 

0.034 
(0.041) 

0.049** 
(0.025) 

0.059** 
(0.024) 

0.043** 
(0.018) 

0.035*** 
(0.014) 

0.041*** 
(0.008) 

0.051*** 
(0.002) 

Farm asset ሺxହሻ 0.014 
(0.011) 

0.033*** 
(0.012) 

-0.031*** 
(0.009) 

0.011* 
(0.007) 

0.002 
(0.006) 

0.023*** 
(0.007) 

0.017*** 
(0.004) 

0.011*** 
(0.002) 

0.013*** 
(0.001) ሺxଵxଵሻ  -0.207*** 

(0.040) 
0.138* 
(0.082) 

-0.192*** 
(0.070) 

0.083** 
(0.039) 

-0.097*** 
(0.031) 

-0.027 
(0.021) 

-0.043*** 
(0.013) 

-0.072*** 
(0.009) 

-0.065*** 
(0.003) ሺxଵxଶሻ  0.212*** 

(0.049) 
-0.219** 
(0.101) 

0.215** 
(0.098) 

-0.282*** 
(0.057) 

0.074 
(0.050) 

0.029 
(0.028) 

0.094*** 
(0.024) 

0.097*** 
(0.014) 

0.088*** 
(0.004) ሺxଵxଷሻ  -0.018 

(0.019) 
-0.020 
(0.031) 

0.102 
(0.068) 

0.091*** 
(0.027) 

0.047* 
(0.028) 

0.001 
(0.011) 

0.027*** 
(0.007) 

0.018*** 
(0.005) 

0.021*** 
(0.001) ሺxଵxସሻ  0.115** 

(0.052) 
0.002 
(0.107) 

0.095 
(0.085) 

-0.038 
(0.055) 

0.071* 
(0.051) 

0.028 
(0.026) 

-0.023 
(0.020) 

0.034*** 
(0.013) 

0.018*** 
(0.004) ሺxଵxହሻ  -0.016 

(0.012) 
-0.028* 
(0.016) 

0.033 
(0.022) 

0.027* 
(0.014) 

0.005 
(0.010) 

0.030*** 
(0.007) 

0.0001 
(0.005) 

0.007** 
(0.003) 

0.009*** 
(0.001) ሺxଶxଶሻ  -0.068*** 

(0.016) 
0.047 
(0.048) 

-0.120*** 
(0.046) 

0.093*** 
(0.028) 

-0.084*** 
(0.022) 

-0.024* 
(0.014) 

-0.033** 
(0.016) 

-0.037*** 
(0.007) 

-0.032*** 
(0.002) ሺxଶxଷሻ  -0.019 

(0.016) 
-0.071*** 
(0.027) 

0.044 
(0.063) 

-0.040 
(0.032) 

0.100** 
(0.044) 

-0.018** 
(0.009) 

-0.009 
(0.007) 

-0.026*** 
(0.004) 

-0.024*** 
(0.001) ሺxଶxସሻ  -0.073* 

(0.044) 
0.166** 
(0.082) 

0.039 
(0.088) 

0.151*** 
(0.043) 

-0.019 
(0.042) 

0.048** 
(0.024) 

-0.027 
(0.022) 

0.006 
(0.013) 

0.010*** 
(0.004) ሺxଶxହሻ  0.010 

(0.011) 
0.022 
(0.014) 

0.018 
(0.018) 

-0.002 
(0.014) 

-0.002 
(0.013) 

-0.022*** 
(0.006) 

-0.007 
(0.005) 

-0.008*** 
(0.003) 

-0.008*** 
(0.001) ሺxଷxଷሻ  0.011*** 0.003 -0.068** 0.022*** 0.003 0.007*** 0.009*** 0.011*** 0.010*** 



 

 

 South-
eastern 

North-
eastern 

Northern 
part 
northern 

North-
western 

Western South-
western 

South 
central 

All zones Meta-frontiers 

(0.004) (0.005) (0.029) (0.005) (0.011) (0.002) (0.001) (0.001) (0.0002) ሺxଷxସሻ  0.018 
(0.014) 

0.083*** 
(0.032) 

-0.070 
(0.067) 

-0.089*** 
(0.022) 

-0.141*** 
(0.031) 

-0.004 
(0.012) 

-0.035*** 
(0.007) 

-0.021*** 
(0.004) 

-0.022*** 
(0.001) ሺxଷxହሻ  0.008* 

(0.005) 
-0.010* 
(0.006) 

-0.007 
(0.015) 

-0.004 
(0.009) 

0.006 
(0.007) 

-0.004 
(0.003) 

0.002 
(0.001) 

-0.001 
(0.001) 

-0.0003 
(0.0003) ሺxସxସሻ  0.010 

(0.033) 
-0.112*** 
(0.043) 

-0.037 
(0.042) 

0.008 
(0.025) 

0.036 
(0.027) 

-0.032*** 
(0.013) 

0.040*** 
(0.011) 

-0.008 
(0.007) 

-0.002 
(0.002) ሺxସxହሻ   0.018* 

(0.011) 
0.001 
(0.012) 

-0.035** 
(0.017) 

-0.013 
(0.011) 

0.004 
(0.010) 

-0.007 
(0.006) 

0.004 
(0.004) 

0.004 
(0.003) 

0.003*** 
(0.001) ሺxହxହሻ  -0.001 

(0.002) 
0.002 
(0.002) 

-0.004** 
(0.002) 

0.002 
(0.001) 

-0.001 
(0.001) 

0.003** 
(0.001) 

0.002*** 
(0.001) 

0.001 
(0.0001) 

0.001*** 
(0.0001) 

HYV 0.319*** 
(0.028) 

0.323*** 
(0.082) 

--- 0.463*** 
(0.068) 

0.529*** 
(0.050) 

0.405*** 
(0.033) 

0.343*** 
(0.017) 

0.363*** 
(0.011) 

0.361*** 
(0.003) 

Hybrid  0.499*** 
(0.075) 

0.543*** 
(0.098) 

0.097*** 
(0.031) 

0.633*** 
(0.070) 

0.739*** 
(0.055) 

0.475*** 
(0.043) 

0.450*** 
(0.022) 

0.519*** 
(0.015) 

0.512*** 
(0.004) 

Aman rice -0.150*** 
(0.030) 

0.113*** 
(0.036) 

--- 0.036 
(0.035) 

-0.109** 
(0.049) 

0.155*** 
(0.046) 

-0.002 
(0.024) 

-0.044*** 
(0.013) 

-0.047*** 
(0.004) 

Boro rice 0.013 
(0.058) 

0.232*** 
(0.065) 

0.211*** 
(0.031) 

0.312*** 
(0.038) 

0.157*** 
(0.051) 

0.412*** 
(0.048) 

0.397*** 
(0.026) 

0.253*** 
(0.014) 

0.253*** 
(0.004) 

Ground water -0.088 
(0.070) 

0.117 
(0.073) 

-0.040 
(0.030) 

0.037* 
(0.021) 

-0.036 
(0.032) 

-0.004 
(0.019) 

-0.019 
(0.015) 

0.023*** 
(0.008) 

0.013*** 
(0.002) 

Surface water -0.010 
(0.037) 

0.091 
(0.060) 

--- 
-0.115*** 
(0.031) 

-0.115* 
(0.063) 

0.020 
(0.034) 

-0.020 
(0.017) 

-0.011 
(0.010) 

-0.006*** 
(0.003) 

Clay  0.056 
(0.070) 

0.109 
(0.086) 

-0.147 
(0.158) 

-0.006 
(0.046) 

0.029 
(0.223) 

0.079* 
(0.044) 

0.052* 
(0.032) 

0.062*** 
(0.020) 

0.067*** 
(0.006) 

Loam  0.096 
(0.067) 

0.217*** 
(0.063) 

0.049 
(0.050) 

0.115*** 
(0.029) 

-0.047 
(0.053) 

0.079** 
(0.031) 

0.003 
(0.020) 

0.031** 
(0.013) 

0.028*** 
(0.003) 

Clay loam -0.041 
(0.035) 

0.151** 
(0.063) 

-0.009 
(0.049) 

0.131*** 
(0.026) 

-0.073 
(0.049) 

0.052* 
(0.029) 

-0.012 
(0.019) 

0.016 
(0.012) 

0.015*** 
(0.003) 

Sandy loam -0.043 
(0.039) 

0.234*** 
(0.066) 

0.014 
(0.048) 

0.167*** 
(0.028) 

-0.074 
(0.051) 

0.064** 
(0.031) 

-0.037* 
(0.020) 

0.027** 
(0.012) 

0.020*** 
(0.003) 



 

 

 South-
eastern 

North-
eastern 

Northern 
part 
northern 

North-
western 

Western South-
western 

South 
central 

All zones Meta-frontiers 

Monthly rainfall  -0.187 
(0.157)  

-0.341** 
(0.143) 

0.384* 
(0.216) 

-0.134 
(0.215) 

-5.898*** 
(1.291) 

-0.134 
(0.186) 

-0.140*** 
(0.038) 

-0.244*** 
(0.025) 

-0.185*** 
(0.007) 

Average temperature  0.109* 
(0.059) 

-0.063** 
(0.026) 

0.328*** 
(0.080) 

0.049 
(0.082) 

-2.502*** 
(0.529) 

0.097*** 
(0.035) 

0.027* 
(0.015) 

-0.002 
(0.009) 

0.017*** 
(0.002) 

Technical inefficiency effects models 

Constant  -1.708*** 
(0.341) 

-1.657*** 
(0.469) 

-2.503*** 
(0.583) 

-1.733*** 
(0.286) 

-3.936*** 
(0.298) 

-1.810*** 
(0.216) 

-1.336*** 
(0.155) 

-1.700*** 
(0.090) 

 

Land  -0.052 
(0.073) 

0.030 
(0.090) 

0.207 
(0.140) 

-0.122** 
(0.065) 

0.348*** 
(0.057) 

0.126** 
(0.052) 

-0.145*** 
(0.034) 

-0.007 
(0.020) 

 

Head age 0.014*** 
(0.004) 

0.012*** 
(0.005) 

-0.012** 
(0.006) 

0.003 
(0.004) 

0.007* 
(0.004) 

-0.005 
(0.003) 

0.006*** 
(0.002) 

0.004*** 
(0.001) 

 

Head education -0.009 
(0.014) ) 

0.003 
(0.017) 

-0.080*** 
(0.022) 

-0.032*** 
(0.010) 

0.058*** 
(0.012) 

-0.027*** 
(0.008) 

0.009* 
(0.005) 

-0.002 
(0.003) 

 

Own land (D) -0.004 
(0.106) 

-0.590*** 
(0.148) 

0.955*** 
(0.199) 

 -0.003 
(0.115) 

-0.251*** 
(0.099) 

0.170** 
(0.077) 

-0.087* 
(0.047) 

-0.077*** 
(0.029) 

 

Family size 0.049* 
(0.027) 

0.073** 
(0.031) 

-0.124*** 
(0.044) 

0.024 
(0.025) 

0.113*** 
(0.033) 

-0.034** 
(0.018) 

0.024** 
(0.010) 

0.030*** 
(0.007) 

 

Main income 
(agriculture = 1) 

-0.375*** 
(0.111) 

-0.627*** 
(0.141) 

-0.620*** 
(0.172) 

-0.115 
(0.084) 

-0.296*** 
(0.109) 

0.272*** 
(0.078) 

-0.033 
(0.047) 

-0.028 
(0.029) 

 

Negative shocks  0.091 
(0.099) 

0.134 
(0.159) 

0.827*** 
(0.169) 

0.085 
(0.087) 

1.067*** 
(0.103) 

0.320*** 
(0.073) 

0.339*** 
(0.044) 

0.317*** 
(0.028) 

 

Migration  -0.020** 
(0.009) 

0.015 
(0.013) 

-0.005 
(0.016) 

0.002 
(0.011) 

0.075*** 
(0.009) 

0.048*** 
(009) 

0.006 
(0.005) 

0.021*** 
(0.003) 

 

Market distance (km) 0.012 
(0.010) 

-0.037*** 
(0.012) 

0.096*** 
(0.023)  

0.032*** 
(0.008) 

-0.052*** 
(0.011) 

0.007 
(0.008) 

-0.013*** 
(004) 

-0.003 
(0.003) 

 

Variance and other model statistics       

Sigma square  0.2181 0.2021 0.1167 0.1998 0.0306 0.1904 0.2850 0.2073 0.0100 

Gamma  0.8312*** 0.9433*** 0.7015*** 0.8847*** 0.6391*** 0.8589*** 0.9223*** 0.8811*** 0.4675*** 

Log likelihood -511.08 -134.65 -129.55 -205.21 -198.23 -646.46 -1621.30 -4397.84 13849.6 

Returns to scale 1.074*** 0.9738*** 1.002*** 1.018*** 1.033*** 1.028*** 1.008*** 1.013*** 1.019 

Notes: “***”, “**” and “*” indicate significance at the 1%, 5% and 10% level. Standard errors are in parentheses..



 

 

4.4 TE, meta-frontier technical efficiency and technology gap ratio 

The group technical efficiency (TEG), TGR, and MTE are presented in Table 4. First, we 
compared the variation in TE across the seven climate zones. The average TE in the pooled 
dataset shows that farmers produce only 69.87% of the maximum achievable output for a given 
level of inputs, suggesting that if farms operate at the most efficient production level, they 
could achieve significant TE gains. These achievements could be expressed as the use of input 
savings or higher production with positive impacts on the sector’s productivity. The TGR and 
MTE indicate significant scope for improving the sector’s performance. Among the climate 
zones, the farmers in the northwestern zone had the highest (77.8%), while southeastern 
farmers had the lowest (67.6%) efficiency. This shows that the northwestern and southwestern 
regions have the potential to increase rice output by 22.2% and 32.4%, respectively, in the short 
run by adopting good agronomic practices and improved technologies. Piya et al. (2012) and 
Narala & Zala (2010) argued more than 27% rice production can be increased with the available 
technology while Tijani (2006) revealed 13% rice output short of the highest possible level due 
to inefficiency. The highest mean meta-frontier TE is obtained by farmers in the northwestern 
region (66.3%) and the lowest in the southeastern region (51.5%), indicating that farmers in 
the northwestern region are more technically efficient compared to the other climate zones. 
Southeastern farmers could adopt modern rice production practices to catch up with the 
northern part of the northern zone. The difference in the results is expected because it is 
hypothesized that farmers in various climate zones would perform differently because of the 
various production environments and face various issues or challenges in which farmers 
operate within these climate zones. 
 

Table 4. Technical efficiencies and TGR by climate zone  

 Mean SD Minimum Maximum 

Southeastern  

TEG 0.6759 0.1708 0.1055 0.9496 

TGR  0.7155 0.1841 0.1117 1.0000 

MTE 0.5146 0.2260 0.0118 1.0000 

Northeastern 

TEG 0.7060 0.1821 0.1313 0.9614 

TGR  0.7454 0.1940 0.1394 1.0000 

MTE 0.5612 0.2451 0.0183 1.0000 

Northern part 
northern 

TEG 0.7557 0.1347 0.0660 0.9642 

TGR  0.8002 0.1433 0.0760 1.0000 

MTE 0.6238 0.1950 0.0050 1.0000 

Northwestern 

TEG 0.7775 0.1294 0.0408 0.9506 

TGR  0.8298 0.1425 0.0438 1.0000 

MTE 0.6632 0.1828 0.0018 1.0000 

Western 

TEG 0.7530 0.1718 0.0155 0.9788 

TGR  0.7880 0.1805 0.0158 1.0000 

MTE 0.6243 0.2126 0.0002 1.0000 

Southwestern 

TEG 0.7143 0.1571 0.0828 0.9605 

TGR  0.7521 0.1658 0.0869 1.0000 

MTE 0.5632 0.2113 0.0072 0.9885 

South central 

TEG 0.7017 0.1660 0.0399 0.9642 

TGR  0.7411 0.1752 0.0413 1.0000 

MTE 0.5491 0.2201 0.0016 1.0000 

All areas 

TEG 0.6987 0.1652 0.0216 0.9655 

TGR  0.7369 0.1716 0.0222 1.0000 

MTE 0.5431 0.2151 0.0006 0.9826 



 

 

The variations of estimated TGRs range from 0.72 to 0.83 and are varies from each 
other (F-stat of 69.49 with a p-value of 0.000), signifying that technology gaps are apparent in 
rice production across the climate zones. Given the available factors, the northwestern farmers 
are closer to the meta-frontier, indicating a smaller technology gap, and are probable to produce 
nearer to their highest potential output than those of other climate zones. This result is 
consistent with those of Danso-Abbeam and Baiyegunhi (2020). However, the maximum TGR 
in all climate zones is equal to one, indicating that at least one farmer operates on the meta-
frontier, suggesting that it is possible to close the technology gap by appropriately adopting the 
available technology. The highest TGR in the northwestern region shows that farmers have 
efficiently executed crop management practices to mitigate the unfavorable environment's 
productivity-reducing effects. This zone may be recognized for its unique environmental 
characteristics, such as relatively moderate rainfall, which tends to improve soil health and is 
more likely to adopt technology, explaining their more remarkable performance in rice 
production. Therefore, favorable environmental conditions might have contributed to the 
productivity gains from improved technology.  

The causes of the highest mean TE, TGR, and MTE were found in the northwestern 
zone because the highest education level, lower migration and land ownership (Table 1) can 
play a vital role in increasing rice productivity, boosting potential output, and improving TE. 
This finding is consistent with Asadullah and Rahman (2009), who argued that education 
significantly contributes to productivity and TE. Rahman (2003) observed owner-operators 
work with a relatively higher level of efficiency than tenants. Subsequently, the farmers in the 
southeastern zone mostly depend on rainfall, lower adoption of the hybrid variety, and lower 
land ownership, which could negatively affect rice production and produce lower efficiency. 
 

5. Conclusion and implications 

In this study, we compared the technical efficiency (TE) and technological gap ratios (TGRs) 
of rice production among the seven climate sub-zones in Bangladesh using a stochastic meta-
frontier approach, where there is heterogeneous technology adoption among farmers and 
environmental variations by using a nationally representative household-level dataset. 
Empirical results revealed that the estimated output elasticities of all inputs were significant 
and varied across the climate zones. Farm-specific variables such as household head age, 
education, land ownership, family size, negative shocks, migration and main income source 
have different effects on TE. The estimated mean TE score ranges from 0.676 to 0.778, 
suggesting that rice farms across climate zones use different technologies for rice production, 
and the estimated TGR ranges from 0.716 to 0.830, indicating that the technological gap varies 
across the climate zones. The northwestern farmers have higher mean TE and less distance 
from the meta-frontier than other climate zones, suggesting that all the climate zone farmers, 
except the northwestern ones, should improve their production. Notably, farmers in the 
southeastern zone have lower adoption technology and adapt their management practices 
according to the climate constraints they face. Such findings also suggest that the government 
should emphasize technology development and provision region-specific technologies, such as 
introducing salinity, cold, and drought-tolerant rice varieties.  

Technical efficiency could be improved across the climate zones by advancing the 
production frontier and improving technology diffusion within the region. Furthermore, across 
the climate zones, some farmers unable to achieve the maximum possible output for the meta-
frontier. This implies that there is possibility for farmers to increase their rice productivity 
through the adoption and diffusion of modern rice production technologies, such as improved 
seeds, fertilizer use, and climate-sensitive rice varieties. The study revealed that better 



 

 

education, exclusive farm activity as a primary source of income, and increased land ownership 
would help improve TE levels and technology in Bangladesh.  

So, the government of Bangladesh can emphasize more investment in research to 
develop advanced climate zone-specific technology and provide input subsidies that have been 
found to increase rice productivity. Additionally, increasing rice productivity in Bangladesh 
will require policies that improve farmers' access to extension services to encourage the 
adoption of climate zone-specific technologies and appropriate crop management practices. 
Subsequently, public and private organizations should come forward to make investments in 
agricultural technology acquisition and promote technological innovation by supporting 
research and development efforts to reduce technological gaps. More specifically, the 
southeastern region needs to install advanced production technologies to catch up to the 
northwestern region. 
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