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Abstract
Since the 1970s, advances in biotechnology have rarely translated into profitable financial opportunities. The recent

breakthrough in immunotherapy seems to have turned the tide and improved the productivity growth. We study the

impact of this innovation on the profitability of the biotech industry. Constructing a new dataset of cancer biotech

initial public offerings (IPOs) and using recent observations on the probability of success in the drug development

process, we find that the median return on equity in the cancer biotech industry has increased from 11 percent to 15

percent. This is a noticeable improvement but it is not yet sufficient to significantly increase the inflow of early stage

investors. The financial constraints in this sector are still important.
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1. Introduction 

The financing of innovation influences firm innovative performance in many areas (Hall et al., 
2016) including technological innovation (Hall, 2002, Hyytinen and Toivanen, 2005). This 
issue is particularly true in biomedical research, where financial constraints are one of the most 
significant barriers to effective drug development (Brown et al, 2017). In this paper, we study 
the financing of innovation in the biopharmaceutical industry through megafund. We construct 
a new dataset of cancer biotech initial public offerings (IPOs) and analyze the implications of 
the cancer immunotherapy revolution on this industry. We hypothesize that the immunotherapy 
revolution has increased returns to investors and investigate whether the return compensates 
for the risk of this industry. 

The specific nature of the biopharmaceutical industry makes its funding peculiar and difficult 
(Hull et al., 2019). First, it is very expensive and the scale of funding requirements needed for 
creating a truly diversified portfolio outstrips the capital available from venture capital (VC) 
funding. Private equity (PE) funds which are of larger scale, could be an alternative source of 
financing, but their focus is to invest in and restructure more mature companies rather than 
speculating on “long shots”. Second, this industry has a very long-time span of 10 to 20 years 
starting with the drug discovery, followed by the subsequent clinical trials and ending with the 
Food and Drug Administration (FDA) approval (Lazonick and Tulum, 2011). The duration of 
the rounds of financing is very long, which reinforces the asymetries of information at the 
expense of the venture capitalists. Third, it has a substantial probability of failure, with a very 
low asset tangibility which reduces the salvage value of the firm in case of bankruptcy. Fourth, 
its business model is not simply based on new technological improvements like in the 
semiconductors or software industries, but it requires scientific breakthroughs (Malerba and 
Orsenigo, 2015). Finally, a fifth distinctive trait of the biotech industry is the higher cost of 
learning for VC investors, which prevents a good coordination among them. These features of 
the biotech industry worsens the standard problems that VCs must address in the financing of 
innovation (Hall and Lerner, 2010), and leads to under-provision of capital in this sector 
(Janeway et al., 2021). 

Harrington (2012) found that the cost of equity capital in the pharmaceutical industry varied 
from 9.8 percent to 16.9 percent between 2001 and 2008. For large pharmaceutical companies, 
it was estimated at 11.4 percent (Giaccotto et al., 2011). Kerins et al. (2004) found a cost of 
capital for a well-diversified venture capitalist at 16.7 percent. Cockburn and Lerner (2009) 
estimated that the cost of capital for biotechnology investments is 20 percent or higher. Thakor 
et al. (2017) argue that most of the investments in the biotech industry did not meet this 20 
percent threshold. This is a substantial challenge to funding biomedical research and 
development (R&D). To circumvent these challenges, Fernandez et al. (2012) and Fagnan et 
al. (2013) proposed to use sophisticated financial engineering techniques, to alleviate some of 
these constraints. Using the historical success rates for cancer projects from 1990 to 2011, 
Fernandez et al. (2012) found that a megafund would generate an average annual return of 8.9 
percent for its equity tranche. Unfortunately, this is well below the cost of capital required by 
equity investors for biotech companies and much smaller than the average returns of venture 
capitals reported by Cochrane (2005). 

However, since the early 2010s, and for the first time in 60 years, the cost of R&D on new 
drugs approved by the U.S. FDA has begun to decline. This improvement in R&D productivity 
can be explained in part by innovation based on immunotherapy, which has led to very 
encouraging advances in the treatment of cancers. The ability to manipulate parts of the 
immune system is becoming mainstream oncology. The past few years have been marked by 



unprecedented clinical responses, rapid drug development, and approvals from the U.S. FDA.  
(Kelly, 2018). The cancer drug development process is becoming more efficient and generates 
a rebound in R&D productivity (Ringel et al., 2020). Consequently, we propose to integrate 
the recent evolution of the cancer drug development, and work on a new cancer megafund 
investment opportunity. We use recent data that include the immunotherapy revolution and 
cover a research period from 2000 to 2015 in the United States. We develop an original dataset 
of 122 initial public offerings (IPOs) specialized in the development of compounds for 
oncology. 

We pool between 100 and 200 mutually uncorrelated cancer drug programs altogether to form 
an investable and highly diversified “megafund portfolio” of 5 billion dollars. Because cancer 
is a complex group of over 200 different diseases, multiple pathways are used to develop cancer 
drugs. This offers a potentially promising framework for portfolio diversification and risk 
reduction. Debonneil et al. (2018) or MacMinn and Zhu (2017) have shown that megafunds 
can support both medical discoveries and pension funding. We finance these portfolios through 
both equity and debt products. Tapping credit markets through securitized debt allows to 
address a larger pool of investors and raise the large amounts of capital that are required by this 
industry. This is in line with Kerr and Nanda (2014), who shows the growing importance of 
debt for financing innovation. A megafund differs from large venture capital funds, new 
pharmaceutical companies, or biopharmaceutical mutual funds in the sense that (i) it uses 
securitization to finance preclinical or early-stage developments, (ii) it invests in many 
biomedical projects at different stages of their development cycle and (iii) it is financed by both 
equity and debt. The capital structure of these megafunds is structured into distinct debt and 
equity tranches to distribute the overall risk of their investments. The debt is issued in the form 
of bonds collateralized by the portfolio of pipeline compounds and patents. The various 
risk/return profiles offered by each of these tranches aim at attracting the broadest range of 
investors and increase the potential sources of funding.  

We find that the return generated by this megafund approach has increased up to 14.8 percent. 
Although improving, it is still short of the usual costs of capital required by the biotech industry, 
suggesting that this is not yet a viable source of financing. We extend the steam of literature 
on megafunds that was developed by Marko (2013), Tenenbaum (2013), Yang et al. (2016), 
Hull et al. (2019) and Lo and Siah (2021). Our analysis complements that of Fernandez et al. 
(2012) and Fagnan et al. (2013) and incorporates the recent productivity improvement 
generated by the immunotherapy innovation. The rest of the paper proceeds as follow: Section 
2 describes the empirical model and the data. Section 3 presents the results and Section 4 
concludes. 

 

2. Methods and data 

2.1. Megafund portfolio 

We create a highly diversified megafund portfolio of 200 mutually uncorrelated anti-cancer 
programs with a value of 5 billion dollars. As of 2019, the existence of eight megafunds greater 
than $1 billion shows that this objective is achievable (Lerner and Randa, 2020). The 
innovative performance of firms is conditional to their distance from the technological frontier 
(Coad and Rao, 2006; Rocha et al., 2018). In this paper, we assume that all firms are at the 
same distance from this frontier. We set up a special-purpose vehicle (SPV) to guarantee that 
the portfolio’s assets are used to service the Research-Backed Obligations (RBO). This 



structure is a simple two-tranche collateralized debt obligation (CDO). The senior tranche has 
priority on the cash flows. The junior tranche ranks second in repayment priority, and pays a 
higher coupon rate which compensates for the higher risk. Equity holders are residual claimants 
and receive all the remaining assets and cash flows left after servicing the RBOs. The capital 
raised is used to finance the development of the compounds in the various phases of the process.  

2.2. Cancer Drug Development Markov Chain  

The drug development process is split into seven phases: the initial preclinical phase, the phases 
I, II and III of the clinical trials process, the new drug application (NDA), the approval, and the 
withdrawal. We model and estimate the revenues and costs at each phase of the drug 
development process based on a 7-state Markov chain process, with stochastic transitions from 
one phase to the next over time. Using data of probability of success (POS) for oncology from 
Wong et al. (2019) from 2000 to 2015, we estimate a new transition probability matrix (Table 
1 and Table 2).  

Table 1 Average transition probabilities and time per development phase  

  

Preclinical to 
Phase I  

Phase I  
to II 

Phase II  
to III 

Phase III to 
NDA 

NDA to 
Approval 

POS 69.0% 78.7% 53.9% 48.5% 100.0% 

Average months in phase 12.0 32.4 44.4 37.2 9.6 

Source: Paul et al. (2010) for preclinical to phase I and Wong et al. (2019) for the other phases. 

 

Table 2 Transition matrix 

 PreCt+1 Ph. It+1 Ph. IIt+1 Ph. IIIt+1 NDAt+1 Appr.t+1 Withdr.t+1 

PreClinicalt 50.0% 34.5% 0.0% 0.0% 0.0% 0.0% 15.5% 

Phase It 0.0% 80.9% 14.6% 0.53% 0.0% 0.0% 3.9% 

Phase IIt 0.0% 0.0% 86.2% 7.3% 0.3% 0.0% 6.2% 

Phase IIIt 0.0% 0.0% 0.0% 81.4% 7.8% 2.4% 8.3% 

NDAt 0.0% 0.0% 0.0% 0.0% 37.5% 62.5% 0.0% 

Approvedt 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 

Withdrawnt 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 
Time subscript t indicates current six-month simulation period and t+1 indicates the following six-
month simulation period. 

We find that the POS from Preclinical phase to approval phase is 14.2 percent. This is higher 
than the 12.6 percent reported in the literature and is explained by the rebound in the POS since 
2012 as documented by Smietana et al. (2016) and Wong et al. (2019). The period witnessed 
the rise and success of immuno-oncology (IO) drugs. This is particularly visible in Phase II 
with almost a doubling of the transition rate for IO drugs compared to the traditional oncology 
averages (Thomas et al., 2021). 



2.3. Cancer Drug Development Costs 

We model the development costs per phase and per compound as a lognormal distribution 
process. We use new R&D costs estimates from DiMasi et al. (2016). Adams and Brantner 
(2006) showed that the cost of developing an oncology product is 20 percent higher than the 
sample mean development cost. Accordingly, we adjusted the mean costs by a factor of 1.2 to 
reflect the higher cost of oncology drug development. This gives a mean investment cost per 
compound from Preclinical to the end of Phase III of $413 million (Table 3). This compares to 
$263 million in Fernandez et al. (2012) who used estimates from DiMasi et al. (2003). This 
evolution was mostly driven by an increase in the clinical phase costs and by higher 
development risks (Lo and Siah, 2021). The cost of developing a new drug has doubled about 
every nine years from 1950 until 2010 and has made the industry unappetizingly risky from a 
financial standpoint (Yang et al., 2016). 

Table 3 Development costs and standard deviation per phase 

 

Fernandez 
et al. 

(2012) 
DiMasi et al. (2016) 

Lognormal distribution 
parameters 

 
Mean cost 
oncology  

Mean cost oncology ݉� 

Standard 
Deviation  �� 

 μ  s 

Preclinical  6.0 6.0 5.5 1.53 0.79 

Phase I  19.0 30.4 29.6 3.08 0.82 

Phase II 50.0 70.3 50.8 4.04 0.65 

Phase III 188.0 306.5 153.3 5.61 0.47 

Total cost 263.0 413.2    

 

Based on these results, we can derive the mean  and standard deviation  of the lognormal 
process generating the development cost process from Equation (1) and Equation (2). � = ݈݊ሺ݉�ሻ − ଵଶ ݈݊ ቀ1 + ��2��2ቁ           (1) 

� = √݈݊ቀ1 + ��2��2ቁ                           (2) 

Where ��ଶ is the estimated adjusted variance cost per phase and ݉� is the estimated adjusted 
mean cost per phase of the Table 3. 

2.4. Investment Structure 

We follow the standard investment structure of the biopharmaceutical industry, which is based 
on licensing agreements (Table 4). The megafund makes regular payments to finance the drug 
development program and to reward the successful completion of some prespecified objectives, 
including the completion of a phase. It also funds all clinical trial costs. 40 percent of the 
expected development costs are paid upfront at the beginning of each phase, and 20 percent are 
paid at the end when the milestone is completed. The return for the megafund comes from 85 



percent of the proceed when the compound is sold. The 15 percent left is for the remuneration 
of the developers.  

Table 4 Investment structure costs (in $ million) 

  

Development 
costs per phase  

Upfront 
payments 

Milestone 
payments 

Preclinical  6 2.4 1.2 

Phase I  30.4 12.1 6.1 

Phase II 70.3 28.1 14.1 

Phase III 306.5 122.6 61.3 

 

2.5. Cancer Compound Valuation   

To estimate the mean value and standard deviation of an approved cancer compound, we built 
an original dataset of 122 IPOs issued between 2000 and 2021 in the United States, from the 
pharmaceutical and biotech industries, and specialized on cancer therapies. We calculated the 
value per approved compound by dividing the market value of the company at the end of 2021 
by the number of approved compounds. We estimated the mean value of a marketed cancer 
compound at $2,914 million. This represents an increase of 56 percent compared to the 
valuation used in Fernandez et al. (2012). It gives an average Tobin’s q ratio of 7.1, in line with 
Morales and Radoniqi (2018). The standard deviation is estimated at $3,996 million, which 
represents an increase of 78 percent. Then, we used a binomial pricing model to consecutively 
estimate the value at each phase. The parameters of the model come from the drug development 
cost assumptions detailed in Table 3, and from the probabilities of transitioning and duration 
per phase presented in Table 1. We take the standard discount rates per phase used in this 
industry: 30 percent for preclinical to phase I, phase I to phase II and phase II to phase III, 25 
percent for phase III to NDA, 15 percent for NDA to market. These high discount rates are 
consistent with Ewens et al. (2013), which shows that VCs bear a very high idiosyncratic risk. 
For the standard deviation, we took an average standard deviation to mean ratio of 1.19. Then, 
we used these values as parameters of the lognormal distribution to draw the simulation of the 
compound values at each phase. Results are presented in Table 5 column (1). 

The correlation among the valuations of different compounds is a critical determinant of the 
megafund return. Using our new dataset, we find a mean pairwise correlation of 11 percent 
over the period 2010 to 2021. However, in our base scenario, we prefer to use a more 
conservative correlation of 20 percent, like in Fernandez et al. (2012). 



Table 5 Cancer compound valuation lognormal distribution parameters 

 (1) (2) (3) (4) 

  
Value (in $ million) 

Standard 
deviation 

 μ  σ 

Preclinical 26.6 36.4 2.75 1.03 

Phase I 50.1 68.6 3.39 1.03 

Phase II 129.2 177.0 4.33 1.03 

Phase III 632.8 866.9 5.92 1.03 

NDA 2605.7 3569.9 7.34 1.03 

Approved 2914.0 3992.2 7.45 1.03 

 

3. Results 

Using the results established in Part 2, we run a 10,000-path simulation, with alternatively two 
different financing structures: a 100 percent equity financed project and a three-tranches 
(senior, junior, equity) RBO structure. The time horizon of this project is 15 semesters. The 
bonds receive semi-annual coupons and are amortized in equal instalments over various periods 
of time. The senior bonds have a maturity of 4 years. The junior bonds have a maturity of 6 
years. These simulations focus on the early stage investments from the Preclinical phase until 
when the compounds are sold and transition to Phase II. They correspond to the realm of VCs 
and biotechnological companies as opposed to the late stage investments which are typically 
the domain of large pharmaceutical companies. Using the method developed in Fernandez et 
al. (2012), with the probability of success matrix, the costs and the valuation estimates 
presented in part 2, we simulate the cash flows invested and generated for an investor by the 
transition of the compounds from the Preclinical Phase to the Phase II.  

Table 6 presents the results of the simulation and their summary statistics. Starting with 100 
and 200 programs for respectively the all-equity and the RBO structures, we find that 49.7 and 
91.8 compounds reach the goal of entering Phase II, compared to 52.8 and 101.7 compounds 
for Fernandez et al. (2012). This reduction in the number of compounds that reach the Phase II 
highlights the increasing complexity of passing clinical trials successfully (Marko, 2013). 
However in our simulation, a higher number of compounds were finally approved by the FDA 
to be marketed. This reflects the recent rebound in the probability of success following the 
immunotherapy revolution.  

The results of our simulation show that the megafund is profitable on the period from 2000 to 
2015. The senior tranche bond investors received an annual yield of 5 percent and were repaid 
in full 100 percent of the time, which is comparable to historical default rates of the highest-
rated AAA bonds. Junior-tranche bond investors were paid an annual yield of 8 percent and 
repaid in full 96.7 percent of the time. This represents a higher default risk than in Fernandez 
et al. (2012), and is due to a higher volatility of equity. Equity-tranche investors received an 
average annual return of 9.7 percent for the all-equity fund, and 9.6 percent for the RBO fund, 
compared to 7.1 percent and 8.9 percent. These improving performances are even better when 
we consider the median returns on equity with 10.2 percent for the all-equity fund and 14.8 
percent for the RBO fund, versus respectively 7.2 percent and 10.9 percent in Fernandez et al. 
(2012). This difference between the average and median returns comes the highly skewed 
nature of the distribution (see Figure 1). The probability of losing money has slightly decreased 



and the probability of earning more than 15 percent has substantially increased. The 
immunotherapy revolution and the increasing probability of success are reflected into a higher 
return for the megafund. Nonetheless, albeit progressing, these returns fall short of the rates of 
return required by VCs and PE investors for this type of early stage investments.  

Table 6 Summary statistics of the simulation results 

 
Our results 

Fernandez et al. 
(2012) 

  
All-Equity 

Research-
Backed 

Obligations 

All-
Equity 

Research-
Backed 

Obligations 

Number of Compounds     

Preclinical 50 100 50 100 

Phase I 50 100 50 100 

 
    

Correlation 20% 20% 20% 20% 

 
    

Number of compounds to reach Phase II  49.7 91.8 52.8 101.7 

Number of compounds sold in Phase III 0.7 1.9 0.9 2.3 

Number of compounds sold once approved 0.8 1.2 0.6 1.0 

 
    

Liabilities     

Capital ($ million) 2,500 5,000 2,500 5,000 

Senior Tranche ($ million)  — 1,250 — 1,250 

Junior Tranche ($ million)  — 1,250 — 1,250 

Equity Tranche ($ million) 2,500 2,500 2,500 2,500 

 
    

Equity Tranche Performance     

Average annualized return on equity (S.E.) 
9.7%  9.6%  7.1% 8.9% 

(9.1%) (24.2%) (7.7%) (15.3%) 

Median annualized return on equity 10.2% 14.8% 7.2% 10.9% 

Prob. (return on equity < 0) 14% 18% 17% 20% 

Prob. (return on equity > 5%) 71% 82% 61% 68% 

Prob. (return on equity > 15%) 30% 50% 15% 35% 

 
    

Debt Tranches Performance      

Senior Tranche: default prob., expected loss (bp)  — 0%, 0 — 0%, 0 

Junior Tranche: default prob., expected loss (bp)  — 3.3%, 8.9 — 0.8%, 2.4 

bp: basis points. 

 



Figure 1 Distribution of the returns on equity for the RBO fund  

 
4. Conclusion 

Since 2011, when the FDA approved the first immune checkpoint inhibitors, the cancer 
immunotherapy revolution has dramatically changed the game in cancer drug development. In 
this paper, we investigate the implication of this medical breakthrough on the profitability of 
investment in the cancer biotech industry. We develop a megafund investment proposal that 
reflects the new realities of this sector by covering a research period from 2000 to 2015 in the 
United States. We estimate a new Transition Probability Matrix and a new Markov Chain from 
POS oncology data. We also use a new cancer compound valuation based on an original dataset 
of cancer biotech IPOs. We calculate new R&D costs assumptions.  

Our results establish an improvement in the return of a cancer megafund, but still insufficient 
to compensate for the risk of this type of investment. The financing of the cancer biotech 
companies remains a difficult issue, even after discounting the major advances in the immuno-
oncology research. It confirms the pessimistic views of Pisano (2006) and Lazonick and Tulum 
(2011) on the sustainability of the current financial model in the biotech industry. This raises 
the question of public investments and innovation policies in the face of market failure 
(Mazzucato, 2016). However, the immunotherapy approach is continuously delivering new 
treatments like for example the near-infrared photoimmunotherapy (Maruoka et al., 2021). This 
may dramatically change the current environment. Consequently, it is important to regularly 
revisit this issue. We leave it for future research.  

  



 

References 

 
Adams, Christopher P., and Van V. Brantner. (2006). "Estimating the cost of new drug 
development: is it really $802 million?." Health affairs, 25(2), 420-428. 
 

Brown, J. R., Martinsson, G., & Petersen, B. C. (2017). What promotes R&D? Comparative 

evidence from around the world. Research Policy, 46(2), 447-462. 

 

Coad, A., & Rao, R. (2006). Innovation and market value: a quantile regression analysis. 

Economics Bulletin, 15(13). 

 

Cochrane, John H. "The risk and return of venture capital." (2005). Journal of financial 

economics, 75(1), 3-52. 

 

Cockburn, I., & Lerner, J. (2009). The cost of capital for early-stage biotechnology 

ventures. Congressional Briefing 

 http://buchpedersen.com/wp-content/uploads/2016/02/The-Cost-of-Capital-for-Early-Stage-

Biotechnology-Ventures_CockburnLerner. pdf. 

 

Debonneuil, E., Eyraud-Loisel, A., & Planchet, F. (2018). Can pension funds partially manage 

longevity risk by investing in a longevity megafund?. Risks, 6(3), 67. 

 

DiMasi, J. A., Hansen, R. W., & Grabowski, H. G. (2003). The price of innovation: new 

estimates of drug development costs. Journal of health economics, 22(2), 151-185. 

 

DiMasi, J. A., Grabowski, H. G., & Hansen, R. W. (2016). Innovation in the pharmaceutical 

industry: new estimates of R&D costs. Journal of health economics, 47, 20-33. 

 
Ewens, Michael, Charles M. Jones, and Matthew Rhodes-Kropf. (2013). "The price of 
diversifiable risk in venture capital and private equity." The Review of Financial Studies, 
26(8), 1854-1889. 
 
Fagnan, D. E., Fernandez, J. M., Lo, A. W., & Stein, R. M. (2013). Can financial engineering 

cure cancer?. American Economic Review, 103(3), 406-11. 

 

Fernandez, J. M., Stein, R. M., & Lo, A. W. (2012). Commercializing biomedical research 

through securitization techniques. Nature biotechnology, 30(10), 964-975. 

 
Giaccotto, Carmelo, Joseph Golec, and John Vernon. (2011), "New estimates of the cost of 
capital for pharmaceutical firms." Journal of Corporate Finance, 17(3), 526-540. 
 
Hall, B.H. (2002), “The financing of research and development”, Oxford Review of 
Economic Policy, Vol. 18 No. 1, pp. 35-51. 



 
Hall, Bronwyn H., and Josh Lerner. (2010). "The financing of R&D and innovation." 
Handbook of the Economics of Innovation. Vol. 1. North-Holland, 609-639. 
 
Hall, B. H., Moncada-Paternò-Castello, P., Montresor, S., & Vezzani, A. (2016). Financing 
constraints, R&D investments and innovative performances: new empirical evidence at the 
firm level for Europe. Economics of Innovation and new Technology, 25(3), 183-196. 
 
Harrington, Scott E. (2012). "Cost of capital for pharmaceutical, biotechnology, and medical 
device firms." The Oxford handbook of the economics of the biopharmaceuticals industry, 
75-99. 
 

Hull, John C., Andrew W. Lo, and Roger Stein. (2019). "Funding long shots." The Journal of 
Investment Management, 17(4), 9-41. 
 
Hyytinen, A., & Toivanen, O. (2005). Do financial constraints hold back innovation and 
growth?: Evidence on the role of public policy. Research policy, 34(9), 1385-1403. 
 
Kelly, Priscilla N. (2018). "The cancer immunotherapy revolution." Science, 359(6382), 
1344-1345. 
 

Kerins, Frank, Janet Kiholm Smith, and Richard Smith. (2004). "Opportunity cost of capital 

for venture capital investors and entrepreneurs." Journal of financial and quantitative analysis, 

39(2), 385-405. 

 

Kerr, William R., and Ramana Nanda. (2014). “Financing innovation.” No. w20676. National 

Bureau of Economic Research. 

 

Lazonick, William, and Öner Tulum. (2011). "US biopharmaceutical finance and the 

sustainability of the biotech business model." Research Policy, 40(9), 1170-1187. 

 

Lerner, Josh, and Ramana Nanda. (2020). "Venture capital's role in financing innovation: What 

we know and how much we still need to learn." Journal of Economic Perspectives, 34(3), 237-

61. 

 

Lo, Andrew W., and Kien Wei Siah. (2021). "Financing Correlated Drug Development 

Projects." The Journal of Structured Finance, 27(1), 17-34. 

 

MacMinn, R. D., & Zhu, N. (2017). Hedging longevity risk in life settlements using biomedical 

research‐backed obligations. Journal of Risk and Insurance, 84(S1), 439-458. 

 

Malerba, Franco, and Luigi Orsenigo. (2015). "The evolution of the pharmaceutical industry." 

Business history, 57(5), 664-687. 

 

Marko, N. F. (2013). The cancer megafund: determinants of success. Nature 

biotechnology, 31(6), 492-494. 



 

Maruoka, Y., Wakiyama, H., Choyke, P. L., & Kobayashi, H. (2021). Near infrared 

photoimmunotherapy for cancers: A translational perspective. EBioMedicine, 70, 103501. 

 

Mazzucato, Mariana. (2016). "From market fixing to market-creating: a new framework for 

innovation policy." Industry and Innovation, 23(2), 140-156. 

 

Morales, R., & Radoniqi, F. (2018). Intangibles and the market value of biopharmaceutical 

startups. The Journal of Business Inquiry, 18(2), 82-99. 

 

Pisano, Gary P. (2006). Science business: The promise, the reality, and the future of biotech. 

Harvard Business Press. 

 

Paul, S. M., Mytelka, D. S., Dunwiddie, C. T., Persinger, C. C., Munos, B. H., Lindborg, S. R., 

& Schacht, A. L. (2010). "How to improve R&D productivity: the pharmaceutical industry's 

grand challenge". Nature reviews Drug discovery, 9(3), 203-214.  

 

Rocha, L. A., Cárdenas, L. Q., Oliveira, F. S. D., Lopes, F. D., & Fernandes, K. C. (2018). The 

impact of R&D investments on performance of firms in different degrees of proximity to the 

technological frontier. Economics bulletin. Nashville. Vol. 38, n. 2 (2018), p. 1156-1170. 

 

Ringel, M., Scannell, J., Baedeker, M., & Schulze, U. (2020). "Breaking Eroom’s Law". Nature 

Reviews Drug Discovery, 19, 833–834. 

 

Smietana, K., Siatkowski, M., & Møller, M. (2016). "Trends in clinical success rates." Nature 

Reviews Drug Discovery, 15(6), 379-80. 

 

Tenenbaum, J. M. (2013). The cancer megafund: a catalyst for disruptive innovation. Nature 

Biotechnology, 31(6), 491-492. 

 

Thakor, R. T., Anaya, N., Zhang, Y., Vilanilam, C., Siah, K. W., Wong, C. H., & Lo, A. W. 

(2017). "Just how good an investment is the biopharmaceutical sector?". Nature biotechnology, 

35(12), 1149-1157. 

 
Thomas, D., D. Chancellor, A. Micklus, S. LaFever, M. Hay, S. Chaudhuri, R. Bowden, and 
A. W. Lo. (2021). "Clinical development success rates and contributing factors 2011–2020."  
in Biotechnology Innovation Organization, Informa Pharma Intelligence, Quantitative Life 
Sciences, Washington, DC. 
 

Wong, C. H., Siah, K. W., & Lo, A. W. (2019). "Success Rates 2006–2015." San Diego: 

Biomedtracker. Estimation of clinical trial success rates and related parameters. Biostatistics, 

20(2), 273-286. 

 



Yang, X., Debonneuil, E., Zhavoronkov, A., & Mishra, B. (2016). "Cancer megafunds with in 

silico and in vitro validation: accelerating cancer drug discovery via financial engineering 

without financial crisis". Oncotarget, 7(36), 57671. 

 


