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1 Introduction

In this paper, we study a standard exchange economy model with two consumers of Cobb-Douglas type
and two goods.1 Denote the two consumers by i = 1, 2 and the two goods by x and y. Let α, β ∈ (0, 1).
We assume that the consumer 1 has the utility function u1(x, y) = xαy1−α and the consumer 2 has the
utility function u2(x, y) = xβy1−β in the consumption space R

2
+. Also, we assume that the consumer 1

has the initial endowment w1 = (x̄, 0) and the consumer 2 has the initial endowment w2 = (0, ȳ) where
x̄, ȳ > 0. Fix the price of good y as 1 and that of good x as p > 0. Then by the standard optimisation
result under the budget constraints, we obtain the excess demand function z(p) for good x, that is given by
z(p) = ȳβ/p − x̄(1 − α). Now we define the Walras-Samuelson (tatonnement) price adjustment process by

pt+1 = f(pt) = pt + λz(pt) = pt + λ[ȳβ/pt − x̄(1 − α)] where λ ∈ R++. (1.1)

Note that λ denotes the speed of adjustment and pj denote the price of good x at time j.

Let E = (0, 1) × (0, 1). Then the following (that is a slight extension of (Bhattacharya & Majumdar,
2007, Prop. 9.10)) is not difficult to show (see Section 3 for a proof):

Proposition 1.1. There exist open sets A ⊂ E, B ⊂ R
2
++, and C ⊂ R++ such that if (α, β) ∈ A, (x̄, ȳ) ∈ B,

and λ ∈ C then the process (1.1) has a period three cycle (hence exhibits a Li-Yorke chaos).

It is well-known that the existence of a period three cycle implies a Li-Yorke chaos (by the famous Li-
Yorke theorem (Li & Yorke, 1975, Thm. 1)), and this argument has been used a lot in economic literature,
see Benhabib and Day (1980), Benhabib and Day (1982), Day and Shafer (1985), Nishimura and Yano (1996)
for example. However, this is a bit overkill: by (Block & Coppel, 1992, Chap. II), we know that the existence
of a cycle of any odd length (not necessarily of period three) implies a Li-Yorke chaos. The main result of this
paper extends Proposition 1.1 in the following way (see Theorem 1.5 for a precise statement): 1. Replace
a period three cycle with an odd period cycle (or a turbulence for the second iterate), 2. Give a specific
(algebraic) form of the sets A, B, and C, 3. Give a necessary and sufficient condition for the existence of
an odd period cycle (or a turbulence for the second iterate) rather than giving a sufficient condition only
(that is usually done in many economic literature such as Benhabib and Day (1980), Benhabib and Day
(1982), Day and Shafer (1985), Nishimura and Yano (1996)). Now we clarify what we mean by a Li-Yorke
chaos, a turbulence, and a topological chaos. (There are several definitions of a chaos in the literature.) The
following definitions are taken from (Ruette, 2017, Def. 5.1) and (Block & Coppel, 1992, Chap. II). Let g be
a continuous map of a closed interval I into itself:

Definition 1.2. We say that g exhibits a Li-Yorke chaos if there exists an uncountable scrambled set S ⊂ I,
that is, for any x, y ∈ S we have

lim sup
n→∞

| gn(x) − gn(y) |> 0 and lim inf
n→∞

| gn(x) − gn(y) |= 0,

and for x ∈ S and y being a periodic point of g,

lim sup
n→∞

| gn(x) − gn(y) |> 0.

Definition 1.3. We call g turbulent if there exist three points, x1, x2, and x3 in I such that g(x2) = g(x1) =
x1 and g(x3) = x2 with either x1 < x3 < x2 or x2 < x3 < x1. Moreover, we call g (topologically) chaotic if
some iterate of g is turbulent.

It is known that a map g is topologically chaotic if and only if g has a periodic point whose period is
not a power of 2, see (Block & Coppel, 1992, Chap. II). This implies that a map g is topologically chaotic

1Since a Cobb-Douglas utility function is a special case of a CES-type utility function, one might try to use a general CES

utility function, that is u(x, y) =
(

aix
bi + (1 − ai)y

bi

)

1/bi

. However, in that case, it becomes very difficult (if not impossible)

to obtain a precise algebraic characterisation for the existence of an odd cycle (as we did in this paper). If one still wants
to use a general CES utility function, then it would be necessary to rely on some numerical computations to obtain a similar
characterisation.



if and only if the topological entropy of g is positive, see (Block & Coppel, 1992, Chap. VIII). So, in this
paper, we focus on a special type of a topological chaos (or a positive topological entropy) in the context of
price dynamics. See Ruette (2017) for more characterisations and (subtle) mutual relations of various kinds
of chaos.

To state our main result (Theorem 1.5), we need some preparation. In particular, we recall the following
mathematical result characterising the existence of a topological chaos for a unimodal interval map (Deng,
Khan, & Mitra, 2022, Cor. 3). Our main result is a direct application of this result. Let G be the set of
continuous maps from a closed interval [a, b] to itself so that an arbitrary element g ∈ G satisfies the following
two properties:

1. there exists m ∈ (a, b) with the map g strictly decreasing on [a, m] and strictly increasing on [m, b].

2. g(a) > a, g(b) ≤ b, and g(x) < x for all x ∈ [m, b).

For g ∈ G, let Π := {x ∈ [a, m] | g(x) ∈ [a, m] and g2(x) = x}. Now we are ready to state (Deng et al., 2022,
Cor. 3):

Proposition 1.4. Let g ∈ G. The map g has an odd-period cycle if and only if g2(m) > m and g3(m) >
max{x ∈ Π} and the second iterate g2 is turbulent if and only if g2(m) > m and g3(m) ≥ min{x ∈ Π}.

Finally, we are ready to state our main result. We keep the same notation f , x̄, ȳ, α, β, and λ from
Equation (1.1). We write f |E for the restriction of f to the closed interval E := [f(

√
ȳλβ), f2(

√
ȳλβ)+

√
ȳλβ].

(We will explain the significance of the number
√

ȳλβ and the reason for the choice of E in the next section.)
Note that in the next section we will show that f(

√
ȳλβ) < f2(

√
ȳλβ) +

√
ȳλβ) (so, E is a non-degenerate

closed interval) and that f |E is a map to E.

Theorem 1.5. Let ȳβ
x̄2(1−α)2 < λ < 4ȳβ

x̄2(1−α)2 . Then the map f in Equation (1.1) has the following properties:

1. f |E ∈ G.

2. f |E has an odd period cycle if and only if 25ȳβ
9x̄2(1−α)2 < λ < 4ȳβ

x̄2(1−α)2 .

3. The second iterate (f |E)2 is turbulent if and only if 25ȳβ
9x̄2(1−α)2 ≤ λ < 4ȳβ

x̄2(1−α)2 .

4. If 25ȳβ
9x̄2(1−α)2 ≤ λ < 4ȳβ

x̄2(1−α)2 , then the closed interval E is attracting for f , that is, fn(p) ∈ E for some

n ∈ N.

Now, several comments are in order. First, in the next section, we will show that the condition ȳβ
x̄2(1−α)2 <

λ < 4ȳβ
x̄2(1−α)2 above is the weakest condition for f to be economically meaningful (to keep p > 0) and also

for f |E to be in G. In particular, the upper bound for λ directly follows from the requirement p > 0. So,
the upper bound in parts 2, 3, and 4 for λ is not really interesting. The real meat is in the lower bound.

Second, it is well-know that the vertical stretch the graph of f controls the existence of a chaos: if we
stretch the graph further, we are likely to obtain a chaos. Now, looking at Equation (1.1), we see that if
we make α, β, ȳ small, or x̄ large, the ”valley” of the graph of f goes deep down. Also, it is clear that a
small λ makes the graph of f ”flat”. Our lower bound L := 25ȳβ

9x̄2(1−α)2 agrees with these observations: L is an

increasing function of α, β, ȳ and a decreasing function of x̄. In other words, it is easy to generate a chaos
(small λ gives a chaos) if α, β, or ȳ is small or x̄ is large. We give an economic explanation for this. By
looking at the form of the excess demand function z(p) = ȳβ/p − x̄(1 − α) (or the demand function of each
consumer for good x, that is, x = αx̄ for consumer 1 and x = βȳ

p
for consumer 2 respectively), we see that

p goes up very sharply (almost irrespective of the parameter values) after p gets close to 0. To generate a
chaos, p needs to drop sharply afterwords, that is possible (or at least easy) if α, β, or ȳ is small or x̄ is large
for the following reasons: 1. if α or β is small, the demand for good 1 is weak (thus p drops sharply), 2. if ȳ
is small, then the demand of consumer 2 for good x (that was excessively strong when p is close to 0) drops
sharply (since the budget for consumer 2 is tight), 3. if x̄ is large, when p is very high, a large excess supply
happens.

Third, part 4 of Theorem 1.5 shows that if λ is sufficiently large, for any initial p > 0, our price dynamics
eventually trap p inside a (Li-Yorke) chaotic region E. This is interesting since parts 1, 2, and 3 say nothing



about what is going on outside of E. This sort of analysis is not done in Deng et al. (2022). We would like
to obtain a similar characterisation of this behaviour (in terms of the iterates of g(m) as in Proposition 1.4)
for a general continuous unimodal map in the future.

Fourth, our results are sensitive to the parameter values chosen (i.e., α, β, x̄, ȳ). Thanks to the precise
algebraic form of the lower/upper bound for λ, we can measure the sensitivity with respect to each parameter
value: just take the partial derivatives of the lower/upper bound.

Finally, we give an application of Theorem 1.5. By the Sharkovsky order in Sharkovsky (1964), we know
that if the map f has a cycle of period three, then it also has a cycle of any odd order. Thus, it is natural to
guess that if λ is close to the lower bound for λ in Theorem 1.5 (but still above the lower bound), the map
f has an odd period cycle but no period three cycle. We give one example where this is actually the case.
Using our concrete characterisation of the existence of an odd period cycle, we obtain:

Proposition 1.6. Let x̄ = 4, ȳ = 2, α = 0.75, β = 0.5. If 2.77 < λ ≤ 3.00, then the map f in Equation (1.1)
has an odd period cycle but no period three cycle.

Note that in this case, the lower bound is 25ȳβ
9x̄2(1−α)2 = 2.77 and the upper bound is 4ȳβ

x̄2(1−α)2 = 4. Our

numerical computation (see Section 3 for details) shows that Proposition 1.6 is almost an if and only if
statement: for λ ≥ 3.01, we get a period three cycle. Although many examples of this sort can be obtained
by the same method, a complete characterisation for the existence of a period three cycle for a unimodal
map is not known. (Thus it is not possible to obtain the precise λ value where a bifurcation happens.) We
leave it for a future work.

2 Proof of Theorem 1.5

In the following proof, most results follow from direct (but slightly messy) algebraic calculations. We
give some sketches of our manipulations while pointing some important steps out rather than writing all the
details. All calculations can be easily checked by a computer algebra system, say, Magma Bosma, Cannon,
and Playoust (1997), Python Rossum and Drake (2009), etc.

First, for the function f in Equation (1.1), we have f ′(p) = 1 − ȳλβ
p2 and f ′′(p) = 2ȳλβ

p3 > 0 for any p > 0.

So, f is strictly convex (unimodal) and takes its minimum at p =
√

ȳλβ. We sometimes write s for
√

ȳλβ
to ease the notation. First of all, since we assume that p > 0, we must have f(p) > 0 for any p > 0, hence
f(s) > 0. This gives that λ < 4ȳβ

x̄2(1−α)2 .

Next, we want (a restriction of) f to be in G. Note that any function f in G must have some m in
its interior of the domain, say [a, b], with f strictly decreasing on [a, m] and strictly increasing on [m, b].
Since our f is unimodal, this forces m to be s. Moreover f needs to satisfy f(p) < p for all p ∈ [s, b). So in
particular, we must have f(s) < s. This implies ȳβ

x̄2(1−α)2 < λ. Note that s < f2(s)+s since f2(s) > 0 (under

the condition λ < 4ȳβ
x̄2(1−α)2 ), so we have f(s) < s < f2(s) + s. Now we set a := f(s) and b := f2(s) + s.

(Now it is clear that [a, b] is non-degenerate.)

Lemma 2.1. If ȳβ
x̄2(1−α)2 < λ < 4ȳβ

x̄2(1−α)2 , then f |E ∈ G.

Proof. We need to show three things: (1) f(a) > a and f(b) ≤ b. (2) f(p) < p for all p ∈ [s, b). (3) f |E is

a map from E to itself. We begin with (2). Let p ∈ [s, b). Then we have p − f(p) = −λ[ ȳβ
p

− x̄(1 − α)].

Since λ > 0 and ȳβ
p

− x̄(1 − α) ≤ ȳβ
s

− x̄(1 − α), it is enough to show that ȳβ
s

− x̄(1 − α) < 0. Now
ȳβ
s

−x̄(1−α) = ȳβ√
ȳλβ

−x̄(1−α), so ȳβ
s

−x̄(1−α) < 0 is equivalent to λ > ȳβ
x̄2(1−α)2 , that is certainly true (since

this is our assumption). Now we show that the same argument gives f(b) < b in (1). (This strict inequality
is stronger than we need here, but we need it to prove part 4 of Theorem 1.5, see the proof of Lemma 2.6
below.) We have b − f(b) = −λ[ ȳβ

f2(s)+s
− x̄(1 − α)]. Since λ > 0 and ȳβ

f2(s)+s
− x̄(1 − α) < ȳβ

s
− x̄(1 − α), it

is enough to show that ȳβ
s

− x̄(1 − α) < 0. We have shown that this is true. Next we show that f(a) > a.

By a direct calculation, we have that f(a) − a = f(f(s)) − f(s) = λ[ ȳβ
f(s) − x̄(1 − α)] > 0 is equivalent to

(√
λ −

√
ȳβ

x̄(1−α)

)2

> 0. Now the assumption ȳβ
x̄2(1−α)2 < λ forces f(a) − a > 0.



To prove (3), we need to show that the maximum value of f |E does not exceed b = f2(s) + s (that the
minimum value of f |E , that is f(s), is in E is clear). Since f is unimodal, the maximum of f on E is taken
either at a or at b. For the first case, we have f(a) = f(f(s)) = f2(s) < f2(s) + m = b. For the second case,
we need f(b) ≤ b, but this is true by part (1) above.

We have proved part 1 of Theorem 1.5. We assume ȳβ
x̄2(1−α)2 < λ < 4ȳβ

x̄2(1−α)2 for the rest of the paper.

Now we are ready to prove parts 2 and 3 of the theorem. In view of Proposition 1.4 and Lemma 2.1, we
only need to translate two conditions f2(m) > m and f3(m) > max{x ∈ Π} (or f3(m) ≥ min{x ∈ Π}) in
terms of x̄, ȳ, α, β, and λ. First we show that

Lemma 2.2. f2(s) > s if and only if 9ȳβ
4x̄2(1−α)2 < λ.

Proof. Under the condition ȳβ
x̄2(1−α)2 < λ, a direct computation shows that f2(s) > s is equivalent to

2x̄2(1 − α)2λ − 5x̄(1 − α)
√

ȳβλ + 3βȳ > 0. Now the statement follows.

Next we show that

Lemma 2.3. If 9ȳβ
4x̄2(1−α)2 < λ, then the set Π = {x ∈ [a, s] | f(x) ∈ [a, s] and f2(x) = x} is a singleton,

namely Π = { ȳβ
x̄(1−α) } (the unique fixed point for f |E).

Proof. First, we compute the fixed points of f |E . Solving f(p) = p for p > 0, we obtain p = ȳβ
x̄(1−α) . So,

f has the unique fixed point, which we name z. It is clear that z < s (this follows from ȳβ
x̄2(1−α)2 < λ)

and a ≤ z (since a = f(s) is the minimum of f). So, we have z ∈ Π. Next, we compute the pe-
riod 2 points for f on [a, s]. Solving f2(p) = p for p (with Python), we get p = ȳβ

x̄(1−α) , − x̄αλ
2 + x̄λ

2 −
1
2

√

x̄2α2λ2 − 2x̄2αλ2 − 2ȳβλ + x̄2λ2, − x̄αλ
2 + x̄λ

2 + 1
2

√

x̄2α2λ2 − 2x̄2αλ2 − 2ȳβλ + x̄2λ2. The first p is z (the
fixed point), and the other two points are the period 2 points. We name the last two points as w1 and w2

respectively (w1 ≤ w2). If we show that s < w2, we are done. A direct calculation (with Python) shows that
s < w2 is equivalent to 9ȳβ

4x̄2(1−α)2 < λ (this is our assumption).

Now we assume 9ȳβ
4x̄2(1−α)2 < λ. (So Π is a singleton.) Finally we show

Lemma 2.4. f3(s) > max{x ∈ Π} if and only if 25ȳβ
9x̄2(1−α) < λ.

Proof. This calculation is a bit involved, so we give some details. Let z be the fixed point of f . Since we
know that max{x ∈ Π} = {z}, we have

f3(s) − max{x ∈ Π} = f(f2(s)) − z

= f(f2(s)) − f(z)

=

(

f2(s) + λ

[

ȳβ

f2(s)
− x̄(1 − α)

])

−
(

z + λ

[

ȳβ

z
− x̄(1 − α)

])

= f2(s) − z + λ

[

ȳβ

f2(s)
− ȳβ

z

]

= f2(s) − z − ȳβλ

[

f2(s) − z

zf2(s)

]

= (f2(s) − z)

(

1 − ȳβλ

f2(s)z

)

We consider the first term of the last expression. A direct calculation shows that s > z if and only if
λ > ȳβ

x̄2(1−α)2 (which we already assumed). So, we have f2(s) − z > f2(s) − s > 0. (The last inequality

followed from Lemma 2.2.) Next, a direct calculation shows that the second term of the last expression is
positive if and only if 3x̄2(1 − α)2λ − 8x̄(1 − α)

√
ȳβλ + 5ȳβ > 0. Now we see that under the condition

ȳβ
x̄2(1−α)2 < λ, this is equivalent to 25ȳβ

9x̄2(1−α)2 < λ.



It is clear that min{x ∈ Π} = {z}. So by the same argument, we obtain

Lemma 2.5. f3(s) ≥ min{x ∈ Π} if and only if 25ȳβ
9x̄2(1−α) ≤ λ.

Note that 9ȳβ
4x̄2(1−α)2 ≈ 2.25ȳβ

x̄2(1−α)2 < 2.78ȳβ
x̄2(1−α)2 ≈ 25ȳβ

9x̄2(1−α)2 . By Proposition 1.4 and Lemmas 2.1, 2.2, 2.3,

2.4, 2.5, we have proved parts 2 and 3 of Theorem 1.5. Finally, we are left to show (part 4 of Theorem 1.5):

Lemma 2.6. If 25ȳβ
9x̄2(1−α)2 ≤ λ < 4ȳβ

x̄2(1−α)2 , then the closed interval E is attracting for f , that is, fn(p) ∈ E

for some n > 0.

Proof. Since E = [a, b], we need to prove: 1. if 0 < p < a, then fn1(p) ∈ E for some n1 ∈ N, 2. if b < p,
then fn2(p) ∈ E for some n2 ∈ N. Note that if 0 < p < a (the first case), then f(p) ≥ f(s) = a since
f(s) is a global minimum for f , thus we just need to consider the second case. Let p > b. Then we have
f(p) − p = λ[ ȳβ

p
− x̄(1 − α)] ≤ λ[ ȳβ

b
− x̄(1 − α)] = f(b) − b < 0. (The last strict inequality follows from

ȳβ
x̄2(1−α)2 < λ, see the proof of Lemma 2.1) This shows that if p > b, in each iteration of f , the value of p

drops by b − f(b) > 0 at least. So, to prove that p is attracted to E, it is enough to show that the size of the
drop is not too big (thus p does not jump over E). Therefore, it is sufficient to have p − f(p) ≤ b − a. Since
this is equivalent to λ[x̄(1 − α)] ≤ f2(s) + s − f(s) and s − f(s) > 0 under our assumption on λ, it suffices
to show that λ[x̄(1 − α)] ≤ f2(s). After some computations, we obtain

f2(s) − λ[x̄(1 − α)] =
λ

[

3x̄2(1 − α)2λ − 8x̄
√

ȳ(1 − α)
√

βλ + 5ȳβ
]

x̄(α − 1)λ + 2
√

ȳβλ
.

We check that in the last expression, the denominator is strictly positive if 0 < λ < 4ȳβ
x̄2(1−α)2 (this follows

from our assumption). Also, we see that the numerator is positive if 25ȳβ
9x̄2(1−α)2 ≤ λ.

3 Proofs of Propositions 1.1 and 1.6

Proof of Proposition 1.1. The first part of the following argument is a replicate of (Bhattacharya & Majum-
dar, 2007, Proof of Prop. 9.10). We include this to make the paper self-contained. Let (α, β) = (0.75, 0.5),
(x̄, ȳ) = (4, 2), and λ = 3.61. Then we have f(3.75) = 1.9, f(1.9) = 0.19, f(0.19) = 15.58 > 3.75. So, by the
Li-Yorke theorem, there exists a period three cycle. Also, by (Bhattacharya & Majumdar, 2007, Prop. 9.10
and its proof), we know that the choices of (α, β) and λ are robust (for this fixed (x̄, ȳ)), so it is clear that
there exist open sets A and C as in Proposition 1.1. Thus, the only thing we need to show is that the choice
of (x̄, ȳ) is also robust. This follows from the following numerical/graphical argument.

In Figure 1, we plot the graphs of pt+1 = f(pt) (blue) and pt+3 = f3(pt) (orange) together with the 45◦

line (green). We see that the orange curve crosses the green line at p∗ (the red dot) between p = 2 and
p = 3. A numerical computation gives p∗ ∼= 2.66, and it is clear that p∗ is a point of period three. (From
the picture we see that p∗ is not a fixed point.) Since the orange curve crosses (but not touching) the green
line at p∗ and f3 is continuous in x̄ and ȳ, a small perturbation of x̄ and ȳ does not affect the existence of a
period three cycle. So, there exists an open set B as required. (Actually, this graphical argument gives the
existence of open sets A and C as well.)

Proof of Proposition 1.6. Let (x̄, ȳ) = (4, 2), (α, β) = (0.75, 0.5), and 2.77 < λ ≤ 3.00. Then by Theorem 1.5
it is clear that the map f has an odd period cycle. Only thing we need to show now is that f does not have
a period three cycle. We use a graphical/numerical argument. In Figures 2, 3, and 4 we plot the graphs of
f (blue) and f3 (orange) with the 45◦ line (green). A general pattern is that if we increase λ, the graph
of f gets slightly deeper down, and f3 becomes more ”wavy”. (Compare Figure 1 (λ = 3.61) to Figure 2
(λ = 2.78) for example.) For Figure 2 (λ = 2.78), using a numerical computation, we have checked that
the orange curve does not touch/cross the green line except at p = 1 (the fixed point of f). Thus, there is
no period three cycle in this case. Likewise, for Figure 3 (λ = 3), there is no period three cycle (although
the orange curve seems touching the green line but a numerical computation shows that it is not touching).
However, if λ = 3.01, a numerical computation shows that there exists a period three cycle. In Figure 4, we
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Figure 1: λ = 3.61
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Figure 2: λ = 2.78
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Figure 3: λ = 3.0
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Figure 4: λ = 3.05

plotted the λ = 3.05 case since the λ = 3.01 case is indistinguishable from the λ = 3 case in picture. It is
clear that the orange curve crosses at the green line near p = 4 (that is not a fixed point of f).

4 Related literature

We admit that our model in this paper is rather specific, say, compared to more generic models in Ben-
habib and Day (1980), Benhabib and Day (1982), or in Day and Shafer (1985). We believe that there is
always a trade-off between using a generic model with a general result and using a specific model with a
sharp result. In this paper, we focus on the latter by the following reasons: 1. Considering that obtaining
a complete characterisation (a necessary and sufficient condition) for the existence of a chaos (or an odd
period cycle to be more precise) is much more involved (as shown in this paper) than merely obtaining a
sufficient condition using ”Period three implies chaos”. So if we use the generic model as in Benhabib and
Day (1980), Benhabib and Day (1982), or in Day and Shafer (1985) to obtain a complete characterisation,
the result would be very complicated and obscure (cannot be simplified much). 2. Our purpose to obtain
a concrete (algebraic) characterisation is for applications, for example, in Uchiyama (2024a) and Uchiyama
(2024b), after obtaining a complete characterisation using the same method (and some numerical compu-
tations), we have conducted a sensitivity analysis, that is, to investigate how each parameter value affects
the existence of a chaos (with its economic interpretations). 2. In the followup paper Uchiyama (2024c), we
investigate ”ergodic properties” of our price dynamics model. Roughly speaking, we were able to show that
we can predict the future price level ”on average” even if a chaos exists. To conduct this analysis, it was
necessary to specify the function form of f and to obtain the concrete algebraic form of the characterisation
for the existence of a chaos.

It is true that if we use a discontinuous function (or a piecewise defined function), it is easy to generate
a chaos. (There are such examples in Day & Shafer (1985) and in Deng et al. (2022) for example.) Also,
there are examples in Deng et al. (2022) that use a well-studied ”logistic map”, that is a map of the form
f(x) = ax(1 − x) for some a > 0. The point of this paper is to show that even with our innocent looking
smooth continuous unimodal function (that is not of a logistic type and that naturally arises in basic economic



theory), we still obtain a chaotic behaviour if certain conditions on the parameters are met. Further, putting
some mild conditions, we obtain a complete characterisation (for the existence of an odd period cycle and
of a turbulence) in terms of those parameters.
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