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1. Introduction 
There is a small but growing number of studies on the impact of foreign direct investment 

(FDI) on economy-wide energy intensity — the ratio of energy use to GDP — in developing 

countries. The idea behind these studies is that (if the shares of agriculture, manufacturing, and 

services in GDP are held constant) an estimated negative effect of FDI on economy-wide 

energy intensity can be interpreted as evidence of a transfer of energy-saving technology from 

multinational enterprises (MNEs) to their affiliates and local firms in the host country.1 If such 

a transfer exists, then developing countries can achieve energy savings per unit of output and 

thus economic growth without a proportional growth in energy use and the associated 

environmental problems — such as air and water pollution, noise due to wind turbines and 

other energy projects, radioactive waste from nuclear energy production, and greenhouse gas 

emissions from fossil-fuel fired power plants (see, e.g., Herzer and Schmellmer, 2022). 

Therefore, the effect of FDI on energy intensity in developing countries is not only of academic 

interest but also of relevance to policy makers concerned with both economic development and 

sustainable development. 

The available evidence, however, is inconclusive. While the results of some studies 

suggest that FDI reduces energy intensity in developing countries (see, e.g., Mielnik and 

Goldemberg, 2002; Herzer and Schmelmer, 2022),2 others find insignificant effects (see, e.g., 

Hübler and Keller, 2010; Kretschmer et al., 2013).  

However, one potential problem with estimating the effect of FDI on energy intensity 

is the likely endogeneity of FDI. For example, countries with low energy intensity are typically 

characterized by lower greenhouse gas emissions and less environmental degradation. If 

foreign investors prioritize sustainable and environmentally friendly practices, they may avoid 

regions with poor environmental records. In this case, the estimated coefficients overstate the 

negative causal effect of FDI on energy intensity in developing countries. Alternatively, if 

countries with high energy intensity have less stringent energy policies and lower 

environmental standards, leading to reduced production costs, they may attract more FDI than 

low energy intensity countries for cost reasons. In this case, the estimated coefficients 

understate the negative effect of FDI on energy intensity in developing countries. 

Herzer and Schmelmer (2022) account for these biases using system generalized 

methods of moments (GMM), but most studies ignore the likely endogeneity of FDI (see, e.g., 

Mielnik and Goldemberg, 2002; Kretschmer et al., 2013), and some studies use a one-year lag 

of their FDI variable to account for endogeneity problems (see, e.g., Hübler and Keller, 2010; 

Mimouni and Temimi, 2018; Herzer and Schmelmer, 2022). However, as is well known, and 

as theoretically shown by Bellemare et al. (2017), the results in regressions with lagged 

independent variables may still be biased by reverse causality. Moreover, it is well known that 

the absence of a correlation between the current value of a variable Yit and the past value of a 

variable Xit does not necessarily imply the absence of a contemporaneous effect of Xit on Yit. 

Another potential problem with estimating the effect of FDI on energy intensity in 

developing countries is that the energy-saving effect of FDI from developed to developing 

countries (North-South FDI) may differ from the energy-saving effect of FDI from one 

developing country to another (South-South FDI). If this is the case, then using total FDI may 

conflate these effects and lead to misleading conclusions. 

 

                                                      
1 Such a transfer is typically referred to as a “technique effect”. The technique effect is closely related to the so‐
called “pollution halo effect”, which occurs if multinational firms transfer environmentally friendly technology to 
developing countries and this technology diffuses to local firms. 
2 Herzer and Schmelmer (2022) distinguish between greenfield FDI and cross-border M&As. They find that while 

the effect of cross-border M&As on energy intensity is insignificant in upper-middle-income countries, greenfield 

FDI exerts a negative and significant impact on energy intensity in these countries. They also find that both 

greenfield FDI and cross-border M&As have an insignificant impact on energy intensity in low- and lower-

middle-income countries. 



 

 

 

To understand why North-South FDI and South-South FDI may have different effects 

on energy intensity, consider the reasonable assumption that the technological gap between 

multinational enterprises (MNEs) from developed countries and local firms in developing host 

countries is larger than the technological gap between MNEs from developing countries and 

their domestic counterparts. On the one hand, a larger technology gap implies a greater 

potential for the transfer of energy-saving technology. Therefore, North-South FDI may 

contribute more to reductions in energy intensity compared to South-South FDI. On the other 

hand, a larger technology gap also suggests lower absorptive capacity, meaning domestic firms 

in many developing countries may struggle to adopt energy-saving technology from North-

South FDI. Conversely, if there is a smaller technology gap between foreign and local firms, 

facilitating easier technology absorption, energy-saving technologies are predominantly 

absorbed through South-South FDI. Additionally, multinational enterprises (MNEs) from 

developing countries tend to establish stronger linkages with local firms compared to those 

from developed countries (see, e.g., UNCTAD, 2006). This enables them to integrate more 

deeply into host economies, potentially leading to significant technology spillovers to local 

firms. Consequently, South-South FDI may have a greater negative effect on energy intensity 

than North-South FDI. 

Another relevant point is that there is evidence that foreign affiliates of MNEs from 

developing countries tend to be less energy intensive than North affiliates of North firms (see, 

e.g., Lipsey and Sjöholm, 2011). This could be interpreted as support for the pollution haven 

hypothesis, which predicts that MNEs from developed countries will relocate their energy-

intensive operations to developing countries where environmental policy is relatively weak. 

Under this hypothesis, it is possible that North-South FDI, via an increase in the relative size 

of energy-intensive industrial sectors, even leads to an increase in energy intensity. 

Overall, it is thus likely that the impact on energy intensity differs between North-South 

and South-South FDI. However, this issue has not been investigated to date, despite its clear 

policy relevance: If there are differences in the effects of FDI on energy intensity between 

North-South and South-South FDI, then knowledge of these differences could be of value to 

policy makers in developing countries who face the practical problem of identifying those 

potential foreign investors that are more likely to transfer energy-saving technology. 

Given these considerations, the objective of this study is to examine the impact of 

South-South and North-South FDI on energy intensity in developing countries using 

econometric methods that account for the likely endogeneity of FDI. More specifically, we 

make two main contributions to the literature. First, we do not focus on total FDI, but consider 

South-South and North-South FDI, using an unbalanced panel of 57 economies over the period 

2009 to 2019. Second, we employ three estimation methods that allow estimation of causal 

effects in the presence of endogeneity: the system GMM estimator of Blundell and Bond 

(1998), the difference GMM estimator of Arellano and Bond (1991), and Lewbel’s (2012) 
instrumental variable method. In addition, as a robustness check we examine the Granger 

causal relationship between North-South FDI and energy intensity, and between South-South 

FDI and energy intensity using the panel Granger causality approach recently developed by 

Juodis et al. (2021). 

Since these methods do not account for non-stationary data, there is a potential risk of 

spurious regressions if the data are non-stationary. However, this risk is expected to be small 

when there are few observations per country and a large number of countries, as in the present 

study. Nevertheless, we address this potential risk by applying panel unit root and cointegration 

techniques to a subsample of (40) countries with sufficiently long time series (Ti ≥ 10). 
Cointegration implies the existence of a (non-spurious) long-run relationship between 

two or more non-stationary variables. The advantage of cointegration estimators is that they 

are consistent under cointegration even if the regressors are endogenous. However, a problem 

with panel unit root and cointegration methods in the present case is that these methods may 

produce biased results when the number of time-series observations is small relative to the 



 

 

 

number of cross-sectional units. Therefore, panel unit root and cointegration methods are used 

here as a robustness check rather than as the main analytic tool. 

To preview our main results, we find across all our estimation methods that South-

South FDI contributes to reductions in energy intensity. The estimated effect of North-South 

FDI on energy intensity, in contrast, is statistically insignificant in all specifications but one 

(where it is weakly significantly positive). 

The remainder of this study is organized as follows. In Section 2 we present our basic 

empirical model and outline our data sources and definitions. Our results are discussed in 

Section 3. Section 4 concludes. 

 

2. Model and data 
Our basic empirical model is  

 

logENERGYit = αlogENERGYit-1 + ȕlogFDIit + ȖlogXit + μi + ft + εit 

(1) 

where i and t are country and time indices; log denotes the natural logarithm; ENERGYit 

represents economy-wide energy intensity, measured as the ratio of primary energy use (in 

megajoules) to real GDP (in PPP terms); and FDIit denotes two FDI variables. The first is the 

ratio of the stock of FDI from developed countries to GDP of developing country i, 

NorthSouthFDIit; the second is the stock of FDI from developing countries relative to GDP, 

SouthSouthFDIit. To avoid collinearity between NorthSouthFDIit and SouthSouthFDIit, we 

include these variables separately.3 

Xit is a vector of control variables including real GDP per capita, GDPPCit, imports as 

a percentage of GDP, IMPit, the consumer price index (used as a proxy for the energy price), 

CPIit, gross fixed capital formation as a percentage of GDP, GFCFit, and industrial value added 

as a percentage of GDP, INDit. We also control for country fixed effects, μi, and common time 

effects, ft.  

Data on the control variables are taken from the World Development Indicators (WDI) 

(available at https://databank.worldbank.org/source/world-development-indicators). The 

(nominal) data used to construct our FDI variables are from the Coordinated Direct Investment 

Survey (CDIS) database of the IMF (available at https://data.imf.org/?sk=40313609-F037-

48C1-84B1-E1F1CE54D6D5), which reports data on bilateral FDI stocks.4 Both FDI variables 

are ratios to (nominal) GDP. The (nominal) GDP data to construct these ratios are also from 

the WDI, like our data on energy intensity. 

It should perhaps be explicitly noted that the CDIS database does not report bilateral 

FDI flows. Thus, we are unable to check the robustness of our results using FDI flows (relative 

to GDP), which are also often employed in empirical FDI studies. However, this is not a serious 

problem, because FDI stocks are generally considered a better measure of the presence of 

foreign firms than FDI flows, given that FDI stocks more effectively capture long-run effects 

due to the accumulation of flows (see, e.g., Chintrakarn et al., 2012). More specifically, the use 

of FDI stocks ensures that the effects of FDI are not limited to the period in which the 

investment is made, thereby fully accounting for the effects of both new and established foreign 

firms. 

                                                      
3 It would be interesting to extend our analysis by using bilateral FDI data at the sector or industry level to gain 

insight into whether sectoral differences exist in the effects of North-South and South-South FDI on energy 

intensity in developing countries. Given the lack of bilateral FDI data at the sector or industry level, such an 

extension is unfortunately not possible, however. 
4 We aggregate the bilateral FDI data to South-South FDI and North-South FDI. To construct our measure of 

South-South FDI [North-South FDI], we classify a country as developing [developed] country if it is officially 

listed as a low- or middle-income [high-income] country by the World Bank in its World Development Reports 

(available at https://www.worldbank.org/en/publication/wdr/wdr-archive) in more than half of the years between 

2009 and 2019.  



 

 

 

Combining the data from both sources, and excluding tax havens and countries with 

less than one million people,5 yields an unbalanced panel dataset of 57 developing countries 

with data between 2009 and 2019.6 The minimum number of observations per country is 2, 

while the maximum is 11; the average number of observations per country is 9.5.  

 

3. Results 
We estimate equation (1) using system and difference GMM. Both techniques (which are 

designed for small-T large-N panels such as the one used here) are dynamic panel methods that 

account for endogeneity while avoiding the well-known “Nickell bias” (that arises from 

applying a fixed effects estimator to a lagged dependent variable model in a panel with small 

T). In addition, we use the Lewbel (2012) instrumental variable estimator, which, however, is 

not designed for dynamic panels. Therefore, we do not include logENERGYit-1 in the Lewbel 

regressions.  

All three estimators use internal instruments. While the system and difference GMM 

estimators construct instruments using lagged observations, the Lewbel estimator exploits 

heteroskedasticity to construct instrumental variables. 

The estimation results along with diagnostic tests are presented in Table 1. The Arellano 

and Bond (1991) tests for second-order serial correlation (AR2) indicate that the GMM 

residuals exhibit no second-order serial correlation, and the Hansen tests of overidentifying 

restrictions (HANSEN) fail to reject the validity of the instruments in the GMM models. 

Moreover, the number of instruments is always smaller than the number of countries. We 

therefore conclude that the GMM models presented in columns (1) – (4) are correctly specified, 

like the Lewbel models presented in columns (5) and (6), which pass the Hansen test of 

overidentifying restrictions, the Kleibergen-Paap rk LM test of underidentification, and the 

Kleibergen-Paap rk Wald F test of weak identification. 

Turning to the estimated coefficients on the FDI variables, we see that coefficient on 

logNorthSouthFDIit is insignificant in all three specifications, whereas logSouthSouthFDIit has 

a negative and significant coefficient in all three specifications.  

For brevity, we do not discuss the results for the control variables in detail here, but 

note that the coefficients on the control variables are largely consistent with the literature on 

the determinants of energy intensity in developing countries. The only exception is the 

coefficient on logIMPit, which, in contrast to previous estimates in the literature, is positive and 

significant in most specifications. The most likely explanation for the positive coefficient is 

                                                      
5 We exclude tax havens because most FDI into tax havens does not generate value adding activity. There is 

therefore no reason to assume that FDI into tax havens generates significant effects on energy intensity. The reason 

for excluding countries with less than one million people is that their FDI to GDP ratio is highly volatile due to 

single large transactions, including large profit repatriations. Their FDI to GDP ratio is therefore not a meaningful 

measure of the foreign value-adding activities of MNEs. 
6 The countries in our sample are Albania, Algeria, Armenia, Azerbaijan, Bangladesh, Belarus, Benin, Bolivia, 

Bosnia and Herzegovina, Botswana, Brazil, Bulgaria, Burkina Faso, Cambodia, China, Cote d'Ivoire, El Salvador, 

Georgia, Ghana, Guatemala, Honduras, India, Indonesia, Kazakhstan, Kyrgyz Republic, Lebanon, North 

Macedonia, Malaysia, Mali, Mexico, Moldova, Mongolia, Morocco, Mozambique, Myanmar, Namibia, Nepal, 

Niger, Nigeria, Pakistan, Paraguay, Peru, Philippines, Romania, Russia, Rwanda, Senegal, Serbia, South Africa, 

Sri Lanka, Tanzania, Thailand, Togo, Turkey, Uganda, Ukraine, and Zambia. 



 

 

 

that while many imported goods and services are not a channel for technology spillovers, 

increased imports imply that transport-related energy use increases.7 

 
Table 1. System GMM, difference GMM, and Lewbel IV results 

  System GMM  Difference GMM   Lewbel IV 

  (1) (2)  (3) (4)  (5) (6) 

logENERGYit-1  0.965*** 

(0.050) 

0.982*** 

(0.048) 

 0.878*** 

(0.136) 

0.682*** 

(0.172) 

   

logNorthSouthFDIit  -0.020 

(0.016) 

 

 

 -0.024 

(0.026) 

  0.094 

(0.095) 

 

logSouthSouthFDIit   -0.024** 

(0.010) 

  -0.068** 

(0.030) 

  -0.034*** 

(0.010) 

logGDPPCit  0.003 

(0.013) 

-0.047*** 

(0.017) 

 -0.214 

(0.228) 

-0.052 

(0.236) 

 -0.168*** 

(0.022) 

-0.183*** 

(0.031) 

logIMPit  0.093** 

(0.042) 

0.070** 

(0.030) 

 0.173*** 

(0.062) 

0.196* 

(0.105) 

 0.020 

(0.038) 

0.141** 

(0.050) 

logCPIit  0.061 

(0.054) 

0.068* 

(0.037) 

 0.036 

(0.075) 

0.026 

(0.111) 

 0.481*** 

(0.067) 

0.474*** 

(0.070) 

logGFCFit  -0.038 

(0.032) 

-0.030 

(0.021) 

 -0.036 

(0.036) 

-0.024 

(0.049) 

 0.043** 

(0.021) 

0.038** 

(0.018) 

logINDit  0.027 

(0.023) 

0.047* 

(0.027) 

 0.096* 

(0.049) 

0.123 

(0.079) 

 -0.102 

(0.073) 

0.037 

(0.053) 

AR2 (p-value)  0.440 0.431  0.459 0.327    

No. of instruments  42 42  37 37    

HANSEN (p-value)  0.248 0.519  0.411 0.321  0.111 0.554 

Kleibergen-Paap rk LM statistic (p-value)        0.000 0.005 

Kleibergen-Paap rkWald F statistic        15.312 22.238 

No. of countries  57 57  57 57  57 57 

No. of observations  511 511  454 454  550 550 

Notes: The dependent variable is logENERGYit. The lagged dependent variable was treated as predetermined; the 

time dummies, logINDit, and logGFCFit were treated as exogenous; and logNorthSouthFDIit, logSouthSouthFDIit, 

logGDPPCit, logIMPit, and logCPIit were treated as endogenous in the GMM procedures. We used the orthogonal 

deviations transformation of Arellano and Bover (1995) rather than the first-difference transformation because 

the former has the advantage of preserving sample size in panels with gaps (as in our panel). As a rule of thumb, 

GMM can exhibit the problem of too many instruments when the number of instruments is greater than the number 

of cross-sectional units. To reduce the risk of instrument proliferation (which can overfit endogenous variables), 

the number of lags was restricted to up to five lags. In addition, to ensure that the number of instruments does not 

exceed the number of countries, the instrument matrix was collapsed. We used the two-step estimator with 

Windmeijer’s (2005) standard errors for the GMM procedures. Only the FDI variables were instrumented in the 

Lewbel regressions. When country dummies are included in the Lewbel regressions, a warning message is 

displayed that the estimated covariance matrix of moment conditions is not of full rank and standard errors and 

model tests should be interpreted with caution. We therefore approximated the fixed effects using the country 

means of the variables. AR2 is the Arellano-Bond test for second-order autocorrelation. HANSEN is the Hansen 

test of overidentifying restrictions. The Kleibergen-Paap rk LM and Wald F statistics correspond to tests of 

underidentification and weak identification. The critical values of the Kleibergen-Paap rk Wald F statistic for a 

maximal IV relative bias of 5, 10, 20, and 30 percent are 21.23, 11.51, 6.42, and 4.63, respectively. Numbers in 

parentheses are heteroskedasticity-consistent standard errors. *** (**) [*] indicates significance at the 1% (5%) 

[10%] level. 

 

                                                      
7 In Table A1 in the appendix, we check the robustness of our results to the inclusion of total factor productivity 

(TFPit) as a measure of the level of technology, logged (logTFPit), and a rule of law index (RULEofLAWit) as a 

measure of institutional quality. The TFP index is from the Penn World Table (PWT) 10.01 

(https://www.rug.nl/ggdc/productivity/pwt/?lang=en) and is based on the residuals of a production function with 

physical capital, human capital, and raw labor as inputs. Since our panel dataset is cross-sectionally dominated, 

we use the CTFP index from the PWT, which is normalized to one for the USA and is thus suitable for TFP 

comparisons across countries, rather than the RTFPNA index, which is normalized to one for the year 2017 for 

all countries and is therefore suitable for comparisons of TFP over time. The rule of law index is from the 

Worldwide Governance Indicators (available at https://info.worldbank.org/governance/wgi/) and is measured on 

a −2.5 to +2.5 scale. Given the limited availability of data on both TFPit and RULEofLAWit, we are forced to use 

a much smaller sample of countries (39) in this robustness check than in our estimates in Table 1. The results of 

this robustness check show that our main findings are robust to the inclusion of TFP and rule of law (and the use 

of a smaller sample of countries). 



 

 

 

As is well known, the presence or absence of Granger causal or lagged effects says 

nothing about the presence or absence of contemporaneous effects. Since, however, the 

diffusion of spillovers of energy-saving technology may take some time, we also examine the 

Granger causal effects of North-South and South-South FDI on energy intensity (while 

controlling for the lagged dependent variable). To this end, we use the method recently 

developed by Juodis et al. (2021), which has superior size and power compared to traditional 

tests. It should perhaps be noted that this method corrects for Nickell bias using the split-panel 

jackknife method. Unfortunately, however, the Juodis et al. (2021) test requires a balanced 

panel. Therefore, we apply it to a subsample that only includes countries with complete data 

between 2010 and 2019 (38 countries).8 Using the same control variables as above and a lag 

length of one year (as suggested by the BIC) yields the results presented in Table 2. 

 
Table 2. Panel causality tests 

Null Hypothesis Wald  Coefficient on the lagged 

explanatory variable 

logNorthSouthFDIit does not cause logENERGYit 0.110 -0.028   

logSouthSouthFDIit does not cause logENERGYit 0.023 -0.014** 

logENERGYit does not cause logNorthSouthFDIit 0.069 0.390* 

logENERGYit does not cause logSouthSouthFDIit 0.228 -0.410 

Notes: Since the test requires a balanced panel, we constructed a subsample that only includes countries with 

complete data between 2010 and 2019 (38 countries). All tests include country fixed effects, and we used 

demeaned data to account for common time effects. All tests are based on one lag, as suggested by the BIC, and 

include control variables (lagged one period). The column headed Wald reports the p-value of the Wald test of 

the null hypothesis that the lagged explanatory variable is significantly different from zero. This p-value is equal 

to the p-value of the z-statistic of the coefficient on the lagged explanatory variable. For all tests, we used 

heteroskedasticity-consistent standard errors. ** (*) indicates significance at the 5% (10%) level. 

 

The results suggest that while there is no Granger causality from North-South FDI to 

energy intensity, South-South FDI Granger-causes energy intensity with a negative sign. For 

completeness, we also report the results of the “reverse” Granger causality tests, with 

logNorthSouthFDIit and logSouthSouthFDIit as the endogenous variables, and logENERGYit as 

the exogenous variable. From these results, there is evidence (at the 10% level) of a positive 

Granger causal relationship from energy intensity to North-South FDI, whereas energy 

intensity has no Granger-causal effect on South-South FDI. It is needless to say that the latter 

does not imply absence of contemporaneous effects of energy intensity on South-South FDI.  

Since, however, the above methods do not account for potential non-stationary data, the 

question arises whether our results change if we use non-stationary panel techniques. To assess 

whether this is the case, we restrict our sample to countries with at least 10 time series 

observations, yielding a subsample of 40 countries.9 The reason for using this subsample is that 

panel unit root and cointegration methods are not feasible in our full sample given the relatively 

small number of observations for some countries. Moreover, because the existence of 

cointegration between two (or more) non-stationary variables is known to be robust to the 

addition of further variables, we focus on the main variables of interest: logNorthSouthFDIit 

and logSouthSouthFDIit. Thus, we examine two bivariate relationships: (1) the relationship 

                                                      
8 The countries in this sample are Armenia, Azerbaijan, Bangladesh, Belarus, Bolivia, Bosnia and Herzegovina, 

Brazil, Bulgaria, Cambodia, China, El Salvador, Georgia, Guatemala, Honduras, India, Indonesia, Kazakhstan, 

Kyrgyz Republic, North Macedonia, Malaysia, Mexico, Moldova, Mongolia, Morocco, Mozambique, Nepal, 

Nigeria, Pakistan, Paraguay, Philippines, Romania, Russia, Serbia, South Africa, Thailand, Turkey, Ukraine, and 

Zambia. 
9 The countries in this sample are Armenia, Azerbaijan, Bangladesh, Belarus, Bolivia, Bosnia and Herzegovina, 

Brazil, Bulgaria, Cambodia, China, El Salvador, Georgia, Ghana, Guatemala, Honduras, India, Indonesia, 

Kazakhstan, Kyrgyz Republic, North Macedonia, Malaysia, Mexico, Moldova, Mongolia, Morocco, 

Mozambique, Nepal, Nigeria, Pakistan, Paraguay, Philippines, Romania, Russia, Serbia, South Africa, Thailand, 

Turkey, Uganda, Ukraine, and Zambia. 



 

 

 

between logNorthSouthFDIit and logENERGYit, and (2) the relationship between 

logSouthSouthFDIit and logENERGYit. 

The first step in this examination is to pre-test the variables for unit roots. We use the 

panel unit root tests of Levin et al. (2002) and Pesaran (2007) for this purpose. As is well 

known, the Levin et al. (2003) test assumes cross-sectionally independent residuals and may 

suffer from size distortions in the presence of error cross-sectional dependence. To account for 

cross-sectional dependence due to common time effects, we demean the data by subtracting 

the cross-sectional means from the data and use the demeaned data in place of the original data 

to perform the Levin et al. (2002) test.10 Since the Pesaran (2007) test accounts for error cross-

sectional dependence via the use of weighted cross-sectional averages, we apply this test to the 

raw data. Both tests are performed both with country-specific intercepts (c) and country-

specific intercepts and time trends (c, t). The results are presented in Table 3.  

The Levin et al. (2003) tests reject the unit-root null for all three variables, regardless 

of whether country-specific intercepts or country-specific intercepts and country-specific time 

trends are included. The Pesaran (2007) tests do not reject the null hypothesis of unit root for 

all three variables only when country-specific intercepts and country-specific time trends are 

included. Thus, the results of these tests are ambiguous regarding whether logENERGYit, 

logNorthSouthFDIit, and logSouthSouthFDIit are stationary or non-stationary (in the sense that 

they have a unit root). If the variables are stationary, then there is no reason to be concerned 

that the results in Table 1 and 2 are spurious. If the variables are non-stationary, there is a risk 

of spurious regressions. Although it is reasonable to assume that this risk is small in short panels 

such as the one used here, it is not zero. Given the results in Column (4), we therefore assume 

that logENERGYit, logNorthSouthFDIit, and logSouthSouthFDIit have unit roots.  

 
Table 3. Panel unit root tests  

 Levin et al. (2002)  Pesaran (2007)  
 (1) 

c 

(2) 

c, t 

 
(3) 

c 

(4) 

c, t 

logENERGYit 0.004 0.000  0.010 0.191 

logNorthSouthFDIit 0.000 0.000  0.009 0.638 

logSouthSouthFDIit 0.000 0.000  0.462 0.997 

Notes: c (t) indicates that the tests include country-specific intercepts (and time trends). Given the small number 

of time-series observations, only one lag was used in the tests. The Levin et al. (2002) tests are based on demeaned 

data to account for error cross-sectional dependence due to unobserved common factors; the Pesaran (2007) tests 

account for error cross-sectional dependence due to unobserved common factors via the use of (weighted) cross-

sectional averages (and are therefore based on the original data). Reported values are p-values.  

 

Under this assumption, the next step is to test for cointegration between 

logNorthSouthFDIit and logENERGYit and between logSouthSouthFDIit and logENERGYit. 

Table 4 reports results of cointegration tests based on models with country-specific trends (and 

fixed effects).11 Since the Pedroni (1999) tests assume error cross-sectional independence, we 

use the demeaned data for these tests. For the Gengenbach et al. (2016) and Banerjee and 

Carrion-i-Silvestre (2017) tests, which account for error cross-sectional dependence (via the 

use of weighted cross-sectional averages), we use the raw data. Since all these tests indicate 

that cointegration exists between logNorthSouthFDIit and logENERGYit and between 

logSouthSouthFDIit and logENERGYit, as shown in Table 4, we proceed to estimate these 

relationships using two panel cointegration estimators: the panel FMOLS (PFMOLS) and panel 

DOLS (PDOLS) estimators of Kao and Chiang (2001). 

To control for cross-sectional dependence due to omitted common factors, we again use 

the demeaned data. Moreover, we include country-specific trends to control explicitly for the 

                                                      
10 Using demeaned data is equivalent to using the residuals from regressions of each variable on time dummies. 
11 The trends are statistically significant in the majority of countries, and the evidence in favor of cointegration is 

weaker when using models without time trends. Thus, it is important to include country-specific time trends. 



 

 

 

country-specific effects of any omitted factors that evolve relatively smoothly over time. In 

addition, to ensure that our results do not suffer from error cross-sectional dependence due to 

common factors, we test for cross-sectional dependence in the residuals from our regressions 

using the cross-sectional dependence test of Juodis and Reese (JR) (2022).12 

 
Table 4. Panel cointegration tests 

Panel A: Tests for cointegration between logNorthSouthFDIit and logENERGYit 

  Pedroni (1999)  Gengenbach et al. 

(2016) 

 Banerjee and Carrion-

i-Silvestre (2017) 

  Panel statistics Group mean statistics     

 PP t-statistics -4.770*** -7.660***     

 ADF t-statistics -4.079*** -7.687***     

 ECM t-statistic    -12.308***   

 CIPS statistic      3.382* 

Panel B: Tests for cointegration between logSouthSouthFDIit and logENERGYit 

  Pedroni (1999)  Gengenbach et al. 

(2016) 

 Banerjee and Carrion-

i-Silvestre (2017) 

  Panel statistics Group mean statistics     

 PP t-statistics -5.480*** -5.747***     

 ADF t-statistics -6.032*** -7.099***     

 ECM t-statistic    -6.590***   

 CIPS statistic      3.491* 

Notes: The dependent variable in the Pedroni (1999) and Banerjee and Carrion-i-Silvestre (2015) tests is 

logENERGYit; the dependent variable in the test of Gengenbach et al. (2016) is ΔlogENERGYit. All tests include 

trends and intercepts. The Pedroni (1999) tests are based on one lag, and we employed the Newey-West bandwidth 

selection using the Bartlett kernel. Given the limited number of time-series observations available here, no lags 

of the first differences of the variables (and lo lags of the first differences of the cross-sectional averages) were 

included in the Gengenbach et al. (2016) tests. The results from the Banerjee and Carrion-i-Silvestre (2017) tests 

are based on unit root test specifications that include no lags of the first differences. Since the Banerjee and 

Carrion-i-Silvestre (2017) test requires a balanced panel, we used a subsample of 38 countries with complete data 

between 2010 and 2019 for this test. All tests reject for large negative values. The Pedroni (1999) statistics are 

distributed as standard normal. The critical value for the Gengenbach et al. (2016) t-test (for N = 50) at the 1% 

significance level is -3.067. The 5% [10%] critical value for the Banerjee and Carrion-i-Silvestre (2017) statistic 

is -3.52 [-3.37] (for T = 10 and N = 50). Since Banerjee and Carrion-i-Silvestre (2017) do not report critical values 

for T < 30, we use the critical values from the working paper version of their article (Banerjee and Carrion-i-

Silvestre, 2011). *** [*] indicates rejection of the null hypothesis of no cointegration at the the 1% [10%] level. 

 

The PFMOLS and PDOLS estimates of the relationships between logNorthSouthFDIit 

and logENERGYit and between logSouthSouthFDIit and logENERGYit are presented in Table 

5. As can be seen from the table, the Juodis and Reese (2022) test indicates that the there is no 

common factor-induced cross-sectional dependence in the residuals, and the estimated 

coefficient on logSouthSouthFDIit is negative and statistically significant in both regressions, 

whereas the coefficient on logNorthSouthFDIit is positive and weakly significant in the 

PFMOLS regression and positive but insignificant in the PDOLS regression. 

Finally, we evaluate the magnitude of the estimated effects of South-South FDI on 

energy intensity. The estimated elasticities of energy intensity with respect to South-South FDI 

in Table 1 and 5 range between -0.068 and -0.024. Multiplying these values by the ratio of the 

average growth rate of SouthSouthFDIit (5.875%) to the average growth rate of ENERGYit (-

1.357%) in our 57-country sample yields 0.104 and 0.294, respectively. These values imply a 

predicted average reduction in energy intensity due to South-South FDI that accounts for 

between about 10% and 30% of the actual average reduction in energy intensity in our sample 

                                                      
12 We use the Juodis and Reese (2022) test rather than the standard Pesaran (2004) test because the latter has no 

power to detect error cross-sectional dependence when the estimated models include time dummies (or cross-

sectional averages) or are based on demeaned data. The Juodis and Reese (2022) test is a modified version of the 

Pesaran (2004) test that does not suffer from this problem.  



 

 

 

during the period 2009 to 2019. Thus, our estimates imply a substantial (but not implausibly 

large) effect of South-South FDI on energy intensity. 

 
Table 5. Estimates of the long-run relationship between logNorthSouthFDIit and logENERGYit and the long-run 

relationship between logSouthSouthFDIit and logENERGYit 

  PFMOLS  PDOLS 

  (1) (2)  (3) (4) 

Long-run coefficient on logNorthSouthFDIit 

 

 0.029* 

(0.015) 

  0.053 

(0.038) 

 

Long-run coefficient on logSouthSouthFDIit 

 

  -0.024** 

(0.010) 

  -0.062*** 

(0.021) 

JR (p-value)  0.149 0.156  0.176 0.221 

No. of countries   40 40  40 40 

No. of obs.  395 395  315 315 

Notes: PFMOLS = panel FMOLS estimator of Kao and Chiang (2001); PDOLS = panel DOLS of estimator of 

Kao and Chiang (2001). The dependent variable in the PFMOLS and PDOLS regressions is logENERGYit; the 

dependent variable in the PMG regression is ΔlogENERGYit. All regressions include country fixed effects and 

individual time trends. The PDOLS regressions were estimated with one lead and one lag of the first-differenced 

regressor. All regressions were performed using demeaned data to account for error cross-sectional dependence 

due to unobserved common factors. JR is the cross-sectional dependence test of Juodis and Reese (2022) applied 

to the residuals from the regressions. Numbers in parentheses are heteroscedasticity- and autocorrelation-

consistent standard errors.  *** (**) [*] indicates significance at the 1% (5%) [10%] level 

 

4. Conclusion 
Using an unbalanced panel of 57 economies over the period 2009 to 2019, we found, based on 

stationary panel methods, that South-South FDI has a negative effect on energy intensity in 

developing countries, a finding that is robust to the use of non-stationary panel methods. The 

estimated effect of North-South FDI on energy intensity, in contrast, is statistically 

insignificant in all but one regression, where it is marginally significant and positive. Thus, our 

overall conclusion is that, while North-South FDI generally does not contribute to reductions 

in energy intensity in developing countries, South-South FDI tends to reduce energy intensity 

in these countries. 
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Appendix 
 

 
Table A1. System GMM, difference GMM, and Lewbel IV results using additional control variables 

  System GMM  Difference GMM   Lewbel IV 

  (1) (2)  (3) (4)  (5) (6) 

logENERGYit-1  0.898*** 

(0.099) 

0.904*** 

(0.072) 

 0.714*** 

(0.260) 

0.559** 

(0.208) 

   

logNorthSouthFDIit  ‐0.004 

(0.024) 

 

 

 ‐0.037 

(0.025) 

  0.184 

(0.193) 

 

logSouthSouthFDIit   ‐0.025** 

(0.010) 

  ‐0.065** 

(0.030) 

  -0.024*** 

(0.070) 

logGDPPCit  ‐0.038 

(0.049) 

‐0.004 

(0.044) 

 ‐0.273 

(0.202) 

0.135 

(0.410) 

 ‐0.032 

(0.046) 

0.128*** 

(0.046) 

logIMPit  ‐0.005 

(0.042) 

‐0.012 

(0.058) 

 0.180* 

(0.103) 

0.197* 

(0.104) 

 ‐0.108** 

(0.052) 

0.071 

0(.051) 

logCPIit  0.127* 

(0.073) 

0.075 

(0.066) 

 ‐0.006 

(0.111) 

‐0.010 

(0.153) 

 0.172* 

(0.091) 

0.340*** 

(0.116) 

logGFCFit  ‐0.034 

(0.034) 

‐0.015 

(0.028) 

 ‐0.045 

(0.055) 

‐0.048 

(0.071) 

 ‐0.077 

(0.079) 

‐0.044 

(0.090) 

logINDit  0.043 

(0.093) 

‐0.033 

(0.081) 

 ‐0.001 

(0.084) 

0.064 

(0.127) 

 ‐0.410*** 

(0.091) 

‐0.369*** 

(0.092) 

logTFPit  0.006 

(0.135) 

‐0.083 

(0.130) 

 0.083 

(0.129) 

‐0.110 

(0.213) 

 ‐0.542*** 

(0.083) 

‐0.794*** 

(0.076) 

RULEofLAWit  -0.011 

(0.036) 

‐0.008 

(0.027) 

 -0.024 

(0.071) 

‐0.062 

(0.053) 

 ‐0.039 

(0.047) 

‐0.117** 

(0.049) 

AR2 (p-value)  0.496 0.647  0.641 0.599    

No. of instruments  39 39  38 38    

HANSEN (p-value)  0.404 0.906  0.404 0.833  0.132 0.690 

Kleibergen-Paap rk LM statistic (p-value)        0.003 0.049 

Kleibergen-Paap rkWald F statistic        16.011 24.034 

No. of countries  39 39  39 39  39 39 

No. of observations  350 350  311 311  374 374 

Notes: The countries in this sample are Armenia, Benin, Bolivia, Botswana, Brazil, Bulgaria, Burkina Faso, China, 

Cote d'Ivoire, Guatemala, Honduras, India, Indonesia, Kazakhstan, Kyrgyz Republic, Malaysia, Mexico, 

Moldova, Mongolia, Morocco, Mozambique, Namibia, Niger, Nigeria, Paraguay, Peru, Philippines, Russia, 

Rwanda, Senegal, Serbia, South Africa, Sri Lanka, Tanzania, Thailand, Togo, Turkey, Ukraine, and Zambia. The 

dependent variable is logENERGYit. The lagged dependent variable was treated as predetermined; the time 

dummies, logINDit, logGFCFit, logTFPit, and RULEofLAWit were treated as exogenous; and logNorthSouthFDIit, 

logSouthSouthFDIit, logGDPPCit, logIMPit, and logCPIit were treated as endogenous in the GMM procedures. 

We used the orthogonal deviations transformation of Arellano and Bover (1995) rather than the first-difference 

transformation because the former has the advantage of preserving sample size in panels with gaps (as in our 

panel). As a rule of thumb, GMM can exhibit the problem of too many instruments when the number of 

instruments is greater than the number of cross-sectional units. To reduce the risk of instrument proliferation 

(which can overfit endogenous variables), the number of lags was restricted to up to four lags in the system GMM 

estimations and to two to six lags in the difference GMM estimations. In addition, to ensure that the number of 

instruments does not exceed the number of countries, the instrument matrix was collapsed in both the system 

GMM estimations and the difference GMM estimations. We used the two-step estimator with Windmeijer’s 
(2005) standard errors for the GMM procedures. Only the FDI variables were instrumented in the Lewbel 

regressions. When country dummies are included in the Lewbel regressions, a warning message is displayed that 

the estimated covariance matrix of moment conditions is not of full rank and standard errors and model tests 

should be interpreted with caution. We therefore approximated the fixed effects using the country means of the 

variables. AR2 is the Arellano-Bond test for second-order autocorrelation. HANSEN is the Hansen test of 

overidentifying restrictions. The Kleibergen-Paap rk LM and Wald F statistics correspond to tests of 

underidentification and weak identification. The critical values of the Kleibergen-Paap rk Wald F statistic for a 

maximal IV relative bias of 5, 10, 20, and 30 percent are 21.31, 11.49, 6.36, and 4.56, respectively. Numbers in 

parentheses are heteroskedasticity-consistent standard errors. *** (**) [*] indicates significance at the 1% (5%) 

[10%] level. 

 

 

 

 

 


