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Abstract
In vertical models of product differentiation, consumers agree on their ranking of product quality but differ in their

willingness to pay for it. When product quality is bounded and the range of willingness to pay is narrow, there are

``natural oligopoly'' equilibria in which a finite number of firms enter the market regardless of market size. I relax both

of these assumptions and consider a simple vertical model in which the number of entering firms increases with market

size. I derive analytical expressions for equilibrium prices, markups, and shares for any number of entering firms and

limiting expressions for market shares and concentration as the number of firms grows large. The limiting market

structure is highly concentrated. The market share of the largest firm converges from above to .58, the combined

share of the four largest firms to .99, and the HHI to .44 (4,400). I conclude that vertical models can give rise to

natural oligopoly when the range of quality is unbounded and the number of entering firms is unlimited.
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1 Introduction

The relationship of product differentiation to market structure has been extensively studied
in economics. In models of horizontal product differentiation (Hotelling, 1929), consumers
have different ideal points in a space of products, so there is no uniform ranking of product
features across consumers. The equilibrium of horizontal models converges to the competitive
outcome as the market becomes large, relative to the fixed cost of entry (Shaked and Sutton,
1987). In vertical models, consumers agree on their ranking of product attributes, but differ
in their willingness to pay for them. Such models can exhibit a “finiteness” property (Jaskold
Gabszewicz and Thisse, 1980; Shaked and Sutton, 1982, 1983; Curtis Eaton and Lipsey, 1989;
Sutton, 1991). When the product (quality) space is bounded, there are equilibria where only
a finite number of firms can enter—independent of market size—and there is no convergence
to the competitive outcome.

I consider a vertical model of price competition where the “finiteness” property does not
hold. The quality space is unbounded and consumers are heterogeneous enough to permit
entry by an unlimited number of firms. In the first stage of the game, N firms sequentially
pay an identical fixed cost of entry, choose a level of quality, and choose to enter a market.
In the second stage, firms with identical marginal costs compete by choosing prices. I study
equilibria in which each consumer purchases one unit of a good of variable quality, and the
market size is large enough so that all N firms can enter, occupy N different quality levels, and
each earn positive profits. I obtain analytical expressions for equilibrium prices, markups,
and shares for a market with N firms. Limiting market shares, k-firm concentration ratios
and HHI are obtained for the case where N grows large.

Despite unlimited entry, the equilibrium market structure is a natural oligopoly in which
prices, market shares, and profits increase with quality. As the number of entering firms
increases, the market share of the largest firm converges from above to .58, the 4-firm con-
centration ratio to .99, and the HHI to .44 (4,400).

The main contribution of the paper is to obtain closed form and limiting solutions to
a simple, vertical product differentiation model in which the finiteness property does not
hold and to demonstrate that the market structure is nevertheless highly concentrated. The
result underscores how quality competition can be a powerful source of market concentration
in many industries (Sutton, 1991).

This paper is close in spirit to the canonical contributions of Jaskold Gabszewicz and
Thisse (1980); Shaked and Sutton (1982, 1983, 1987) and explores a variation on their orig-
inal assumptions. Models of vertical product differentiation have since been extended to
consider, inter alia, uncertainty (Bergemann and Valimaki, 1997), entry deterrence and dy-
namics (Lutz, 1997; Bergemann and Valimaki, 2002; Noh and Moschini, 2006; Auer and
Sauré, 2017), multi-product and multi-quality firms (Constantatos and Perrakis, 1997; Tau-
man et al., 1997; Johnson and Myatt, 2003; Barigozzi and Ma, 2018), innovation (Greenstein
and Ramey, 1998; Baron, 2021), price discrimination (Liu and Serfes, 2005; Herweg, 2012),
quality standards (Garella, 2006), network effects (Kuhn, 2007; Argenziano, 2008), hetero-
geneous costs (Brécard, 2010), capacity (Boccard and Wauthy, 2010), income inequality
(Yurko, 2011), international trade (Fajgelbaum et al., 2011), quantity competition (Lamber-
tini and Tampieri, 2012), endogenous market structures (Gayer, 2017), cartel stability (Bos
and Marini, 2019), overlapping ownership (Li et al., 2023), and empirical estimation (Gandhi



and Nevo, 2021).

2 Model

I define a simple, two-stage model of quality and price competition. In the first stage, N
firms sequentially decide whether to enter the market. In order to enter, a firm must pay a
fixed cost F and choose its product quality q ∈ (1, 2, . . . , N). In the second stage, entering
firms with identical marginal cost c compete a la Bertrand on prices given their quality.

The quality assumption is central to the model and deserves comment. The quality space
depends on an exogenous number of potential entrants (N). Because I consider equilibria in
which all N firms enter, equilibrium quality is unbounded as N grows large. If the quality
space was instead a closed interval, the market shares would grow arbitrarily small with N
and the equilibrium would converge to the competitive outcome. Unbounded quality is thus
necessary for the natural oligopoly result. The assumption that adjacent firms are always a
fixed distance apart in quality contributes to market concentration, but this distance falls
relative to the support of quality (N) so it is not clear a priori which force will predominate
as N grows large.1 In addition, because of the fixed distance assumption, concentration does
not result by allowing the leading firms to pull away in quality.

Given the entry, quality, and price decisions of firms, consumers choose whether or not
to consume a single unit of the good. The utility of a consumer that buys from a firm with
quality q and price pq is given by:

u(θ, q) = 1 + θq − pq (1)

where θ is uniformly distributed on the unit interval [θ, θ].

2.1 Equilibrium

2.1.1 The Two-Firm Case

First consider the case of “finiteness” presented by Shaked and Sutton (1982). Suppose that
two firms enter the market with quality q1 = 1 and q2 = 2 and that p2 > p1. A consumer
θ will be indifferent between the two firms if θ = p2 − p1. The 2-firm equilibrium is unique
and requires that θ − 2θ > 0, that is, consumers’ willingness to pay must be sufficiently far
apart for two firms to coexist (Tirole, 1988).2 In contrast, if willingness to pay is too close—
i.e. consumers are relatively homogeneous—then there will be intense price competition
and the market can only support one firm, as in the case of Bertrand competition with an
undifferentiated good. Even if the lower quality firm was to sell at marginal cost, there would
be no demand for their product. The assumption that θ is uniformly distributed on the unit
interval [0,1] implies that the willingness to pay assumption is satisfied (θ − 2θ > 0). This
is a reasonable assumption whenever low-quality, low-price firms can enter the market and
capture at least some market share, and it is necessary to avoid “finiteness.”

1In a horizontal model, if the range of location grows with N but firms are a fixed distance apart, then
market shares will grow arbitrarily small with N.

2For the lowest valuing consumer to purchase from firm 1, it is further required that 2

3
(θ + θ) > c



2.1.2 The N-Firm Case

Now consider an equilibrium in which N firms sequentially enter and occupy N different
quality levels so that firms can be indexed by their quality. By the logic of Bertrand com-
petition, no two firms will choose the same quality, otherwise they will earn zero profits in
the second stage. The market size is assumed to be large enough, relative to F , so that it is
profitable for all N firms to enter.

Assume that all consumers purchase a good, so the consumers who are indifferent between
firms n and n− 1 are:

θn = pn − pn−1, 2 ≤ n ≤ N (2)

These indifference conditions yield shares (sn) for each firm. Each firm then solves:

max
pj

(pn − c)Msn(p,q) (3)

where M represents the market size and market shares depend on N-dimensional vectors of
prices, and qualities. Each profit function is strictly concave in the firm’s own price. The
first-order conditions yield the following system of difference equations:

pn =











1
2
p2 +

1
2
c, n = 1

1
4
pn−1 +

1
4
pn+1 +

1
2
c, 2 ≤ n ≤ N − 1

1
2
pn−1 +

1
2
c+ 1

2
, n = N

(4)

Prices, shares, and profits are increasing in quality. The first entrant will therefore choose
the highest quality, the second entrant will choose the second highest quality, and so on.

Proposition 1. If an equilibrium exists, then for all integers N ≥ j > k ≥ 1 the equilibrium
price (p∗j), share (s∗j), and profit are strictly higher for j than k.

Proof. See Appendix.

The system of difference equations formed by the firm reaction functions imply both the
existence of an equilibrium and exact solutions for equilibrium prices, shares, and profits.

Proposition 2. For large enough market size M , there exists an equilibrium in which N

firms enter at N different quality levels with equilibrium prices:

p∗n(c, n,N) = c+

(√
3

3

)

(2 +
√
3)n−1 + (2−

√
3)n−1

(2 +
√
3)N−1 − (2−

√
3)N−1

Proof. See Appendix.

The equilibrium prices in Proposition 2 are a markup over marginal cost that increases
with quality (n = q). Proposition 2 can be verified for N = 2 (p∗ = [c+ 1

3
, c+ 2

3
]) and N = 3

(p∗ = [c + 1
12
, c + 2

12
, c + 7

12
]). These two cases illustrate a general feature of Proposition

2. The price of the highest quality firm decreases with entry (2
3
> 7

12
and p∗N(c,N,N) >

p∗N+1(c,N + 1, N + 1)).



Proposition 2 implies the following market shares:

s∗n(n,N) =















√
3
3
· 1
(2+

√
3)N−1−(2−

√
3)N−1

, n = 1

2
√
3

3
· (2+

√
3)n−1+(2−

√
3)n−1

(2+
√
3)N−1−(2−

√
3)N−1

, 2 ≤ n ≤ N − 1
√
3
3
· (2+

√
3)N−1+(2−

√
3)N−1

(2+
√
3)N−1−(2−

√
3)N−1

, n = N

(5)

These expressions for shares can be verified for N=2 (s∗ = [1
3
, 2
3
]) and N=3 (s∗ =

[ 1
12
, 4
12
, 7
12
]). Entry by a third firm occupying the highest quality rung only succeeds in

capturing 7
12

of the market, while the share of the 2-firm quality leader was 2
3
. In general,

the share of the top firm decreases with the number of entrants. Using Equation 5, it is
possible to calculate market concentration (k-firm ratios and HHI) for any equilibrium with
N firms occupying N quality levels.

2.2 Limiting Results

The limit of the model is a natural oligopoly featuring high concentration despite an unlim-
ited number of firms.3

Proposition 3. As the number of firms (N) and market size (M(N)) grows large, equilibrium
market shares converge to:

lim
N→∞

s∗n =















0, n = 1, 2, 3, . . .
2
√
3

3

(

1
(2+

√
3)N−n

)

, n = N − 1, N − 2, . . .
√
3
3
, n = N

(6)

Proof. See Appendix

The limiting market shares of the four largest firms are [.58, .31, .08, .02]. Market con-
centration is typically defined using statistics such as the k-firm concentration ratio or the
HHI.

Proposition 4. The limiting k-firm concentration ratio is:

lim
N→∞

kN =

√
3

3
+

(

1−
√
3

3

)

(

1−
1

(2 +
√
3)k−1

)

(7)

Proof. See Appendix

The limiting concentration ratios for k=1 to 4 are [.58, .89, .97, .99], which indicate a
highly concentrated market.

Proposition 5. The limiting HHI is:

lim
N→∞

HHIN =
4
√
3− 3

9
(8)

3In taking the limit as N grows large, I do not consider how firms behave in transitioning from one
equilibrium to another.



Proof. See Appendix

The limiting HHI is approximately equal to .44, which is only slightly smaller than the
HHI associated with a duopoly (.5).

3 Conclusion

In the classic models of quality competition (Shaked and Sutton, 1982, 1983), a finite number
of firms enter the market regardless of market size. In the model in this paper, an unlimited
number of firms enter the market, but the market nevertheless remains a natural oligopoly.
The limiting market structure is highly concentrated and dominated by the four largest
firms.

A number of assumptions are required for the limiting result that is the paper’s main
contribution. First, consumer willingness to pay is heterogeneous enough to allow unlimited
entry. This assumption implies that low-quality, low-price firms can capture market share,
and it is required to avoid the finiteness result of Shaked and Sutton (1982, 1983).

Second, the quality space is unbounded. Unbounded quality is a natural assumption if
firms can improve on any given quality level and the quality space grows with market size.
If the quality space were instead a closed interval, then the equilibrium market shares would
grow arbitrarily small as the market grows large. The fixed interval between quality levels
contributes to market concentration, but the quality distance between firms also shrinks
relative to the growing quality space.

Third, the assumption of a uniform distribution of willingness to pay and the chosen
functional form for utility permit a closed-form solution for prices, markups, shares, and
profits in the model, which enables the derivation of the limiting results. There is no strong
empirical reason to believe the uniformity assumption (Benassi et al., 2019). However, as an
analytical matter, uniformity does not achieve concentration by biasing the willingness to
pay distribution in favor of high quality. The model predicts more (less) concentration than
the uniform baseline if willingness to pay is skewed toward higher (lower) qualities.

Finally, it is assumed that marginal and fixed costs are equal for all firms. This is done
so as not to advantage or disadvantage high-quality firms. It is also reasonable to assume
instead that firms must pay a higher fixed cost to attain a higher quality. This has the
natural interpretation of strategic competition in fixed costs. The model in this paper is
relevant to industries—such as those with high advertising-to-sales ratios (Sutton, 1991)—
where strategic competition in fixed costs is applicable. Allowing fixed costs to vary in this
way does not change any of the Propositions of the model, except now producer surplus,
rather than profit, is ordered by quality.
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Appendix

Proof of Proposition 1. Suppose p∗j ≤ p∗k. Then demand for good k is 0. But then entry

for firm k cannot be rational. So there is a contradiction and p∗j > p∗k. Suppose s∗j ≤ s∗k.

Then p∗j+1 − 2p∗j + p∗j−1 ≤ p∗k+1 − 2p∗k + p∗k−1. Note from the first-order conditions that

p∗j+1+p∗j−1 = 4p∗j+2c. The previous inequality simplifies to p∗j ≤ p∗k, which is a contradiction,

so s∗j > s∗k. Finally, p
∗
j > p∗k and s∗j > s∗k imply that profits are strictly higher for firm j.

The proof of Proposition 2 requires two preliminary Lemmas. First, define the N × N ,

tri-diagonal symmetric matrix:

A(λ) =

















−λ 1 0 . . . . . . . . .

1 −2λ 1 0 . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . 0 1 −2λ 1

. . . . . . . . . 0 1 −λ

















(9)

Lemma 1. The matrix A(λ) has inverse:

a−1
jk (λ) =

(

1

1− λ2

)

Tj−1(λ)TN−k(λ)

UN−2(λ)
, 1 ≤ j ≤ k ≤ N (10)

where Tj(λ) and Uj(λ) are Chebyshev polynomials of the first and second type (Rivlin, 2020).

Proof. See Dow (2003).

Lemma 2. The row elements of matrix A(λ) satisfy the equation:

−2
N
∑

k=1

a−1
jk (λ) + a−1

j1 (λ) + a−1
jN(λ) =

1 + λ

λ2 − 1
(11)

Proof. Define the variable b−1
jk (λ):

b−1
jk (λ) = Tj−1TN−k(λ), 1 ≤ j ≤ k ≤ N (12)

The row sum of b−1
jk (λ) can be expressed as:

N
∑

k=1

b−1
jk (λ) =

N
∑

k=j

b−1
jk (λ) +

j−1
∑

k=1

b−1
kj (λ) (13)



Taking the right side of Equation 13 and substituting from the definition of b−1
jk (λ) gives:

N
∑

k=j

b−1
jk (λ) =

N
∑

k=j

Tj−1(λ)TN−k(λ)

=
1

2

N
∑

k=j

TN−1+j−k(λ) +
1

2

N
∑

k=j

T|j−1−N+k|(λ)

(14)

j−1
∑

k=1

b−1
kj (λ) =

j−1
∑

k=1

Tk−1(λ)TN−j(λ)

=
1

2

j−1
∑

k=1

TN−1−j+k(λ) +
1

2

j−1
∑

k=1

T|j−1−N+k|(λ)

(15)

Equations 14 and 15 make use of the product rule for Chebyshev polynomials of the first

type:

2Tj(λ)Tk(λ) = Tj+k(λ) + T|j−k|(λ) (16)

Adding Equation 14 and 15 and multiplying by 2:

2
N
∑

k=1

b−1
jk (λ) =

N
∑

k=j

TN−1+j−k(λ) +

j−1
∑

k=1

TN−1−j+k(λ) +
N
∑

k=1

T|j−1−N+k|(λ) (17)

Each of the right-hand side terms can be further simplified:

N
∑

k=j

TN−1+j−k(λ) =
N−1
∑

k=j−1

Tk(λ) (18)

j−1
∑

k=1

TN−1−j+k(λ) =
N−2
∑

k=N−j

Tk(λ) (19)

N
∑

k=1

T|j−1−N+k|(λ) =

N−j
∑

k=0

Tk(λ) +

j−1
∑

k=1

Tk(λ) (20)

Equation 17 is then:

2
N
∑

k=1

b−1
jk (λ) =

N−2
∑

k=0

Tk(λ) +
N−1
∑

k=1

Tk(λ) + TN−j(λ) + +Tj−1(λ) (21)



The product rules for Chebyshev polynomials in Equation 16 imply that b−1
j1 (λ) = TN−j and

b−1
jN(λ) = Tj−1. It follows that:

2
N
∑

k=1

b−1
jk (λ)− b−1

j1 (λ)− b−1
jN =

N−2
∑

k=0

Tk(λ) +
N−1
∑

k=1

Tk(λ) (22)

Equation 22 can further simplified by converting to Chebyshev polynomials of the second

type. The conversion formula is:

2Tk(λ) = Uk(λ)− Uk−2(λ) (23)

Applying this to Equation 22 yields:

N−2
∑

k=0

Tk(λ) +
N−1
∑

k=1

Tk(λ) = 1 + 2λ+
1

2

N−2
∑

k=2

(Uk(λ)− Uk−2(λ)) +
1

2

N−1
∑

k=2

(Uk(λ)− Uk−2(λ))

=
1

2
UN−1(λ) + UN−2(λ) +

1

2
UN−3(λ)

(24)

Returning to Equation 11, it has been shown that:

−2
N
∑

k=1

a−1
jk (λ) + a−1

j1 (λ) + a−1
jN(λ) =

(

1

1− λ2

)

1

UN−2(λ)

(

−2
N
∑

k=1

b−1
jk (λ) + b−1

j1 (λ) + b−1
jN

)

=

(

1

λ2 − 1

)

1

UN−2(λ)

(

N−2
∑

k=0

Tk(λ) +
N−1
∑

k=1

Tk(λ)

)

=

(

1

λ2 − 1

)

1

UN−2(λ)

(

1

2
UN−1(λ) + UN−2(λ) +

1

2
UN−3(λ)

)

=
1 + λ

λ2 − 1
(25)

The final equality makes use of the recurrence relationship for Chebyshev polynomials of the

second type:

Uk(λ) = 2λUk−1(λ)− Uk−2(λ) (26)



Proof of Proposition 2. The equilibrium price vector p∗ solves the following matrix equation:

















−2 1 0 . . . . . . . . .

1 −4 1 0 . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . 0 1 −4 1

. . . . . . . . . 0 1 −2



































p∗1

p∗2
...

p∗N−1

p∗N



















=



















−2c+ c

−2c
...

−2c

−2c+ c− 1



















(27)

where p∗ has been pre-multiplied by A(2). The existence of the inverse of A(2) proves the

existence of a price equilibrium. Pre-multiplication of Equation 27 by A−1(2) implies:

p∗n(c, n,N) = c

(

−2
N
∑

k=1

a−1
jk (2) + a−1

j1 (2) + a−1
jN(2)

)

− a−1
nN(2)

= c

(

1 + 2

22 − 1

)

− a−1
nN(2)

= c+
1

3

(

Tn−1(2)

UN−2(2)

)

= c+

√
3

3
·
(2 +

√
3)n−1 + (2−

√
3)n−1

(2 +
√
3)N−1 − (2−

√
3)N−1

(28)

where Equation 28 uses Lemma 1, Lemma 2, and the following expressions for Chebyshev

polynomials:

Tn(λ) =
1

2
(λ+

√

λ2 − 1))n +
1

2
(λ−

√

λ2 − 1))n (29)

Un(λ) =
(λ+

√
λ2 − 1)n+1 − (λ−

√
λ2 − 1)n+1

2
√
λ2 − 1

(30)



Proof of Proposition 3. First consider firms starting from the smallest market shares:

lim
N→∞

s∗n = lim
N→∞

2
√
3

3

(

(2 +
√
3)n−1 + (2−

√
3)n−1

(2 +
√
3)N−1 − (2−

√
3)N−1

)

, n = 1, 2, 3, . . .

= lim
N→∞

2
√
3

3

(

(2 +
√
3)n−1 + (2−

√
3)n−1

(2 +
√
3)N−1

)







1

1−
(

2−
√
3

2+
√
3

)N−1






, n = 1, 2, 3, . . .

= 0

(31)

Next consider the largest firms, starting from N-j, where j=1.

lim
N→∞

s∗n = lim
N→∞

2
√
3

3

(

(2 +
√
3)N−j−1 + (2−

√
3)N−j−1

(2 +
√
3)N−1 − (2−

√
3)N−1

)

, j = 1, 2, 3, . . .

= lim
N→∞

2
√
3

3

(

(2 +
√
3)N−j−1 + (2−

√
3)N−j−1

(2 +
√
3)N−1

)

, j = 1, 2, 3, . . .

=
2
√
3

3

(

1

(2 +
√
3)j

)

+
2
√
3

3

(

1

(2 +
√
3)j

)

lim
N→∞

(
2−

√
3

2 +
√
3
)N−1, j = 1, 2, 3, . . .

=
2
√
3

3

(

1

(2 +
√
3)j

)

, j = 1, 2, 3, . . .

(32)

Finally, consider the largest firm N:

lim
N→∞

s∗n = lim
N→∞

√
3

3

(

(2 +
√
3)N−1 + (2−

√
3)N−1

(2 +
√
3)N−1 − (2−

√
3)N−1

)

,

=

√
3

3

(33)

Note also that the sum of the limiting market shares is equal to one.



∞
∑

j=0

lim
N→∞

s∗N−j =

√
3

3
+

∞
∑

j=1

2
√
3

3

(

1

(2 +
√
3)j

)

=

√
3

3
+

2
√
3

3

(

1

(1 +
√
3)

)

=

√
3

3
+

2
√
3

3

(√
3− 1

2

)

=

√
3

3
+ 1−

√
3

3

= 1

(34)

Proof of Proposition 4.

lim
N→∞

kN =

√
3

3
+

2
√
3

3

k−1
∑

i=1

1

(2 +
√
3)i

=

√
3

3
+

(

1−
√
3

3

)

(

1−
1

(2 +
√
3)k−1

)

(35)

Proof of Proposition 5.

lim
N→∞

HHIN =

(√
3

3

)2

+

(

2
√
3

3

)2 ∞
∑

i=1

1

(2 +
√
3)2i

=
1

3
+

4

3

(

1

(2 +
√
3)2 − 1

)

=
4
√
3− 3

9

(36)
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