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Abstract

Multicollinearity hampers empirical econometrics. The remedies proposed to date suffer
from pitfalls of their own. The ridge estimator is not generally accepted as a vital alternative
to the ordinary least−squares (OLS) estimator because it depends upon unknown parameters.
The generalized maximum entropy estimator depends upon subjective exogenous
information. This paper presents a novel maximum entropy estimator that does not depend
upon any additional information. Monte Carlo experiments show that it is not affected by any
level of multicollinearity and dominates the OLS estimator uniformely. The same
experiments provide evidence that it is asymptotically unbiased and its estimates are
normally distributed.
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1. Introduction

Multicollinearity hampers empirical econometrics. The remedies proposed to date are not
entirely ideal as they suffer from pitfalls of their own. This paper deals with
multicollinearity in the classical linear statistical model:

y X u= +ββ         (1)
where the dimensions of the various components are y u~ ( ), ~ ( ), ~ ( )T T K× × ×1 1 1ββ
and X ~ ( )T K× . The vector y  and the matrix X  constitute sample information. The
vectorββ represents parameters to estimate and the vector u contains random disturbances.
It is well known that the ordinary least-squares (OLS) estimator of model (1) exhibits a
large and increasing mean squared error (MSE) loss for an increasing level of
multicollinearity as measured by Belsley’s et al. condition number of the matrix X .

In the seventies, the ridge estimator was proposed as a rival to the OLS estimator
when sample data are affected by a high degree of multicollinearity.  As Judge et al.
(1980, p. 472) wrote: “Ridge regression was originally suggested as a procedure for
investigating the sensitivity of least-squares estimates based on data exhibiting near-
extreme multicollinearity, where small perturbations in the data may produce large
changes in the magnitude of the estimated coefficients.  Also discussed, however, is the
hope that ridge regression produces ‘improved estimates,’ in the sense that they may have
smaller risk than the conventional least squares estimator.” The ridge estimator depends
crucially upon an exogenous parameter, say κ , which can be interpreted as a noise to
signal ratio.  The ridge estimator received a thorough analysis and, by 1974, Theobald
demonstrated in rather general terms that a sufficient condition for the ridge estimator to
dominate the OLS estimator according to the MSE criterion is κ σ< ′2 2 / ββ ββ, where σ2  is
the population variance and ββ is the unknown vector of population parameters.  This
finding nullified the original hope that the ridge estimator could become a vital
alternative for the OLS estimator in the presence of a high degree of multicollinearity
because replacing the unknown population parameters by their sample estimates no
longer guarantees the MSE gain.

In 1996, Golan et al. proposed an estimator based on the maximum entropy
formalism of Jaynes which they called the generalized maximum entropy (GME)
estimator and proceeded to show, by means of Monte Carlo analyses, that this estimator
is unaffected for some levels of Belsley’s condition number1. The GME estimator is
consistent and asymptotically normal under some regularity conditions.  The idea
underlying the GME estimator consists in viewing the components of the parameter
vector ββ as convex linear combinations of some known and discrete support values and
unknown proportions to be interpreted as probabilities. To be specific, a parameter βk  of

                                                  
1 Golan, Judge and Miller in their 1996 book (Chapter 8) analyze the behavior of the GME estimator
against the OLS estimator using the wrong notion of condition number.  Although they quote Belsley, their
condition number is simply the ratio of the maximum to the minimum eigenvalues of the ′X X  matrix
(not the square root of this ratio, as indicated by Belsley et al.).  In their Monte Carlo analysis, they
selected values of the condition number that varied from 1 to 100 which correspond to values of Belsley’s
condition number from 1 to 10.  Because multicollinearity begins to signal its deleterious effects when
Belsley’s condition number is around 30, the discussion of Golan et al. does not involve problems that are
ill-conditioned.
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the linear statistical model is regarded as the mathematical expectation of some discrete
support values Zkm  such that

 βk km km
m

Z p= ∑               (2)

where pkm ≥ 0 are probabilities and, of course, pkmm∑ = 1 for k K= 1,..., . The element

Zkm  constitutes a-priori information provided by the researcher, while pkm  is an unknown
probability whose value must be determined by solving a maximum entropy problem. In
matrix notation, let ββ = Zp , with pkm ≥ 0 and pkmm∑ = 1 for k K= 1,..., .  Also, let

u Vw= , with wtg ≥ 0  and wtgg
=∑ 1 for t T= 1,..., .  Then, the GME estimator can be

stated as
       max ( ) log( ) log( )

, ,

H p p w wkm km
k m

tg tg
t g

p,w = − −∑ ∑        (3)

subject to y X u XZp Vw= + = +ββ
pkm

m

=∑ 1  k K= 1,...,

wtg
g

=∑ 1 t T= 1,..., .

The H( )p,w  function measures the entropy in the model. The GME estimator has no
closed-form solution and some of its properties must be analyzed via the associated KKT
conditions. The GME estimator is not sensitive to multicollinearity because the matrix X
appears off the main diagonal of the appropriate KKT conditions.

The GME estimator, however, has important weaknesses: The estimates of the
parameter βk  and residual ut  are sensitive, in an unpredictable way, to changes in the
support intervals. A concomitant but distinct weakness is that the GME estimates and
their variances are affected by the number of support values.  Also, while knowledge of
the bounds for some parameters may be available and, therefore, ought to be used, it is
unlikely that this knowledge can cover all the parameters of a model.  In other words, the
GME estimator depends crucially upon the subjective and exogenous information
supplied by the researcher: The same sample data in the hands of different researchers
willing to apply the GME estimator will produce different estimates of the parameters
and, likely, different policy recommendations.

This paper proposes a novel maximum entropy estimator inspired by the theory of
light that does not require any subjective and exogenous information. It is called the
Maximum Entropy Leuven (MEL) estimator2 and it is not affected by any degree of
multicollinearity.  The MEL estimator is scale-invariant in the sense of the OLS
estimator. Preliminary Monte Carlo experiments indicate that the MEL estimator is
asymptotically unbiased.  Furthermore, the same experiments have failed to reject the
normality hypothesis for the parameter estimates.

                                                  
2 This paper is written in honor and loving memory of my wife, Carlene Paris, who died of leiomyosarcoma
– a very rare cancer  – on May 5, 2001. The MEL estimator is named after the town of Leuven, Belgium,
where she spent the last months of her life while undergoing a difficult cancer treatment.
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2. The Maximum Entropy Leuven Estimator

The MEL estimator is inspired by the theory of light. The analogy with economic
analysis runs as follows. Light carries information about the physical environment. When
light reaches the eyes (photomultipliers) of a person, the perceived image may be out-of-
focus. That person will squint and adjust his eyes in order to improve the reproduction of
the image in his brain. Economic data carry information about economic environments
and the decision processes that generated those data. As with any picture, the information
reaching a researcher may correspond to an image that is out-of-focus. The goal of
econometric analysis, then, is to reconstruct the best possible image of an economic
decision process as the way to better understand the economic agent’s environment.

In the theory of light (Feynman), the probability that a photomultiplier is hit by a
photon reflected from a sheet of glass is equal to the square of its amplitude.  The
amplitude of a photon is an arrow (a vector) that summarizes all the possible ways in
which a photon could have reached a given photomultiplier.

In an econometric model with noise, it is impossible to measure exactly the
parameters involved in the generation of the sample data. Each parameter depends on
every other parameter specified in the model and its measured dimensionality is affected
by the available sample information as well as by the measuring procedure. Following the
theory of light, it is possible to estimate the probability of such parameters using their
revealed image. The revealed image of a parameter can be thought of as the estimable
dimensionality that depends on the sample information available for the analysis.  Hence,
in the MEL estimator we postulate that the probability of a parameter βk  (which carries
economic information) is equal to the square of its “amplitude” where by amplitude we
intend its normalized dimensionality.  Thus, the MEL estimator is specified as follows:

min ( , , ) log logH L L Lp u p (p ) ( ) u uβ β β β β β= ′ + + ′        (4)
subject to y X u= +ββ

Lβ = ′ββ ββ
pβ β= ββ ββΘ / L

where  p 0β≥ , the symbolΘ indicates the element-by-element Hadamard product and ′u u
is the sum of squared residuals. The same probability statement could be applied to the
error term but in this paper the entropy formulation is kept at its minimum. Also a signal-
to-noise parameter could be introduced into the objective function but, without any
compelling justification for this specification, its value is chosen as unity.

The MEL estimator does not possess a closed form representation. Its solution
requires the use of a computer code for nonlinear programming problems such as GAMS
by Brooke et al.  This feature is in common with the GME estimator.  In spite of its
apparent complexity, the solution of numerous test problems was swift and efficient on
the same level of rapidity of the OLS estimator.

3. Distributional Properties of the MEL Estimator

The nonlinearity of the MEL estimator makes it difficult to derive its distributional
properties.  This goal will be the subject of further research. To shed some light on these
properties, several Monte Carlo experiments were performed. In particular, asymptotic
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unbiasedness and normality of the estimated parameters were considered. Furthermore,
the behavior of the estimator under increasing levels of multicollinearity was analyzed.

Asymptotic unbiasedness was measured by the magnitude of squared bias in a

risk (or average loss) function ρ( , ˆ )ββ ββ , also called MSEL, as suggested by Judge et al.
(1982, p. 558), where

 ρ( , ˆ ) ( , ˆ ) [( ˆ )( ˆ ) ] [( ˆ ) ( ˆ )]ββ ββ ββ ββ ββ ββ ββ ββ ββ ββ ββ ββ= = − − ′ = − ′ −trMSE trE E        (5)

  = + ′trCOV tr BIAS BIAS( ˆ ) [ ( ˆ ) * ( ˆ )]ββ ββ ββ .

Tables 1 and 2 present the results of a non-trivial Monte Carlo experiment that
deals with a true model exhibiting the following specification. There are ten parameters
βk , k K= 1,... ,  to estimate. Each parameter βk  was drawn from a uniform distribution
U[ . , . ]−1 7 2 0 . Each element of the matrix of regressors X  was drawn from a uniform
distribution U[ , ]1 5 .  Finally, each component of the disturbance vector u  was drawn
from a normal distribution N[ , ]0 2 .  One hundred samples of increasing size, from 50 to
2000 observations, were replicated.  The GME estimator was implemented with three
discrete support values for the parameters and the error terms selected as [-5,0,5] and [-
10,0,10], respectively.  The condition number (CN) of the X  matrix is given for each
sample size.

The GME estimator implemented with the optimization program GAMS failed to
reach an optimal solution with a sample size of T>400.  This event might be due to the
large number of probabilities that must be estimated for an increasing number of error
terms. The GME estimator produces results that approximate very closely uniform
probabilities and this characteristic of the GME estimator may make it difficult with large
samples to locate a maximum value of the objective function.  Invariably, the GAMS
program terminated with a feasible but non-optimal solution when T>400.

The levels reported in Table 1 represent the sum of the squared bias over ten
parameters.  It would appear that the MEL estimator performs as well as the OLS
estimator in small samples.  This result is confirmed in Table 2 that presents the levels of
MSEL for the same experiment and sample sizes.

The hypothesis that the parameter estimates are distributed according to a normal
distribution was tested by the Bera-Jarque (1980) statistic involving the coefficients of
skewness and kurtosis that the authors show to be distributed as a χ2  variable with two
degrees of freedom. In all the runs associated with Tables 1 and 2, the normality
hypothesis was not rejected with ample margins of safety.

The above results provide evidence that the MEL estimator performs as well as
the OLS estimator, under a well-conditioned ′X X  matrix.  The MEL estimator out-
performs the OLS estimator under a condition of increasing multicollinearity.  Following
Belsley et al. (1980), multicollinearity can be detected in a meaningful way by means of a
condition number computed as the square root of the ratio between the maximum and the
minimum eigenvalues of a matrix ′X X  (not a moment matrix) whose columns have been
normalized to a unit length.  Equivalently, the same condition number can be obtained by
computing the singular value decomposition of a normalized matrix, normX , such that
normX UDV= ′ , where D is a diagonal matrix of singular values while U  and V  are
matrices such that ′ =U U I  and ′ =V V I .  The condition number of the normX  matrix,
then, is the ratio between the maximum and the minimum singular values measured as
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absolute values. Because norm ′ = ′ ′ = ′ = ′X X VDU UDV VD V VLV2 , with eigenvalues
L D= 2 , the two definitions of condition number are consistent.  Belsley et al. found that
the negative effects of multicollinearity begin to surface when the condition number is
around 30. A Monte Carlo experiment was conducted to examine the behavior of the
MEL, GME and OLS estimators using the MSEL criterion under increasing values of the
condition number with a sample size of T=50. The experiment’s structure is identical to
that one associated with Tables 1 and 2.  The results are presented in Table 3.

The MEL estimator reveals low levels of MSEL and a remarkable stability as the
condition number increases.  On the contrary, and as expected, the OLS estimator shows
a dramatic increase in the MSEL levels for values of the condition number that can be
easily encountered in empirical econometric analyses. The GME estimator was
implemented in two versions with two different support intervals of the parameters.  The
first version of GME, with narrow support intervals, reveals a stability comparable to that
of the MEL estimator. The second version of GME, with wider support intervals, exhibits
a significant increase in MSEL values for certain levels of the condition number. When
the number of repeated samples was increased to 300, the results were very similar to
those given in  tables 1, 2  and 3.

4. Scale Invariance of the MEL Estimator

The MEL estimator is “invariant” to an arbitrary change of measurement units of the
sample information in the same sense that the OLS estimator is “invariant” to a change of
scale of either the dependent variable or the regressors or both. In reality, a more proper
characterization of the OLS and MEL estimators under different scaling is that their
estimates change in a known way due to a known (but arbitrary) choice of measurement
units of either the dependent variable or regressors or both.  Because of this knowledge, it
is always possible to recover the original estimates obtained prior to the scale change and,
in this sense, both the OLS and the MEL estimators are said to be scale invariant. We
now scale the dependent variable y  of the linear statistical model in equation (1) by an
arbitrary but known scalar parameter R and the matrix of regressors X  by an arbitrary but
known linear operator S regarded as a non-singular matrix of dimensions ( )K K× .

The specification of the optimization model that will produce scale-invariant
estimates of the MEL estimator can then be stated as

                        min ( , , ) log log * *H L L L Rp u p (p ) ( ) u uβ β β β β β= ′ + + ′2            (6)

subject to     
y X

S u
R R

= 



 +−1 ββ* *

Lβ = ′ ′− −ββ ββ* *S S1 1

p S Sβ β= − −1 1ββ ββ* * /Θ L

where ββ ββ* ≡ S , u u* /≡ R and where the vectors ββ and u  refer to the originally unscaled
model.  If the scalar R  is equal to one and the matrix S is taken as the identity matrix, the
model specified in equation (6) is identical to the unscaled model exhibited in equation
(4).
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5. Conclusion

The MEL estimator is inspired by the theory of light and rivals the GME estimator of
Golan et al. by performing very well under the MSEL risk function while avoiding the
requirement of subjective exogenous information that is a necessary component of the
GME estimator.  The MEL estimator is invariant to a change of scale in the sense of the
OLS estimator, and appears to be asymptotically unbiased based on Monte Carlo
experiments.  Furthermore, the same experiments failed to reject the hypothesis that the
distribution of the parameter estimates is normal.

In comparison to the GME estimator, the MEL estimator is parsimonious with
respect to the number of parameters to be estimated.  For example, the solution of the
MEL estimator has (2K+T) components (K parameters βk , K probabilities p

kβ , and T

error terms ut ). The solution of the GME estimator for a similar model has (MK+GT)
components, where M is the number of discrete supports for the parameter βk  and G is
the number of discrete supports for the error term ut .  The empirical GME literature
indicates that, in general, M=5 and G=3.

Another distinctive feature of the MEL estimator regards the parameter
probabilities that, in general, do not approach the uniform distribution as do the
corresponding probabilities of the GME estimator.  In order to illustrate this proposition,
the parameter and probability estimates for one data sample of the Monte Carlo
experiment described above are reported in Table 4. The condition number for the X
matrix of this sample is equal to 1018.  There are ten parameters with true values as
reported in the first column. The GME estimator was implemented with three support
values for the parameters and a support interval of [-20,0,20]. The three support values
for each error term were selected as [-10,0,10]. As anticipated, the probabilities of the
GME estimator tend toward the uniform distribution with all values very near to 1/3. On
the contrary, the probability values of the MEL estimator are far from the uniform
distribution. Because of the presence of a high level of multicollinearity, some of the
OLS parameter estimates are very far from the true values.

The MEL estimator appears to succeed where the ridge estimator failed: Under
any levels of multicollinearity, the MEL estimator uniformely dominates the OLS
estimator according to the mean squared error criterion.  It rivals also the GME estimator
without requiring any subjective additional information.
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Table 1. Asymptotic unbiasedness measured by the sum of squared biases. 100 samples.
______________________________________________________________________
Estimator        T=50           T=200          T=400            T=1000           T= 2000
                     CN=11.5       CN=10.3      CN=9.5         CN=9.1          CN=8.8

MEL               0.03630       0.00371        0.00043         0.00078          0.00013
GME              0.04986       0.00451        0.00057         ---------            ---------
OLS               0.00893       0.00170        0.00012         0.00056          0.00013
_____________________________________________________________________
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Table 2. MSEL for MEL, GME and OLS estimators. 100 samples
_____________________________________________________________________
Estimator               T=50           T=200          T=400          T=1000           T=2000
                     CN=11.5     CN=10.3      CN=9.5       CN=9.1          CN=8.8

MEL               0.5448         0.1334          0.0709         0.0295            0.0132
GME              0.5469         0.1341          0.0715         --------             --------
OLS                0.5882         0.1351          0.0715         0.0294            0.0132
_____________________________________________________________________

Table 3.  MSEL of rival estimators for increasing condition number. T=50, 100  samples
_____________________________________________________________________
      Estimators
Condition        __________________________________________________________
Number                 MEL                 GME(-5,5)       GME(-20,20)               OLS
______________________________________________________________________
          11                 0.545               0.547                 0.584                    0.588
          30                 0.800               0.773                 1.059                    1.092
          60                 0.922               0.858                 2.195                    2.561
        101                 0.876              0.818                 3.890                    6.120
        203                 0.792              0.758                 5.316                  23.009
        304                 0.768               0.742                 4.424                  50.908
        508                 0.754               0.733                 2.694                117.601
     1,018                 0.749              0.730                 1.346                219.350
     4,478                 1.120               1.103                 1.155                560.338
   42,187                 1.126               1.108                 1.109                601.108
______________________________________________________________________
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Table 4.  Estimates of parameters and probabilities in rival estimators
______________________________________________________________________

       MEL              GME[-20,20]  OLS
        ______________         ____________________________

           True Beta     Beta    Prob(Beta)         Beta       Prob1     Prob2     Prob3         Beta

β1 -0.0258      -0.0301    0.0001         -0.0208     0.3339    0.3333    0.3328     -0.0048
β2 -1.0752      -0.8594    0.0957         -0.9108     0.3564    0.3328    0.3108     -0.9552
β3          0.4149       0.8509    0.0937           0.8469     0.3124    0.3329    0.3547      0.8855
β4          1.4772       1.1832    0.1815           1.2400     0.3028    0.3324    0.3648      1.2203
β5         -1.5673     -1.1938    0.1847          -0.9819     0.3582    0.3327    0.3091      7.5817
β6         -0.3852     -0.5096    0.0337          -0.7394     0.3520    0.3330    0.3150     -9.2844
β7         -0.4499     -0.8148    0.0861          -1.0607     0.3602    0.3326    0.3072     -9.5962
β8          0.1000     -0.1732    0.0039          -0.1822     0.3379    0.3333    0.3288     -0.2112
β9         -0.7403     -0.7781    0.0785          -0.7923     0.3535    0.3329    0.3136     -0.7938
β10         1.5974       1.3662    0.2420           1.4385     0.2980    0.3320    0.3699      1.4385
_______________________________________________________________________


