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Abstract

This paper presents a comprehensive approach to estimation and hypothesis testing under a
set of full restrictions, some of these arising from adding—up conditions on the endogenous
variable. In contrast to the existing statistical literature, this paper uses an argumentation style
familiar from classical econometric textbooks, to provide an insightful, straightforward, and
nevertheless rigorous exposition of this topic.
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1. Introduction

This note takes up the problem of estimation in the classical linear model subject to linear
restrictions when some of these restrictions arise from adding-up conditions, which imply the
singularity of a covariance matrix. Singularity in a covariance matrix might be thought of as
arising in one of two ways. First, when a particular variable is allocated among a number of
equations. Dhrymes and Schwarz (1987) give a brief survey of the economic origins of this
mechanism and of the corresponding literature; for an extensive survey and applications see
also the monograph of Bewley (1986). Typically, allocation models contain several behavioral
equations and an additional identity. Imposing this identity or adding-up condition on the
regression equations causes implicit restrictions on the parameters, resulting in what might be
called a model derived singularity. Due to this singularity, the usual generalized least squares
(GLS) estimator does not exist. Thus, a modified GLS procedure has been derived, using the
Moore-Penrose inverse of the covariance matrix.

A second approach to singularity is to recognize that it can occur for unknown reasons and
needs to be accounted for with appropriate statistical methods. Hence it is common practice
to construct the class of estimable functions and estimators with certain desirable properties
for different constellations of the linear regression model. Thus this case, where there is a
singular disturbance covariance matrix implying restrictions on the parameters, may well be
described as singularity by assumption. The properties of the corresponding estimators were
first systematically investigated by Rao (1965, 1973), Rao and Mitra (1973), Theil (1971),
and Kreijger and Neudecker (1977). The last two are often grouped together in the literature
and termed the Theil-Kreijger-Neudecker (TKN) estimator. Magnus and Neudecker (1988)
summarized and completed the results on estimation in this model class.

The aim of this paper is to simplify and to synthesize existing theory by bringing together
some well known findings. After introducing the set-up of the model (section 2), the paper
continues to impose the complete set of implicit and explicit (i.e. exogenous) restrictions on
the regression equations implied by the singularity. This is done by using the well known
transformation of a model with nonspherical disturbances — subject to implicit and explicit
constraints — to an unconstrained regression model with spherical disturbances (section 3).
Then, for the transformed model, the usual results from the basic textbook literature apply,
and this is done in a straightforward way in section four.

2. Problem Setting

Consider the classical linear model given by
y = Xb +u, (1)

where y is the T" x 1 vector of observations on the endogenous variable, b is the K x 1
vector of unknown parameters, X is the 7' x K regressor matrix and u is the T" x 1 vector of
disturbances. We assume that all regressors are nonstochastic, rk(X) = m < K and E(u) = 0.

The covariance matrix of u is given by V(u) = %€, where we assume that €2 is known and
2
o° # 0.



Two constraints might apply to the regression equation (1).

(i) The matrix £ may be positive semidefinite and singular, due to the imposition of adding-
up conditions on the endogenous variable.

(ii) The parameters b might be subject to linear restrictions given by
Hb = h, (2)

with some of these restrictions arising from the adding-up conditions.

Sections three and four of the paper will incorporate both of these constaints using an ap-
propriate set-up in line with Theil (1971) which will now be described. Initially however, we
focus on the issues responsible for problem (ii), which will naturally lead us to problem (i).

The parameters in (1) are taken to obey the exogenous restrictions
Rb=r, (3)

where both the ¢ x K matrix R and the ¢ x 1 vector r are known and rk(R) = rk ( Rr )

In addition to the explicit restrictions on b in (3) we consider implicit restrictions, repre-
sented by adding-up conditions on the endogenous variables A’y = s, where both the 7" x p
matrix A and the p x 1 vector s are fixed and known. This implies

var(A'y) = var(A'u) = 0, (4)
which leads to the parameter restrictions
s=A'y=A'Xb a.s. (5)

It immediately follows from equation (4) that there is a singularity in the covariance
matrix 2 since A = 0, where we assume that the p < T linearly independent columns of
A constitute a basis of the null space of 2. Without loss of generality we also assume that
A’A =1,. Consequently € can be diagonalized as

Q=(A F)(82)<?,/>_FAF/, (6)

where ( A F ) is an orthogonal 7" x T matrix and A is the diagonal matrix of the positive
eigenvalues of € of the order (7" — p). The Moore-Penrose inverse representation of € with
Q" = FA'F’ follows from (6).

Because there is a potential for an identification problem, we have to assume that the

matrix
R
X

has full column rank. If this is not true then identification is problematic. This is easily
seen by assuming that the above matrix is rank deficient, implying the existence of a nonzero
vector g, with Xg = 0’and Rg = 0. Hence X(b+g) = Xb, R(b+g) =rand A’X(b+g) =
A’XDb. The latter three equations imply that b and b + g are observationally equivalent, and
consequently b cannot be identified.



Finally, by setting

_ R [ r
H:(A’X) and h:(s>,

the restrictions (3) and (5) combine to the set of full restrictions (2).
In order to guarantee the consistency of (2) we further assume that rk(H) = rk( H h ).

3. GLS Estimation

It is well known from the literature that the GLS estimator corresponding to the regression
problem described in section 2 is not defined and that there are several ways of circumventing
this problem. One method to deal with problem (i) is to premultiply both sides of (1) by the

nonsingular matrix
A/
< A—L2F/ ) :

This results in an equation system which is statistically equivalent to (1) and is represented
by constraints (5) and the regression equation

ARy = A7V2F'XDb + A7V F',

or
y" = X*b + u*, (7)
where the covariance matrix of u* is, due to (6), given by oIr_,.

Having neutralized problem (i) we are left with the transformed equation (7) and the set of
explicit and implicit restrictions (2). The unconstrained GLS-type system of normal equations
corresponding to (7) could then be written as X’Q*Xb = X'Q2"y. Imposing the full set of
restrictions (2), the restricted GLS estimation of (7) leads to the normal equations

X'QX H b\ _ [ XQ'y .
(R0 (3)-(), ®
where A contains the Lagrange multipliers.
Now the problem is to find an intuitive, simple, and straightforward approach to the
derivation of b and to establish the properties of this estimator.
To start with we need a basis for the null space of H. The vectors of this basis will

be combined as columns of the K x m matrix N, where m = K—rk(H). Without loss of
generality we assume N'N = I,,,. Thus the matrix

(~)

HN = 0.

The complete set of restrictions (2) can be inverted to find the parameter values satisfying
them, namely

has full column rank and

b =H"h + N, (9)

where H" is the Moore-Penrose inverse of H and ¢ is an m x 1 vector containing the free
parameters.



Note that any pseudo-inverse of H could be used in (9). This parameter reduction is due
to Rao (1965, 4a.9) and represents an important result in the regularization of singularity
problems. Replacing b in (7) by the right-hand side of (9) yields

y** — X**C + u*’ (10)

with

y*=y*—X*H'h and X = X"N.
Obviously, model (10) is a classical linear regression model with (7" — p) observations and m
parameters that are free of restrictions. The OLS normal equations of (10) are given by

N'X'QTXNé = N'X'Q'y — N'X'Q*XH"h. (11)

Now define
S = (A"V2ZF'XN) (A 2F'XN) = N'X'QFXN = X" X**.
Due to the orthogonality of H and N

H 0
< A71/2F/X ) N = ( Afl/QF/XN ) : (12)
Then, obviously
R R R
rk A'X N| =1k A'X |N :rk[( X )N] =rk(N) = m. (13)
AV2E'X F'X

Consequently, due to (12) and (13), we get rk(A~?*F'XN) = rk(X**) = m and this proves

LEMMA 1. The matriz S is tnvertible.

Thus, a unique solution to the normal equations (11) is given by
e =SHN'X'Q'y - N'X'Q"XH"h), (14)
with var(€) = 0?S~". Of course, we are not interested in these parameters, but the ones in b.
Hence, an explicit solution for b is given by
b =NSIN'X'Q'y + (Ix — NSTIN'X'Q*X)H"h, (15)
and the parameter covariance matrix has the simple form var(f)) = 02NS™'N, where b

satisfies the complete set of restrictions.
An equivalent expression to (15) would be

b =b+ B(y — Xb),
where ~
b=H"h
is a special solution to the complete set of restrictions, and
B = NS !IN'X'Q*
is a weighting matrix. Note that these results can be easily transferred to the estimation of
linear combinations Wh.



4. BLU Properties of B, Unbiased Estimation of ¢2, and Wald Tests

After the derivation of the restricted GLS estimator we are of course interested in its properties.
In an intriguingly simple manner the transformations done in the previous section lead us to
the proof of the BLU properties of (15). Due to

c\ (N —
<h)_(H)b and b =H"h + Nc,

there is a one-to-one-correspondence between either the true parameters ¢ and b, and the
corresponding estimators ¢ and b. The fact that b inherits the properties of ¢ becomes
evident by considering b as a linear function of y**. Thus, since there is also a one-to-one-
correspondence between y** and y, namely

y** _ A—1/2F/ B A—1/2F/XH+h
S - Al y 0 Y

y = FAY?y* + XH"h,

quite obviously b is BLU as a function of y.

It is important to note, however, that despite its general uniqueness, estimator (15) has
no unique representation.! This can be easily seen by considering an arbitrary (affine) linear
unbiased estimator b in y, with

implying

b=Ly+d=(L+DA')y+d—Ds a.s.,

where D is an arbitrary K x p matrix. Now, since L and d have to be calculated when proving
the minimal variance property of b directly, there are no unique solutions, as has been pointed
out by Rao (1973, Corollary 3.6). Due to A’y = s, the unique representation (14) of € in y**
is lost in the transformation to represent b as a function of y.2

'Rao (1965) considers the case of a singular regressor matrix and explicit restrictions, but does not allow for
a singular covariance matrix. Rao and Mitra (1971) and Rao (1973) discuss the case of a singular covariance
matrix and the resulting restrictions without considering further constraints. This allows linear homogeneity
in y of the resulting estimator b= Ly, whereas in the case of further constraints, as pointed out by Magnus
and Neudecker (1988, p.255), b must be linear nonhomogeneous (affine) in y, i.e. b =Ly +d.

What the work of the cited authors has in common, is that, from an economic point of view, their approach
is rather unnatural. That means, instead of discussing adding-up conditions, they assume the singularity
of the covariance matrix and their aim is to construct BLU estimators instead of deriving GLS estimators.
Moreover, their use of conditions on linear manifolds is quite useless in applied work.

Rao (1973, p.278, Lemma 2.1) shows that from E(y) = Xb and V(y) = 02§ follows y € M(X : £2). He
further states that this is the only statement that can be made when y is not observed. If, however, y is
observable, he proves (p.279, Lemma 2.4) that the knowledge of an observation on'y enables us to specify the
particular subspace of M(X : Q) to which the random variable belongs.

Magnus and Neudecker (1988, p.272, Proposition 4) postulate y € M(X : Q), a.s., or, in the case of
X Q
R O
can neither be verified nor is it necessary, because one of the model’s preliminaries (p.254, equation 1) is
y = Xb + u and, consequently E(y) = Xb and V(u) = 02€. Then, by following Rao, we automatically get
yeMX: Q).

2Thus, the statement of Magnus and Neudecker (1988, p.272), that the model y = Xb +u with A’y =s
and V(u) = 028 is equivalent to the model F'y = F'Xb + F'u with V(F'u) = %A, is not true with respect
to a unique representation of b as a function of y, and a function of Fy, respectively.

exogenous restrictions y € M ( > a.s., to guarantee model consistency. However, this condition
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Obviously a best quadratic estimate of o2 as a function of y** is given by
6% =a"a* /(T —p—m), (16)

where 0* = y** — X**¢. Consequently, due to the one-to-one correspondence between y
and y**, 6% is a best quadratic estimate of o2 as a function of y. Under the assumption of
normality (T'— p —m)6?/o? is distributed as % with (T — p — m) degrees of freedom.

Although the discussion has been couched in terms of a single index model with adding-
up restrictions, it has been pointed out by several authors that the results so derived are
perfectly applicable in the context of systems of regression equations. Moreover, with (15) to
hand, extra linear restrictions on b such as Gb = g can be tested straightforwardly. This has
has been recently done by Ravikumar, Ray and Savin (2000) in the SUR context. Without
loss of generality we assume that G has full row rank, say n, and that Gb = g is neither
contradictory nor includes any already implemented restrictions. Under the assumption of
normality the test statistic is

(Gb — g) (:2 GNSIN'G')(Gb — g), (17)

which is distributed as x? with n degrees of freedom under Hy: Gb = g. It can be easily shown
that the matrix GNS™'N’'G’ is nonsingular. Replacing 0% by 62, (17) will be distributed as
the I distribution with n and (T" — p — m) degrees of freedom.

For details concerning the estimation of €2, when it is unknown, by iteratively applying
feasible GLS, as well as further elaborations see Haupt and Oberhofer (2000).
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