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Abstract

This paper investigates a location−quantity model in a circular city. Pal (1998) investigates a
duopoly model and finds that an equidistant location pattern appears in equilibrium.
Matsushima (2001a) investigates an n−firm oligopoly model and shows that, if the number of
firms is even, another equilibrium exists where half of the firms agglomerate at one point and
the other firms agglomerate at the opposite point. We find that there exist many other
equilibrium patterns that include the above two patterns as special cases.
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1. Introduction

Since the seminal work of Hotelling (1929), a rich and diverse literature on spatial

competition has emerged. Location models fall into two categories: those in which firms

bear the transport costs are shipping or spatial price discrimination models; those in

which consumers pay for transport are shopping or mill pricing models. In each type, one

can have either Bertrand-type price setting or Cournot-type quantity-setting.

Most papers on location theory use shopping (mill pricing) models with Bertrand

competition. Although Cournot-type and Bertrand-type non-spatial models are equally

popular, the body of literature on spatial competition that uses Cournot-type models

is relatively small. Economists have recently considered shipping models with Cournot

competition. Hamilton, Thisse, and Weskamp (1989) and Anderson and Neven (1991)

carry out pioneering works on these models. They use linear-city models and show that

all firms agglomerate at the central point. Pal (1998) shows that their result is crucially

dependent on the assumption of the linear-city. He investigates a circular city duopoly

model and finds that an equidistant location pattern appears in equilibrium, that is,

locational dispersion appears.1 Matsushima (2001a) extends Pal’s model to an n-firm

oligopoly and shows that another equilibrium exists where half of the firms locate at

one point and the other half locate at the opposite side. However, Matsushima (2001a)

does not discuss the possibility of other types of equilibria, and says nothing when the

number of firms is odd. We take a close look at the shipping spatial Cournot model with

circular market discussed by them. We find that many other location patterns appear in

equilibria, including those of Pal (1998) and Matsushima (2001a) as special cases. We

show that the location-quantity model with a circular city contains very rich locational

implications.

The paper is organized as follows. Section 2 formulates the model. Section 3 presents

equilibrium outcomes. Section 4 concludes the paper. All proofs of Lemmas and Propo-

sitions are presented in Appendix.

2. Model

The model is from Pal (1998) except for the number of the firms. We extend a duopoly

model of Pal to an n-firm oligopoly model.

There is a circular market of length 1 where infinitely many consumers lie uniformly.

The firms engage in the following location-quantity competition. In the first stage, each

1 For other circular Cournot models, see, e.g., Shimizu (2002). For applications of this model, see,
e.g., Matsushima (2001b).
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firm simultaneously decides where on the perimeter to locate. After observing the rivals’

locations, in the second stage each firm simultaneously chooses its output level at every

point (market) in the continuum [0, 1] as to maximize its profit. Let x be a point on

the circle located at a distance from 0, measured clockwise. Assume that the demand

function at each market is linear, i.e., p(x) = A − B Q(x), where A and B are positive

constants and p(x) and Q(x) are the price and the total quantity supplied at market x,

respectively. Each firm incurs a symmetric constant marginal cost of production, which

we normalize to zero without loss of generality. The firms must pay transport costs. To

ship a unit of the product from its plant xi to a market at point x, firm i pays a transport

cost t|x − xi|, where t is a positive constant and |x − xi| is the distance between x and

xi. The norm signifies the shorter distance of the two possible ways to transfer the goods

along the perimeter. The consumers are assumed to have a prohibitively costly transport

cost, preventing arbitrage.2 Finally, A > nt is assumed in order to ensure that every firm

serves the whole market. All the above assumptions are standard in the literature.

The equilibrium concept used is subgame perfect Nash equilibrium. Thus, we solve the

game by backward induction. Because constant marginal cost of production is assumed,

each local market can be analyzed independently. Thus the second-stage subgames and

the local Cournot competition are examined first. Let the locations of the firms be denoted

x1, x2, . . . , xn respectively, with xi ∈ [0, 1], i = {1, . . . , n}. Also, let qi(x) be outputs

for firm i at market x and q−i(x) be the total output for firms other than i. Under the

above assumptions, at each point x ∈ [0, 1] firm i makes profit given by

πi(qi(x), q−i(x), x) = [A − Bqi(x)−
∑
j �=i

Bqj(x)− t|x − xi|]qi(x).

Taking first order conditions to solve for the unique Cournot equilibrium yields,

q∗i (x) =
1

B(n + 1)

[
A +

∑
j �=i

t|x − xj| − nt|x − xi|
]
, (1)

Q∗(x) =
1

B(n + 1)

[
nA −

n∑
j=1

t|x − xj|
]
, (2)

and the profit function can be rewritten as

π∗
i (x) =

1

B(n + 1)2
[A+

∑
j �=i

t|x − xj| − nt|x − xi|
]2
= Bq∗i (x)

2. (3)

2 This assumption is not essential. Unless transport costs for consumers are strictly smaller than those
of firms, consumer arbitrage plays no role in our model. For this discussion, see Hamilton, Thisse, and
Weskamp (1989).
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Each firm’s total profit function Πi is,

Πi(xi, x−i) =
∫

x∈[0,1]
π∗

i (x;xi, x−i)dx, (4)

and each firm chooses its location to maximize it. Let Xi denote the set of markets such

that the derivative of |x − xi| with respect to xi is non-positive. If xi ∈ [0, 1/2], then

Xi = [xi, xi + 1/2]. From (1), (3), and (4) we obtain

∂Πi

∂xi

= 2B
∫ 1

0
q∗i

∂q∗i
∂xi

dx =
2nt

B(n + 1)2

(∫
x∈Xi

(A +
∑
j �=i

t|x − xj | − nt|x − xi|)dx

−
∫

x/∈Xi

(A +
∑
j �=i

t|x − xj| − nt|x − xi|)dx
)

=
2nt2

B(n + 1)2

(∫
x∈Xi

∑
j �=i

|x − xj|dx −
∫

x/∈Xi

∑
j �=i

|x − xj |dx
)
, (5)

where we use ∫
x∈Xi

|x − xi|dx =
∫

x/∈Xi

|x − xi|dx =
1

8
.

3. Equilibrium analysis

We now look at the first stage using the solutions derived above. First, we show that

the outcome where all firms agglomerate at one point is not an equilibrium.

Proposition 1: x1 = x2 =, . . . ,= xn is not an equilibrium outcome.

As is emphasized by Pal (1998), agglomeration at one point never appears in equilibrium

in the circular-city model.

We then show that various types of equilibria exist in the game above. Before the

actual analysis, let us introduce two related terms. The first is “opposite”, which identifies

a firm that are located exactly 1/2 away from the original firm. Hence, a firm is located

as far away as possible from its opposite. The second is a “pair”, which signify two firms

that are opposites to each other. Therefore, the result in Pal (1998) shows that a pair is

the unique equilibrium of the two firm game. Note that even if there are multiple firms

located opposite to a firm, only one of them can be considered as a part of a pair at any

one time. Therefore, if firm 1 locates at 0 and firms 2 and 3 locate at 1/2, even though

both firms 2 and 3 can form a pair with firm 1, only one of them can be a part of a pair

at a time.
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Before discussing equilibria, we present one important lemma, from which two of our

main results (Propositions 2 and 3) are derived straightforwardly.

Lemma 1: Suppose that firm g and firm h constitute a pair (i.e., |xg − xh| = 1/2), then

removing this pair will not alter the location incentives for the remaining firms, regarding

where to locate, from that before the removal. Similarly, adding a pair will not affect the

location incentives for the original firms.

The following Propositions 2 and 3 are derived straightforwardly from Lemma 1.

Proposition 2: If a situation is such that all firms can be paired at one time, then the

situation is an equilibrium.

Proposition 3: Suppose that the number of firms is 2m+1, where m is a positive integer.

Then the situation (and others differing by symmetry) where m+ 1 firms locate at 0 and

m firms locate at 1/2 is an equilibrium.

Note that the equilibrium location patterns described in Proposition 2 include both of

the results of Pal (1998) and Matsushima (2001a) as special cases.

We now discuss another type of equilibria where agglomeration appears at several

points. Proposition 2 implies that the following location pattern constitutes an equilib-

rium: There are even number of locations that splits the whole market into equidistant

parts; at each location, some firms are located, where the number of firms at each location

is equal. Then a natural question arises: is it true when the number of locations is odd?

The answer is yes if and only if the number of the location is no larger than the number

of firms at each location.

Proposition 4: Let k be the number of potential locations, where the circular market is

divided up equidistantly apart by the locations. Let m be the number of firms locating at

each of these above locations. (i) Let k be even. Then this situation is an equilibrium for

any k ≥ 2 and m ≥ 1; (ii) Let k be odd. Then this situation is an equilibrium if and only

if k ≥ m.

Note that this result implies that, for any number of firms (even or odd), the situation

where firms separate themselves equidistantly apart to the closest neighbors is an equi-

librium outcome. Thus, the conjecture of the existence of this type of equilibrium in the

n-firm model of Pal (1998) is correct. Propositions 2–4 also indicate that many other

equilibrium location patterns exist.

We explain the intuition behind Proposition 4 (ii). Consider the situation where firms

agglomerate at three points. The situation where m firms locate at 0, m firms locate at

1/3, and m firms locate at 2/3 constitutes an equilibrium only if m ≤ 3. Suppose that
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initially firm 1 locates at 0, and it relocates from 0 to 1/2. The relocation increases the

firm’s distance from 0 by 1/2, and it mitigates competition between firms locating at 0.

At the same time the relocation decreases the distance from 1/3 and 2/3 by 1/6, and it

accelerates competition between firms locating at 1/3 and 2/3. After the relocation the

number of firms locating at 0 is m − 1 and the number of firms locating at 1/3 or 2/3 is

2m. The former competition restricting effect becomes relatively strong when m is large.

Thus, each firm has an incentive for relocating if m is large.

4. Concluding remarks

In this paper we reexamine the claim in Pal (1998) that the equilibrium outcome of

the circular Cournot game is when the firms are located symmetrically apart (therefore

no agglomeration). We show that such an equilibrium always exists regardless of the

number of firms. We also find that many other equilibria exist. We show that three types

of equilibrium structures exist, where any of them can have agglomeration at multiple

locations.

Finally, we make a remark on the applicability of the shipping spatial model. The

most natural interpretation of the model is that each firm chooses where it builds a plant

in the model. There is another important interpretation. We can interpret “space” as

product varieties. Each firm’s location indicates the product or sector in which it has

an advantage. Distant locations are the products the firm is in a disadvantage and to

produce them it incurs additional costs. In short, the location choice corresponds to

the technology choice and transportation costs correspond to the additional production

costs. Hence, the shipping model is a suitable analytical tool for both spatial and non-

spatial competitions.3 Following this interpretation, our results indicate the existence

of various equilibrium patterns of technological choice. In other words, our model can

explain various partial ‘herd behavior’ of firms. It is never the case that all firms choose

the technology, while it is possible that some of them choose the same one. Such partial

‘herd behavior’ is widely observed in many industries. Our model can explain such a

situation without assuming any informational externality or network externality, which is

assumed in standard models of herd behavior.

3 See Eaton and Schmitt (1994), and Norman and Thisse (1999).
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Appendix

Proof of Proposition 1: We prove it by contradiction. Suppose that all firms agglom-

erate at one point in an equilibrium. Without loss of generality we assume that all firms

locate at zero. We now show that, if firm i deviates from the strategy above and chooses

xi ∈ (0, 1/2), then its profit increases. Substituting xj = 0 ∀ j 	= i into (5) we obtain

that, for all xi ∈ (0, 1
2
),

∂Πi

∂xi

=
2nt2

B(n + 1)2

(∫
x∈Xi

∑
j �=i

|x−0|dx−
∫

x/∈Xi

∑
j �=i

|x−0|dx
)
=

2nt

B(n + 1)2
(xi−x2

i ) > 0. (6)

(6) implies the deviation increases its profit, a contradiction.

Proof of Lemma 1: Consider an m-firm game. From (5) we obtain

∂Πi

∂xi

=
2mt2

B(m + 1)2

(∫
x∈Xi

∑
j �=i

|x − xj |dx −
∫

x/∈Xi

∑
j �=i

|x − xj|dx
)
. (7)

We then add two firms (firm m+ 1 and firm m+ 2) to the m-firm game above. Suppose

that |xm+1 − xm+2| = 1/2 and x1, x2, ..., xm are the same as the m-firm game. From (5)

we obtain

∂Πi

∂xi

=
2(m + 2)t2

B(m + 3)2

(∫
x∈Xi

∑
j �=i

|x − xj|dx −
∫

x/∈Xi

∑
j �=i

|x − xj|dx
)
. (8)

Obviously the sign of (7) is equal to that of (8). It implies that adding a pair does not

affect the derivative of each firm’s profit with respect to its own location; thus adding a

pair does not affect the optimal location for firm i (i = 1, 2, ...,m). A similar principle

can be applied when considering removing a pair.

Proof of Proposition 2: A firm looking to optimize faces one firm to its opposite and

other firms being paired. However, using Lemma 1 repeatedly, the situation after removing

all pairs must have the same solution as before as to whether it is an equilibrium or not.

Thus the firm needs to worry only about itself and the opposite firm. As shown in Pal

(1998), the unique best response of a firm in a two firm game is to locate at the opposite

of the other firm. Therefore the original location is optimal for the firm. Since every firm

in this situation can apply the same process, no firm has an incentive to deviate and this

is an equilibrium. To reiterate, the “pairs” equilibria include as special cases situations

with even number of firms locating equidistantly apart.

Proof of Proposition 3: From Lemma 1, removing pairs has no effect on the location
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incentives for the remaining firms. Since removing all pairs create a situation where there

is only one firm, this firm can locate anywhere. Thus the firm can choose to locate at 0,

as every point is a best response. The same idea can be used for all m + 1 firms located

at 0 to justify their locating at 0.

As for the firms at 1/2, we consider a situation after removing all but one pair from

the original situation. Thus there are two firms at 0, and one at 1/2. The best response

for a firm given two firms at 0 is indeed to locate at 1/2. Thus the firms at 1/2 are

willing to locate at 1/2 in the original situation, also. Therefore the given situation is an

equilibrium.

Proof of Proposition 4: Suppose that k is even. Then Proposition 2 implies Proposition

4 (i). We now suppose that k is odd.

Suppose that firms are located so that there are m firms each at 0, 1/k,2/k, . . . ,

and (k − 1)/k. Then we discuss whether or not x1 = 0 is optimal for firm 1 given

x2 =, ..., xm = 0, xm+1 = xm+2 =, ...,= x2m = 1/k, ..., x(k−1)m+1 =, ...,= xn = (k − 1)/k.

Without loss of generality we assume that x1 ≤ 1/2. Substituting x1 = 0 (i.e., substituting

Xi = [0, 1/2]) into (5), we obtain that the derivative is zero. Thus the first order condition

is satisfied when x1 = 0. We then discuss the second order condition.4 In (5), only Xi

depends on xi. Differentiating (5) with respect to xi yields

∂2Πi

∂x2
i

=
4nt2

B(n + 1)2

(∑
j �=i

|xi +
1

2
− xj| −

∑
j �=i

|xi − xj|
)
. (9)

We now substitute i = 1, x1 = x2 =, ...,= xm = 0, xm+1 = xm+2 =, ...,= x2m = 1/k, ...,

and x(k−1)m+1 =, ...,= xn = (k − 1)/k into (9). Since |0 − h/k| = |0 − (k − h)/k| = h/k

for h ≤ (k − 1)/2, we have

∑
j �=i

|0− xj| = 2m

k
(1 + 2 + 3+, ....,+

k − 1

2
).

Since

|1
2
− h

k
| = |1

2
− k − h

k
| = 1

2k
+ (

k − 1

2
− h)

1

k

4 We can prove Proposition 4 without using local maximization conditions (the first order and the
second order conditions) by showing that given other locations of other firms the profit of firm 1 is non-
increasing in x1 for x1 ∈ [0, 1/2] and strictly decreasing in x1 for x1 ∈ (0, 1/2). We avoid this alternative
proof because it requires tedious calculations and takes much space. This proof is available from the
authors upon request.
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and |1/2− 0| = 1/2, we have

∑
j �=i

|1
2
− xj| = 2m

k

(1
2
+
3

2
+, ...,+

k − 2

2

)
+

m − 1

2
.

Substituting these equations into (9), we have that the second order condition is

satisfied if and only if

−2m

k

k − 1

4
+

m − 1

2
≤ 0 ⇐⇒ m

k
≥ m − 1

k − 1
,

and it is satisfied if and only if k ≥ m.
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