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Abstract

This work extends Lazear and Rosen's seminal paper to evaluate the performance of rank
order tournaments when agents perform multiple tasks and the principal chooses, together
with the prize spread, the weights assigned to each task in determining aggregate
performance of each agent. All essential results of one−dimensional tournaments generalize
to a multi−dimensional setting. However, the relative performance of tournaments and linear
piece rates is shown to also depend on the covariance between measurement errors.
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1 Introduction

A tournament is a compensation scheme based purely on the ranking of agents’ perfor-
mance. In their seminal contribution, Lazear and Rosen [7] compare tournaments and a
linear piece rate mechanism and conclude that, when agents are risk neutral, both incentive
schemes are capable of achieving a first-best outcome, while, with risk averse agents, the
optimal mechanism depends, amongst other factors, on the structure of the errors in per-
formance measurement. In a subsequent paper, Green and Stokey [1] generalize Lazear and
Rosen work, showing that if agents are subject to both idiosyncratic and common stochas-
tic influences, then an optimal tournament dominates optimal independent contracts if the
distribution of the common shock is sufficiently diffuse.

Although the emphasis of tournament theory is in organizational economics1, applica-
tions can be found in other areas as well.

For instance, Govindasamy et.al. [2] suggest the use of tournaments as an environmental
policy tool to address nonpoint-source pollution problems. Furthermore, some first attempts
can be observed towards the introduction of tournaments as regulatory instruments; this
seems to be the case, for example, if we look at the way chosen by OFWAT to provide
incentives to water utilities for improvements in their standard of service2.

As tournament theory seems to be fairly developed, it is quite surprising that no attempt
exists to investigate the properties of rank-based mechanisms in a multitask setting3. This
is particularly relevant because it is seldom the case that agents’ duties involve just a single
task. The performance of workers in a firm, for example, could be related both to the
amount of output each of them produces and to the quality of each piece produced.

The aim of this paper is to take a first step towards a full investigation of the properties
of rank order tournaments when more than one task is performed by agents. We will,
therefore, follow [7] and compare the efficiency properties of a rank based payment scheme
with those of a linear “piece rate” mechanism, where the payment made by the principal to
the agents has the form of a “wage” per unit of performance.

Of course, with multiple dimensions in the agents’ performance, we lose one of the
advantages of tournaments, namely the reduced informational needs as compared to those
of other incentive mechanisms: the principal has, in fact, to observe absolute performances
of each agent on each task, to understand who is the winner of the “contest”. However,
other desirable theoretical properties of tournaments extend to a multi-task setting. First,
tournaments are capable of “filtering out” random events that are common across agents
(see Lazear [6]). Second, tournaments have a “fixed-slot” structure, so that the principal
does not gain by lying ex post about the performance of the agents. Following Malcomson
[8], this is particularly relevant in situations where agents cannot verify the signal their
supervisor receives concerning their output. On the other hand, a tournament specifies
prizes that do not vary with the ex-post observation of agents’ outcomes, and, therefore,
can be thought of as a solution to the principal’s commitment problem4.

1For a survey see, for example, the dedicated part in [11].
2See [10].
3For a review of incentives and mechanism design problems under multiple tasks see, for example, [4],

[12] and the literature cited therein.
4Holmstrom [3] shows, in a single task setting, that a tournament can be an “informationally wasteful”

incentive scheme; a contract indexing compensation to individual performance and to an average of peers’
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The paper is organized as follows. First, Section 2 presents the main features of the
model. Second, Section 3 is central in the paper, as we show that it is possible to design
tournaments in a multi-task setting. Third, in Section 4, we compare the incentive prop-
erties of tournaments with those of a linear compensation scheme as the one proposed by
Holmstrom and Milgrom [4]. Finally, section 5 concludes.

2 The Model

We analyze the “effort” choice problem of two agents (for example two workers in a firm or
two regulated firms) that perform j = 1, .., n tasks on behalf of a principal (inside a firm,
that could be a hierarchical superior of the two workers; in the regulatory example, it could
be an environmental protection agency or a utilities regulator). These efforts generate, on
one hand, gross benefits to the principal, and, on the other hand, a vector of information
signals.

The signal the principal receives concerning task j for each agent i (i = 1, 2) (call it αij)
is determined by the effort aij performed by each agent, by one idiosyncratic random term
εij and by one error term that is common across agents ηj ; analytically5:

αij = aij + εij + ηj

To simplify notation (in everything that follows, vectors are represented by boldface
letters), ai = (ai1 . . . ain), αi = (αi1 . . . αin) and εi = (εi1 . . . εin) , η = (η1 . . . ηn). Clearly,
E(αi|ai) = ai.

The two agents receive a net private benefit from exerting effort; the corresponding
benefit function, bp(.), is assumed to be identical across agents, strictly concave and twice
continuously differentiable. This formulation allows for multiple interpretations. In the
regulatory example, bp(.) is the regulated firms’ profit function. On the other hand, when
agents are workers who have no intrinsic motivation for their work, then bp(.) = −c(.), where
c(.) is the private cost of undertaking effort.

The random vectors, εi and η, are assumed to be distributed normally and identically
across agents, with 0 mean and covariance matrix, respectively, Σε and Ση. We also assume
that the idiosyncratic error terms are independently distributed across agents, and that
εi and η are independent random vectors. The sum of the idiosyncratic and common
error terms is, therefore, distributed as a normal law, with mean 0 and covariance matrix
Σ = Σε + Ση.

Agent i receives a payment wi(.) that can depend on the vector of all possible signals
(thus, including the signals related to the tasks performed by the other agent).

We assume that each agent’s expected utility function takes the form: E (u [wi (.) + bp(.)]),
where u(x) = −e−ρx and ρ measures the agents’ constant (absolute) risk aversion.

The principal is risk neutral and has a very simple objective function, based on the
assumption that he is interested only in the effort input of the agents:

performance would be a better way to rule out common shocks. On the other hand, as [6] points out, such
a relative performance scheme would lose the “commitment advantage” discussed in the text.

5Apparently, we assume thus a somewhat simpler relation between the effort levels and the generated
signals than Holmstrom and Milgrom. However, as Holmstrom and Milgrom themselves point out in footnote
8, this is just a matter of how we define the agents’ choice variables.
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2∑
i=1

(B (ai)− E(wi)) , (1)

where B (ai) are expected gross benefits and E(wi) is the expected payment made by the
principal to agent i. We do not impose a priori restrictions on the sign of the payment. Note
that this formulation uses the implicit assumption that there are no externalities between
the effort levels undertaken by the two agents - relaxing this assumption constitutes an
obvious area for further research.

3 Tournaments

We shall now turn to a two-players tournament in which the rules of the game specify a
fixed prize W1 to the winner and a fixed prize W2 to the loser, so that W1 > W2.

Furthermore, before the “game” takes place, the principal commits to the weights given
to each outcome in determining the “overall performance” of each player; call γj the weight
on task j.

“Overall observed performance” for player i will, therefore, be γαi
T (where γ = (γ1 . . . γn)),

and the winner will be defined as the agent that gets the highest value for this indicator.
Our aim is to determine the competitive prize structure (described by the spread among

the winner’s and the loser’s wage, W = W1 − W2) and a set of weights γj . To do this,
we first derive effort strategies by the two agents, given two arbitrary prizes’ values and an
arbitrary level for the γjs.

The two risk averse agents maximize their expected utility.
Agent 1’s expected wage is W ≡ PW1+(1−P )W2, where P is the probability of winning

for the same agent.
The variance of agent 1’s wage is: P (W1 − W )2 + (1 − P )(W2 − W )2, which can be

simplified to: (W1 −W2)2(1− P )P .
Therefore, the certainty equivalent of agent 1’s expected utility is6:

PW1 + (1− P )W2 + bp(.)−
1
2

ρ (W1 −W2)2 (1− P ) P. (2)

Agent 1’s probability of winning is given by: P = prob
[
γα1

T > γα2
T
]
, or P =

G
[
γ (a1 − a2)T

]
, where G is the cumulative distribution function of the “composite error

term”, given by γ (ε2 − ε1)T 7.
Thus, as pointed out in the introduction, tournaments are capable of sorting out common

error terms in the multitask case exactly as they do in the single task case.
If we obtain an interior solution for all effort levels (thus, a1j > 0 for all j), then agent

1’s FOCs w.r.t. a1j are: ∂P
∂a1j

(W1 −W2) + ∂bp(.)
∂a1j

− 1
2 ρ (W1 −W2)2 (1 − 2P ) ∂P

∂a1j
= 0, or

6The approximation used in the text for the agents’ certainty equivalent follows Milgrom and Roberts
[9, p. 246-247]. This approximation is valid, in particular, if the variance of the agents’ income is not ”too
high”, and/or for a sufficiently low value of the risk aversion coefficient ρ.

7The assumptions with respect to the idiosyncratic errors imply that the composite error term is normally
distributed with mean 0 and variance σ2

Σ = 2γΣεγT .
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(where g(.) is the (normal) probability density function of the “composite error term” and
where W = W1 −W2):

g(.)Wγj +
∂bp(.)
∂a1j

− 1
2

ρ W 2 (1− 2P ) g(.) γj = 0. (3)

Following the same steps, as the two agents are ex ante identical, it is easy to show that
agent 2’s FOCs are symmetric.

We focus, then, on a symmetric Nash equilibrium: a1j = a2j = aj . If such an equilibrium
exists8, then P = G(0) = 1

2 .

Let b′
p =

(
∂bp(.)
∂ai1

. . .
∂bp(.)
∂ain

)
. The agents’ FOCs can then be written as follows (taking

into account that g(0) = 1√
2πσ2

Σ

):

1

2
√

πγΣεγT
Wγ = −b′

p, (4)

Under a tournament, the principal maximizes:
(∑2

i=1 B (ai)
)
− W1 − W2, under two

constraints: 1) the agents must receive a non negative expected utility; 2) the agents’ FOCs
must be satisfied. From (4) it is clear that the amount of effort that is performed by the two
agents will only depend on the spread between the two payments. Then, we assume that W2

is used to satisfy the agents’ participation constraint; given symmetry, the solution of the
principal’s problem implies the maximization of the total certainty equivalent per agent9:

B (a) + bp (a)− 1
8

ρ W 2. (5)

under incentive compatibility constraints given in (4). This leads us to the first important
result with tournaments10 (for the proof, see Appendix A):

Proposition 1 Under a tournament:

• the optimal prize spread is given by: W = 2

√
πb′

pΣε

(
b′

p

)T

;

• the optimal effort vector is defined by11: (ρ π [Bkj ] Σε − I)−1 (B′)T = b′
p

T .

This optimal effort vector can be implemented using a set of weights that satisfies
γ = − b′

p
12.

8The existence of a pure strategy symmetric Nash equilibrium will be assumed in what follows. Further,
following the essential single-task tournaments literature, we will focus our analysis on such an equilibrium,
although the symmetry of the two agents’ FOCs does not imply per se that a symmetric Nash equilibrium
- if it exists - is unique.

9We leave out the index i wherever there is no ambiguity.
10We shall assume here that the second order conditions for the principal’s problem are satisfied.

11We call
[
Bkj

]
the n× n matrix with kj element

∂2bp(.)

∂aj∂ak
.

12Notice that γ = −b′
p implies negative weights for the tasks that generate net marginal benefits for the

agents in equilibrium. This is rather intuitive: agents that are intrinsically motivated in performing a task
j in equilibrium would be willing to expand their effort on that task beyond the optimal level; the “correct”
incentives imply therefore that the effort on such task is “taxed”.

4



From Proposition 1 it is clear that tournaments allow to obtain first-best effort levels
when agents are risk-neutral; as a consequence, a first essential result in tournaments theory
has been shown to be robust to our multi-task extension.

4 A comparison with linear piece rates

Following Holmstrom and Milgrom [4, p. 29]), suppose that the linear compensation scheme
takes the form s+rαi

T , where r ≡ (r1 . . . rj . . . rn). The fixed wage s will be used to allocate
total surplus between the principal and the agents, and that the optimal effort vector is given
by the following condition:

(ρ [Bkj ] Σ− I)−1 (B′)T =
(
b′

p

)T

= −rT . (6)

where [Bkj ] has the same meaning as in Proposition 113.
Let us now compare this with the results we have obtained with tournaments.
Substituting the optimal prize spread from Proposition 1 in (5) we get the maximized

value of the total certainty equivalent per agent under tournaments, that is CEt(at) =

B (at) + bp (at)− π
2 ρ b′

p (at) Σε

(
b′

p (at)
)T

, where at is the corresponding optimal effort
vector. Suppose now that the principal introduces a linear piece rate system that induces
the same effort levels. The corresponding total certainty equivalent per agent is:

CEpr(at) = B (at) + bp (at)− 1
2 ρ b′

p (at) Σ
(
b′

p (at)
)T

. This yields:

CEpr(at)− CEt(at) =
π

2
ρ b′

p (at) Σε b′
p (at)

T − 1
2

ρ b′
p (at) Σ b′

p (at)
T (7)

We then obtain immediately (compare with Proposition 1 and Corollary 1 in Green and
Stokey [1]):

Proposition 2 Suppose there is no common shock. There always exists a linear piece rate
contract that is Pareto-superior to the optimal tournament.

Proof. If there is no common shock, then Σε = Σ. The proof is completed by noting
that π > 1.

Now consider the optimal linear piece rate scheme; call ap the corresponding effort vec-
tor satisfying (6). Then, consider a tournament that achieves the same effort levels14.

If we evaluate (7) at ap, we get the difference between the maximized total certainty
equivalent under optimal linear piece rates and the total certainty equivalent under a tour-
nament that induces the same effort vector. Thus, we obtain:

13Condition (6) corresponds to Equation (5) in Holmstrom and Milgrom [4, p. 32]. Notice that, coherently
with what happens in the tournaments case, the conditions that define efficient linear piece rates contracts
require a negative value of rj for the tasks that generate positive net marginal benefits for the agents in
equilibrium.

14In order to induce the effort vector ap with tournaments, it is enough to set W =

2
√

π b′
p (ap) Σε

(
b′

p (ap)
)T

and γ = −b′
p (ap).
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Proposition 3 Suppose that the idiosyncratic terms and the common shocks are indepen-
dent. There exists a tournament that dominates the optimal linear piece rates contract if:

• there is at least one task for which the variance of the common error term is high
enough,

• or if there is at least one couple of tasks for which the positive covariance in the
common error terms is high enough and, from both tasks, the agents obtain negative
net marginal benefits (or positive net marginal benefits), evaluated at the effort levels
induced by the optimal linear piece rates contract,

• or if there is at least one couple of tasks for which the negative covariance in the
common error terms is high enough in absolute value, and the net marginal benefits
obtained by agents have opposite signs (again, evaluated at the effort levels induced by
the optimal linear piece rates contract).

This argument is independent of the agents’ degree of risk aversion.

Proof. Under the assumption that the idiosyncratic terms and the common shocks are
independent, the covariance matrix of the sum of the two error terms is simply the sum

of the individual covariance matrices: Σ = Σε + Ση. Just note then that: b′
pΣη

(
b′

p

)T

=∑n
j=1

∑n
k=1

∂bp(.)
∂aj

∂bp(.)
∂ak

ση
jk.

The first part of this Proposition generalizes a known result (see [7]) to a multi-task
setting. On the other hand, the second and third part are completely new and it can be
worthwhile thinking about their interpretation.

The case when the second part of Proposition 3 is more likely to apply in “real life”
is when the agents perform tasks that only bring costs to them (for example, two tedious
jobs from which no job satisfaction is derived). The third part, instead, considers couples of
tasks that yield marginal net benefits with opposite signs. Here, an example we might think
of is environmental protection. In the social optimum, a firm’s marginal private benefit
of increasing production will typically be positive, while the marginal private benefit of
pollution abatement will be negative.

Let us now look at the common error vector - following Lazear and Rosen [7, p. 856-857],
two interpretations can be given.

First, it can refer to a set of “activity-specific measurement errors”. For instance, con-
sider the case of two agents performing two tasks on behalf of a firm; if the two tasks are
measured by a common monitoring device (or supervisor), and this monitoring device is the
same for both agents, a high covariance between “common” measurement errors is likely to
arise. In this case, tournaments are preferable to a linear piece rate scheme if the agents
derive negative (or positive) private marginal benefits from both tasks.

Second, each common error can refer to a “true random variation” affecting all agents in
the same way. For instance, we can think of salesmen who sell two products whose sales are
affected by negatively correlated common shocks (sunglasses and umbrellas for instance)
- in that case, our model suggests that tournaments are dominated by piece rates if net
marginal benefits, deriving from different selling efforts, have the same sign.
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5 Conclusion

This work extends Lazear and Rosen [7] paper on rank order tournaments to a multitask set-
ting where the choice variables of the principal are the prize spread and the weights given to
each task in determining aggregate performance of each agent. Our first conclusion is that
many essential results of one-dimensional tournaments are robust to a multi-dimensional
setting extension. We also provide fundamentally new insights in that we show how covari-
ance between error terms affects the relative performance of tournaments and linear piece
rates when agents perform multiple tasks on behalf of their principal.

Of course, this paper is just a first step. Possible generalizations follow directly from
some restrictive assumptions we have used: first, further insights could be gained from
relaxing the assumption of identical net benefits function for the agents (note that Lazear
and Rosen [7] analyze this problem with risk-neutral agents); second, it could be worthwhile
generalizing the setting to an arbitrary number of agents (as in Green and Stokey [1]).
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A Proof of Proposition 1

The Lagrangian per agent is:

B (a) + bp (a)− 1
8

ρ W 2 + λ
(
Wγ + 2

√
πγΣεγT b′

p (a)
)T

, (8)

where λ ≡ (λ1 . . . λn) is the vector of Lagrange multipliers associated with the vector of
constraints (4).

The FOCs with respect to a yield:

(B′)T +
(
b′

p

)T

+ 2
√

πγΣεγT [Bkj ] (λ)T = 0, (9)

where B′ =
(

∂B(.)
∂ai1

. . . ∂B(.)
∂ain

)
and [Bkj ] is the n× n matrix with kj element ∂2bp(.)

∂aj∂ak
.

If [Bkj ] is non-singular, then we can solve this for λT (using
(
2
√

πγΣεγT
)−1

= g(0)):

λT = −g(0) [Bkj ]
−1

(
B′ + b′

p

)T

. (10)

The FOCs with respect to γ yield:

WλT +
(
b′

pλT
) 1√

πγΣεγT
2πΣεγ

T = 0. (11)

From (4), we see that: b′
pλT = − 1

2
√

πγΣεγT
W

(
γλT

)
. Substitute this and (g(0))2 =

1
4πγΣεγT in (11): (

λT − 4π (g(0))2
(
γλT

)
Σεγ

T
)

W = 0. (12)

If the principal is willing to provide any effort incentives, then W > 0 and (12) can only
be satisfied if (substitute (10)):

−g(0) [Bkj ]
−1

(
B′ + b′

p

)T

= 4π (g(0))2
(
γλT

)
Σεγ

T . (13)

The FOC for W yields:

λγT =
1
4

ρ W. (14)

Substitute (14) in (13) (remember that λγT is a scalar and therefore equal to its trans-
pose) and divide both sides by g(0):
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− [Bkj ]
−1

(
B′ + b′

p

)T

= πg(0)ρ WΣεγ
T . (15)

Substitute (4) in (15):

− [Bkj ]
−1

(
B′ + b′

p

)T

= −π ρ Σεb
′
p

T
. (16)

This can be re-arranged further to:

(ρ π [Bkj ] Σε − I)−1 (B′)T = b′
p

T
. (17)

(17) gives us the effort levels.
In order to find W , note that (4) can be rewritten as γ = − 1

g(0) W b′
p. Substitute this in

(14) to obtain:

− 1
g(0) W

λ
(
b′

p

)T

=
1
4

ρ W. (18)

Combining (16) with (10) yields λ = −g(0) ρ πb′
pΣε, and therefore (18) leads to:

2

√
πb′

pΣε

(
b′

p

)T

= W. (19)

As Σε is a covariance matrix and therefore nonnegative definite, there exists a real
solution for W .

Finally, in order to find γ, substitute (19) in (4):√
b′

pΣε

(
b′

p

)T

γ = −
√

γΣεγT b′
p. (20)

which of course holds for γ = −b′
p.

9


