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Abstract

Pooled forecasts frequently outperform individual forecasts of economic time series. This
paper shows that the introduction of model uncertainty into the formation of expectations can
account for the regularity. We conjecture that agents learn in a Bayesian way, using an
optimally designed combination of forecasts to form expectations. When these expectations
alter the ex-post realization of the data generating mechanism the pooled forecast may
dominate the best individual device.
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1. Introduction 

 It is well known that pooled forecasts frequently outperform individual forecasts of 
economic time series ex-post, in the sense that the pooled forecast of alternative models 
provides a smaller mean-squared forecast error (MSFE) than any of the individual models’ 
MSFEs1. Bernanke and Boivin (2003), for example, show that pooled forecasts of inflation 
and unemployment do as well or better than the Federal Reserve’s Greenbook at all 
horizons. Although several explanations have been proposed (see, e.g., Hendry and 
Clements (2002)), the reason for this regularity is still an open question. We provide a new 
explanation for this phenomenon.   

 Our point of departure is to relax the standard assumption that economic agents 
know the true data generating process of the economic variable. We conjecture that agents 
face model uncertainty and learn in a Bayesian way, using a combination of forecasts to 
form expectations. In particular, they deal with model uncertainty by practicing Bayesian-
Model-Averaging (BMA) across a set of alternative models.  Developed by Leamer (1978), 
BMA has found a range of applications in the economics literature2.  In these applications it 
is the econometrician who faces model uncertainty, while the agents in the economy know 
the true model3. Our innovation is to assume that the agents themselves face model 
uncertainty, and resolve the problem as a Bayesian econometrician would.  

 Min and Zellner (1993) show that ex-ante forecasts pooled in a BMA fashion 
provide a lower expected squared error loss that any individual model when the forecaster 
faces model uncertainty. Intuitively, for an agent that is uncertain about the true model of 
the economy, selecting a forecast combination provides insurance against large forecast 
errors. However, this does not explain why pooled forecasts should do so well ex-post, i.e., 
once the state of the economy is uncovered.  

 With our novel way of modeling expectations it is simple to see why pooled 
forecasts perform so well (ex-post): If agents form their expectations with BMA, their 
forecasts feed back endogenously to affect the equilibrium, altering the ex-post realization 
of the data generating mechanism.   

 Our method is closely related to that of Evans and Honkapohja (2001). They assume 
that agents consider one, possibly misspecified, model and form forecasts using least 
squares regressions. Since the forecast functions affect the state of the economy, their 
approach, like ours, is self-referential. However, our approach has two distinctive 
characteristics. First, we incorporate into the agents’ forecasting problem uncertainty about 

                                                           
1 Bates and Granger (1969) pioneered this literature. Hendry and Clements (2003) provide an excellent 
theoretical examination on the current state of the literature on forecasts combination and its advantages over 
the use of single forecasts. See also Clemen (1989) for an annotated bibliography.   
 
2 Areas of application include monetary policy (Brock, Durlauf and West (2003, 2004), Cogley and Sargent 
(2005)), economic growth (Doppelhofer, Miller, and Sala-i-Martin (2000) and Fernandez, Ley, and Steel 
(2001)), Finance (Avramov (2002)), and forecasting of exchange rates (Wright (2003a)) and inflation (Wright 
(2003b)). 
 
3 Brock, Durlauf and West (2003, 2004) and Cogley and Sargent (2005) analyze model uncertainty using 
Bayesian methods from the perspective of a policy-maker.  
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the structure of the economy, a feature that is present in most economic environments. For 
instance, our working example includes the stylized fact that the variables that enter a 
monetary policy rule are uncertain. Second, although adaptive expectations might be 
reasonable, the forecast functions of misspecified models are inherently arbitrary. Instead, 
the advantage of using BMA is that it is the ex ante optimal way of forecasting and, 
therefore, it renders consistent the existence of multiple models.   

2. Expectations formation with model uncertainty  

 A simple AD-AS model (Lucas, 1973; Evans and Honkapohja, 2001 p.29) provides 
a convenient platform to depict expectations formation under model uncertainty4. Suppose 
that the economy consists of the aggregate supply and aggregate demand curves  

1( )t t t t t

t t t

y y p E p v

m p y

γ −= + − +
= +

.        (1) 

The money supply rule is 

1t t tm m Xε η −= + +         (2) 

tv  and tε  are unobserved white noise shocks, 1t tE p− denotes the expectation of tp  

conditional on information available at 1t − , and 1tX −  is an exogenous observable shock. 

The equilibrium price satisfies 

1 1t t t t tp E p Xµ λ δ ξ− −= + + +        (3) 

where ( ) ( )γµ +−= 1ym , ( )γγλ += 1 , ( )γηδ += 1 , and ( ) ( )1t t tξ ε ν γ= − + .  

For notational convenience let m y= . The rational expectations equilibrium (REE) 
would be 

1
, .
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X
p p
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λ λ λ
−= + ≡ +

− − −
      (4) 

This will serve as a useful benchmark.5 

                                                           
4 It should be noted, however, that our analysis encompasses a large class of models. For instance, most of the 
applications of econometric learning presented by Evans and Honkapohja (2001) can be readily extended to 
incorporate model uncertainty. 
 
5 A semantic note:  We are using the term “rational expectations” in the narrow, traditional sense where 
agents use all available information and know the correct model. However, the BMA forecast is, by the Min 
and Zellner Theorem (1993) the “rational” way of forming expectations when the model is not known (see 
Proposition 1 below). We only highlight the REE because (1) it will help develop the intuition for our results, 
and (2) in some circumstances (Section 5) the BMA forecast converges asymptotically to the rational 
expectations forecast. 
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 Agents consider a set of K  alternative models of the economy that differ in the 
exogenous shock postulated to drive the money supply rule. The reduced form of model i 
( )1,.....,i K= is 

1, , .t i t i t ip Xα ξ−= +         (5) 

We assume that one of the models, model k, includes the actual exogenous shock in (2).  

 In the face of this uncertainty agents form expectations using Bayesian-Model-
Averaging.  First, agents assign a prior probability ( ) KiMp i ,...,1, =  to each model. Then, 

they assign a prior distribution to the unknown parameters, given the model probability 
distributions ( )α i ip M . Finally, the data D is generated given the previous two 

distributions ( , )α i ip D M . Conditioning in the observed data yields for each model the 

posterior probabilities, which can be interpreted as the probability that the ith model is the 
true model: 

( ) ( ) ( )
( ) ( )∑
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==
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MpMDp
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π        (6) 

where ( ) ( , ) ( )α α α= ∫i i i i i ip D M p D M p M d  is the marginal likelihood of the ith model.  

The forecast of any model i is then  

, 1,ˆ .e
t i i t ip Xα −=          (7) 

The BMA forecast is 

,
1

,, ∑
=

=
K

i

e
iti

e
BMAt pp π            (8) 

The point forecast is thus the forecast for each individual model weighted by its posterior 
probability distribution. 

 The use of BMA is not arbitrary, but is a natural procedure for optimizing agents 
facing model uncertainty. Specifically, Min and Zellner (1993) demonstrate that BMA 
provides the minimum expected square error6. Therefore  

Proposition 1. If the forecaster seeks to minimize the expected square forecast error, where 
the expectations are taken over the model space, it is optimal to form expectations using 
BMA. 

                                                           
6 Madigan and Rafterty (1994) also show that BMA is better than any single forecast when forecast ability is 
measured by a logarithmic scoring rule. 
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 Although we omit the proof, which is in Min and Zellner (1993), the intuition of the 
result is that, for an agent that is uncertain about the true model of the economy, selecting a 
forecast combination provides insurance, i.e. she can never be “too wrong”. The 
proposition refers to ex ante forecasts. It is a normative assertion: agents should use a 
pooled forecast if they face model uncertainty.  

3. Equilibrium  

 We will show that BMA can provide the best forecasts not only ex ante, but also ex 
post. Why?  Unlike Min and Zellner (1993), the forecasters here do not operate outside the 
system.  The forecasts now feed back endogenously to affect the equilibrium price:  agents 
form their expectations based on (8), which in turn affects the actual price generated in 
accordance with the true model. As in the literature on adaptive expectations (see e.g. 
Evans and Honkapohja (2001)), the use of BMA by forecasters makes the data generating 
process endogenous, i.e. a self-referential system. 

 Consider the realized equilibrium price. Substituting the BMA forecast (8) into the 
reduced form equation (3), we see that the price is  

, 1
1

.
K

e
t i t i t t

i

p p Xλ π δ ξ−
=

= + +∑        (9) 

It follows that the forecast error for the BMA model is 

( ), , 1
1

1 .
K

e e
t t BMA i t i t t

i

p p p Xλ π δ ξ−
=

− = − + +∑               (10) 

To develop some intuition for what this means, it is useful to re-write (10) using the 
equilibrium price of the Rational Expectations model [equation (4)] as a benchmark: 

( ), ,1 ,e
t t BMA RE BMA tp p Bλ ξ− = − +                                     (11) 

where , , ,
e e

RE BMA t RE t BMAB p p≡ −  is the bias of the BMA forecast relative to the REE forecast. 

Equation (11) says that the BMA forecast error is proportional to the average bias of all the 
models relative to the REE forecast. In other words, the BMA forecast error depends upon 
the bias in the equilibrium price (relative to REE) caused by the fact that agents use BMA 
forecasting. 

 Similarly, consider the forecast error of any model j  (including the REE model), 

, , , 1 ,
1

, ,                     .

K
e e e

t t j i j i t i t t t j
i

RE j RE BMA t

p p p X p
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ξ λ π δ ξ

λ ξ

−
=

− = = + + −

= − +

∑
                                      (12) 

where , , ,
e e

RE j t RE t jB p p≡ −  is the bias of modelj relative to the REE forecast.  Suppose that 

model j predicts a price higher than in the REE forecast, so that , 0.RE jB <  Then Equation 
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(12) tells us that the mean forecast error of model j will be lower if the BMA forecast also 
forecasts a price in excess of the RE forecast.  In other words, the “intrinsic” error of model 
j can be offset if the use of BMA forecasting raises the actual equilibrium price, relative to 

the REE equilibrium. 

4. When does BMA do best ex post? 

 The mean-square forecast error of BMA is7 

( )( ) ( )2 2 2 2
, 1, ,,  1e

t t BMA i t i BMA RE BMAE p p X i B ξπ φ λ σ−− ∀ ≡ = − +                       (13) 

The mean-square forecast error of any model j is 

( )2 2 2 2 2
, 1, , , , ,2 .t j t j j RE j RE j RE BMA RE BMAE X B B B B ξξ φ λ λ σ− ≡ = − + +                    (14) 

The BMA forecast does better than any single model if .jBMA φφ <   When will this happen? 

In the appendix we show 

Proposition 2.  If 1 2 λ>  then BMA does better than model j ex post when 

,
, , .

1 2
RE j

RE j RE BMA

B
B B

λ
< <

−
                          (15) 

If1 2 λ< then BMA does better than model j if 

,
, .

1 2
RE j

RE BMA

B
B

λ
>

−
                           (16) 

To provide some intuition for this result we provide a graphical analysis of the case 
where , 0RE jB < and 1 2λ < , that is, when modelj over-predicts the price relative to the 

REE and the weight attached to the BMA forecast in the equilibrium price is low.  

Figure 1 shows the mean-square forecast errors of BMA and model j  as functions 
of the bias of the BMA forecast (relative to REE). First consider the mean square error of 
BMA, .BMAφ  It is an increasing function of the absolute value bias of the BMA forecast:  
the larger the bias of BMA relative to REE, the less accurate is the BMA forecast. 

Now consider the mean square forecast error of model j , .jφ  Recall that the 

forecast error of model j depends upon both its “intrinsic” bias and the bias in the 
equilibrium induced by the use of BMA.  On the one hand, BMA forecasting reduces the 
accuracy of model j by creating a bias in the equilibrium price, relative to REE [this is the 

2
,RE BMAB  term in (14)]. On the other hand, if BMA causes the equilibrium price to be high 

(relative to REE), then this may offset the “intrinsic” bias of model j [this is the interaction 
                                                           
7 Note that, since the exogenous shocks1,t iX −  are observable at the time when the forecast is made, the only 

stochastic term in the one-step-ahead forecast error istξ .  
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term , ,2 RE j RE BMAB Bλ  in (14)].  For sufficiently low BMA bias, the latter effect will 

dominate the former, and BMA will do better than model .j  

5. Example and Asymptotic behavior  

 We now present a simple case that provides more transparent results in terms of the 
classic linear regression model and allows us to study convergence. Specifically, we 
assume that the observable exogenous shocks are IID and uncorrelated and that the 
representative agent holds diffuse prior beliefs on ia  and diffuse priors on the model space. 

 Without trying to contend generality, the assumption of diffuse priors is an 
interesting case since the Bayesian parameter estimates reduce to the classical ordinary 
least squares estimates and the BMA weights can be approximated by the fit of the least 
squares regressions. Specifically, the BMA weights are BIC adjusted likelihoods: 

( 0.5* )

( 0.5* )

π
−

−
≈
∑

i

i

BIC

i K
BIC

i

e

e
 (see e.g. Rafterty, 1995). We believe that this process, which 

Doppelhofer, Miller, and Sala-i-Martin (2000) call Bayesian averaging of classical 
estimates, gives more realism to our hypothesis that agents use BMA to form expectations.  

 Similar to the previous analysis, the DGP proceeds as follows: 

1. Given an initial price, agents use least squares to form the forecast rules , , 1ˆ .e
t i i i tp a X −=  

2. Agents calculate the BMA weights for model i given the BIC adjusted likelihoods. 

3. The equilibrium price is generated.  

4. The observed actual price leads to a change in expectations and a change in the value of 
the parameters and the weights attached to each model, which in turn affects the price, 
and so on. 

 Let ,ˆi ta  be the least squares estimate using the prices observed up to period t and the 

exogenous variable i up to period t-1, i.e. 
,

11 1
2 , 2

, , , 1
1 1

ˆ ˆ ˆ .
i t

t N t N
i p

i t i l i l l t
l t l t

a X X p σ σ
−− − − −

+
= − = −

   = ≡   
   
∑ ∑  The 

actual price is generated in accordance with (9), which now satisfies     

  ( )
,

,
,

( 0.5* )
, 2

1 ,
( 0.5* )1

ˆ ˆ
i t

i t
i t

BICK
i p

t t i t t tK
BICi

i

e
p X X

e
λ σ σ δ ξ

−

+
−=

= + +∑
∑

.                         (17) 

This equation permits establishing the restrictions over the parameters of the models under 
which BMA does better than any model j (equations 15 and 16).  

 In addition, the following proposition establishes the asymptotic behavior of (17) 
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Proposition 3.  Under the assumptions above, 
,

, 2ˆ ˆ
i t

i p
tσ σ 0→  and 

,

,

( 0.5* )

( 0.5* )
0

i t

i t

BIC

K
BIC

i

e

e

−

−
→

∑
 

i k∀ ≠ ,  i.e. except for the model that includes the exogenous shock in the actual policy 

rule. For model k we have 
,

, 2ˆ ˆ
1k t

k p
t

δσ σ
λ

→
−

 and 
,

,

( 0.5* )

( 0.5* )
1

k t

k t

BIC

K
BIC

i

e

e

−

−
→

∑
, that is, the REE.  

Proof. see appendix. 

In other words, the BMA forecast converges asymptotically to the rational 
expectations forecast. The intuition of this result is that the model that includes the 
exogenous shock in the actual policy rule will, on average, do better than the other models. 
This, in turn, implies that agents will tend to increase the BMA weights attached to this 
model over time. As they do so, the least squares estimates of the model that uses the 
exogenous shock in the monetary policy rule converge to the REE.   

6. Conclusion 

  Proposition 2 actually applies to any pooled forecast:  A pooled forecast could 
dominate individual forecasts simply because forecasters chose to use it. This would 
explain why non-BMA pooled forecasts, such as numerical averages, also do better than 
individual forecasts. The advantage of focusing on BMA is that it is the ex ante optimal 
way of forecasting in the presence of model uncertainty. Further, BMA forecasting allows 
us to investigate the convergence properties of the self-referential system.  



 8 

Appendix   
 

Proof of Proposition 2  
First consider the mean-square forecast error of BMA as a function of kBMAB , : 

( ) ( ) 22
,

2
, 1 ξσλφ +−= BMAREBMAREBMA BB      (A.1) 

Plotting BMAφ  as a function of BMAREB , yields a parabola that reaches a minimum at 2
ξσ . 

 Next consider the mean-square forecast error of model j: 
( ) ( ) .22

,,, ξσλφ +−= BMAREjREBMAREj BBB     (A.2) 

Note that 
  ( ) .00 22

, >+= ξσφ jREj B       (A.3) 

  ( )REBMAjREj BB ,,
/ 2 λλφ −−=       (A.4) 

  02 2// >= λφ j         (A.5) 

(A.2), (A.4) and (A.5) imply that jφ  reaches a minimum of 2ξσ  at .ˆ ,
, λ

jRE
BMARE

B
B =  

 Finally, the mean-square forecast errors of the two models are equal when 
( ) .2210 2

,,,
2

, jREjREBMAREBMARE BBBB −+−= λλ    (A.6) 

The roots to this equation are REjB ,  and ( ).21, λ−− REjB  This identifies four different 

constellations of parameter values, depending upon the signs of jREB ,  and 1 2λ− , from 

which proposition 2 follows. 

 

Proof of Proposition 3. 

Our argument follows Bray and Savin’s (1986) analysis of least squares 
convergence to the REE.  

 Fix , 1ˆi ta − , and iπ . By the strong law of large numbers ( )
11

12
,

1

t n

i l i
l t

n X Var X
−− − −

= −

  →     
 
∑  

almost surely and ( )
1

, 1 , 1
1

1
ˆ

t n

i l l i i t i
l t

X p a Var X
n

λπ
− −

+ −
= −

 → 
 
∑ . This implies , , 1ˆ ˆi t i i ta aλπ −=   i∀  

except for model k. If we now allow ˆia  to evolve over time, and since 1iλπ < , this 

estimates converge to zero. Furthermore, since the coefficients attached to any model 
besides the RE model converge to zero,iBIC , and as a result the BMA weights, also 

converge to zero 

Using a similar argument, for model k we have , , 1 1ˆ ˆk t k t ta a Xλπ δ− −= + . In the limit 

this converges to  1

1
tXδ

λπ
−

−
; but, since for this model 1π =  we obtain the REE. 
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Figure 1 
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