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Abstract

Pooled forecasts frequently outperform individual forecasts of economic time series. This
paper shows that the introduction of model uncertainty into the formation of expectations can
account for the regularity. We conjecture that agents learn in a Bayesian way, using an
optimally designed combination of forecasts to form expectations. When these expectations
alter the ex-post realization of the data generating mechanism the pooled forecast may
dominate the best individual device.
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1. Introduction

It is well known that pooled forecasts frequerdiytperform individual forecasts of
economic time serieex-post, in the sense that the pooled forecast of altetmahodels
provides a smaller mean-squared forecast error @i $fanany of the individual models’
MSFES. Bernanke and Boivin (2003), for example, show fiiled forecasts of inflation
and unemployment do as well or better than the faédReserve’s Greenbook at all
horizons. Although several explanations have bespgsed (see, e.g., Hendry and
Clements (2002)), the reason for this regularitgtik an open question. We provide a new
explanation for this phenomenon.

Our point of departure is to relax the standarsuagption that economic agents
know the true data generating process of the ecaneaniable. We conjecture that agents
face model uncertainty and learn in a Bayesian way)g a combination of forecasts to
form expectations. In particular, they deal withdabuncertainty by practicing Bayesian-
Model-Averaging (BMA) across a set of alternativedals. Developed by Leamer (1978),
BMA has found a range of applications in the ecoissrtiteraturé. In these applications it
is the econometrician who faces model uncertaintyle the agents in the economy know
the true modél Our innovation is to assume that the agents thkms face model
uncertainty, and resolve the problem as a Bayesianometrician would.

Min and Zellner (1993) show thax-ante forecasts pooled in a BMA fashion
provide a lower expected squared error loss thatiradividual model when the forecaster
faces model uncertainty. Intuitively, for an agémt is uncertain about the true model of
the economy, selecting a forecast combination ples/iinsurance against large forecast
errors. However, this does not explain why poola@dasts should do so wek-post, i.e.,
once the state of the economy is uncovered.

With our novel way of modeling expectations it 9snple to see why pooled
forecasts perform so welbx-post): If agents form their expectations with BMA, thei
forecasts feed back endogenously to affect thdibgquim, altering theex-post realization
of the data generating mechanism.

Our method is closely related to that of Evansldodkapohja (2001). They assume
that agents consider one, possibly misspecifieddain@and form forecasts using least
squares regressions. Since the forecast functitiest ahe state of the economy, their
approach, like ours, isef-referential. However, our approach has two distinctive
characteristics. First, we incorporate into thendgjeforecasting problem uncertainty about

! Bates and Granger (1969) pioneered this literature. Kemdt Clements (2003) provide an excellent
theoretical examination on the current state of the literatuferenasts combination and its advantages over
the use of single forecasts. See also Clemen (1989) fomateted bibliography.

2 Areas of application include monetary policy (Brock, Durland West (2003, 2004), Cogley and Sargent
(2005)), economic growth (Doppelhofer, Miller, and SaMairtin (2000) and Fernandez, Ley, and Steel
(2001)), Finance (Avramov (2002)), and forecasting of exghaates (Wright (2003a)) and inflation (Wright
(2003b)).

% Brock, Durlauf and West (2003, 2004) and Cogley ande3a (2005) analyze model uncertainty using
Bayesian methods from the perspective of a policy-maker.



the structure of the economy, a feature that isgarein most economic environments. For
instance, our working example includes the stylifact that the variables that enter a
monetary policy rule are uncertain. Second, althoaglaptive expectations might be
reasonable, the forecast functions of misspecifiediels are inherently arbitrary. Instead,
the advantage of using BMA is that it is the ante optimal way of forecasting and,
therefore, it renders consistent the existenceulfiple models.

2. Expectations formation with model uncertainty

A simple AD-AS model (Lucas, 1973; Evans and Hqutga, 2001 p.29) provides
a convenient platform to depict expectations foramatinder model uncertairftySuppose
that the economy consists of the aggregate supplyaggregate demand curves

yt:§/+y(pt_Et—1pt)+Vt. (1)
m=p+Yy,

The money supply rule is
m =m+g +7X,, (2)

v, and & are unobserved white noise shocks,, p, denotes the expectation of,
conditional on information available at-1, and X,_, is an exogenousbservable shock.
The equilibrium price satisfies

P = U+ AE P +0X , +¢ 3)
whereu = (M-y)/(1+y),A=y/(L+y),8=n/+y), and& = (& -v,)/(1+)).

For notational convenience l@i=Yy. The rational expectations equilibrium (REE)
would be
oX ¢,

-— t-1 +

T 1-1 1-)

¢
1-1

(4)

—_— e
= pt,RE +

This will serve as a useful benchmark.

“ 1t should be noted, however, that our analysis encorepaskrge class of models. For instance, most of the
applications of econometric learning presented by Evans andadohja (2001) can be readily extended to
incorporate model uncertainty.

® A semantic note: We are using the term “rational expectatiartieinarrow, traditional sense where
agents use all available information dmdw the correct model. However, the BMA forecast is, by the Min
and Zellner Theorem (1993) the “rational” way of forming exatahswhen the model is not known (see
Proposition 1 below). We only highlight the REE becad3et will help develop the intuition for our results,
and (2) in some circumstances (Section 5) the BMA forecast gew/asymptotically to the rational
expectations forecast.



Agents consider a set df alternative models of the economy that differ he t
exogenous shock postulated to drive the money gupj#. The reduced form of model

pt = ai xt—l,i + ft,i : (5)
We assume that one of the models, maégdeicludes the actual exogenous shock in (2).

In the face of this uncertainty agents form exggohs using Bayesian-Model-
Averaging. First, agents assign a prior probabib(Mi),i =1,...,K to each model. Then,
they assign a prior distribution to the unknownapageters, given the model probability
distributions p(ai|Mi). Finally, the dataD is generated given the previous two
distributions p(D|ai,Mi). Conditioning in the observed data yields for eaobdel the

posterior probabilities, which can be interpretsdtze probability that thé"imodel is the
true model:

DM Jp(M.
m:p(Mi|D): Kp( | |)p( |) (6)
Z p(D|Mi)p(Mi)
i=1
wherep(D|M,) :J' p(D|a;,M,)p(a;|M,)da; is the marginal likelihood of thé imodel.
The forecast of any models then
PS =0 Xy (7)
The BMA forecast is
K
Plawa = 2 7 PG (8)
i=1

The point forecast is thus the forecast for eadividual model weighted by its posterior
probability distribution.

The use of BMA is not arbitrary, but is a naturabgedure for optimizing agents
facing model uncertainty. Specifically, Min and el (1993) demonstrate that BMA
provides the minimum expected square &rfbherefore

Proposition 1. If the forecaster seeks to minimize the expected square forecast error, where
the expectations are taken over the model space, it is optimal to form expectations using
BMA.

® Madigan and Rafterty (1994) also show that BMA is békten any single forecast when forecast ability is
measured by a logarithmic scoring rule.



Although we omit the proof, which is in Min andllber (1993), the intuition of the
result is that, for an agent that is uncertain alioi true model of the economy, selecting a
forecast combination provides insurance, i.e. she oever be “too wrong”. The
proposition refers t@x ante forecasts. It is a normative assertion: agehtalld use a
pooled forecast if they face model uncertainty.

3. Equilibrium

We will show that BMA can provide the best fordsasot onlyex ante, but alsoex
post. Why? Unlike Min and Zellner (1993), the fore@asthere do not operate outside the
system. The forecasts now feed back endogenousfféct the equilibrium price: agents
form their expectations based on (8), which in taffects the actual price generated in
accordance with the true model. As in the literaton adaptive expectations (see e.g.
Evans and Honkapohja (2001)), the use of BMA bydasters makes the data generating
process endogenous, i.e. a self-referential system.

Consider the realized equilibrium price. Substitytthe BMA forecast (8) into the
reduced form equation (3), we see that the price is

K
P :/]Zﬂipfi +OX, +4;. 9)

i=1

It follows that the forecast error for the BMA madde

K
P = Plawa = (A=1) D 7p5 +0X  +&,. (10)
i=1

To develop some intuition for what this means,situseful to re-write (10) using the
equilibrium price of the Rational Expectations midéguation (4)] as a benchmark:

P = pte,BMA = (1_/]) BRE,BMA + ft ) (11)

whereB. gua = Pire — Plawa IS the bias of the BMA forecast relative to theERBrecast.

Equation (11) says that the BMA forecast errorrigprtional to the average bias of all the
models relative to the REE forecast. In other wptkds BMA forecast error depends upon
the bias in the equilibrium price (relative to REfaused by the fact that agents use BMA
forecasting.

Similarly, consider the forecast error of any mgdéncluding the REE model),

K
—-p¢ =& =A) mpt +O0X . +& —-Dp&.
pt pt,] <(I,j ; Ip'(,l t-1 grt pI,J (12)

BRE,j _ABRE,BMA +€I .

whereBg. | = pire — P7; is the bias of modglrelative to the REE forecast. Suppose that
modelj predicts a price higher than in the REE forecsstthat B, ; <0. Then Equation



(12) tells us that the mean forecast error of mgdsill be lower if the BMA forecast also

forecasts a price in excess of the RE forecasbthar words, the “intrinsic” error of model
j can be offset if the use of BMA forecasting raifes actual equilibrium price, relative to

the REE equilibrium,
4. When does BM A do best ex post?
The mean-square forecast error of BMA is
e 2 = —_ 2 K2 2
E(( P = pt,BMA) ‘ﬂi’ Xt—l,i D') = Rua = (1_/]) BRE,BMA +0_g (13)
The mean-square forecast error of any mgdsl
E(Etzj‘ Xt—1,j ) = ¢)J = BRZE,j -2 BRE J BRE BMA + ZBRZE BMA + 0-{2' (14)

The BMA forecast does better than any single mddg|,, <¢;. When will this happen?
In the appendix we show
Proposition 2. If 1/2> A then BMA does better than model j ex post when

B..
‘BRE,]‘ ‘ <‘BRE,BMA‘ < ]__RA ' (15)
1f1/ 2< A then BMA does better than model j if
B .
[Bre e >‘1_RE2"A - (16)

To provide some intuition for this result we prowid graphical analysis of the case
where By ; <Oand A <1/2, that is, when modglover-predicts the price relative to the

REE and the weight attached to the BMA forecasthéequilibrium price is low.

Figure 1 shows the mean-square forecast errordviZX Bnd model j as functions

of the bias of the BMA forecast (relative to REEst consider the mean square error of
BMA, ¢, It is an increasing function of the absolute vatigs of the BMA forecast:

the larger the bias of BMA relative to REE, theslescurate is the BMA forecast.

Now consider the mean square forecast error of imadg;. Recall that the

forecast error of modelj depends upon both its “intrinsic” bieand the bias in the

equilibrium induced by the use of BMA. On the drand, BMA forecasting reduces the
accuracy of model by creating a bias in the equilibrium price, relatto REE [this is the

B sva term in (14)]. On the other hand, if BMA causes #yuilibrium price to be high
(relative to REE), then this may offset the “ingici’ bias of modelj [this is the interaction

" Note that, since the exogenous sha¥ks; are observable at the time when the forecast is made, the only

stochastic term in the one-step-ahead forecast epr is



term 2ABg. Beogya In (14)].  For sufficiently low BMA bias, the latt effect will

RE, j
dominate the former, and BMA will do better thandabj.

5. Example and Asymptotic behavior

We now present a simple case that provides mansparent results in terms of the
classic linear regression model and allows us talystconvergence. Specifically, we
assume that the observable exogenous shocks arartDuncorrelated and that the
representative agent holds diffuse prior beliefssoand diffuse priors on the model space.

Without trying to contend generality, the assuwmptiof diffuse priors is an
interesting case since the Bayesian parameter assnreduce to the classical ordinary
least squares estimates and the BMA weights camppeoximated by the fit of the least
squares regressions. Specifically, the BMA weighte BIC adjusted likelihoods:

g(-05BIC)

mT=—— (see e.g. Rafterty, 1995). We believe that thi®cess, which
K g y e

1
Z g(-05BIC)
i

Doppelhofer, Miller, and Sala-i-Martin (2000) caBayesian averaging of classical
estimates, gives more realism to our hypothesis that agesesBMA to form expectations.

Similar to the previous analysis, the DGP proceedfollows:

1. Given an initial price, agents use least squarésrio the forecast ruleg;, =a X,

2. Agents calculate the BMA weights for modejiven theBIC adjusted likelihoods.
3. The equilibrium price is generated.

4. The observed actual price leads to a change incéeqoens and a change in the value of
the parameters and the weights attached to eacklpwddich in turn affects the price,
and so on.

Let &, be the least squares estimate using the prices\azbup to periotiand the

t=1- t-1-N
exogenous variableup to period t-1, i.ed , = [z X2 j (Z X,,pmj 6,°/6%. The

I=t-1 I=t-1
actual price is generated in accordance with (8)clwnow satisfies

K, gl O5BICy) A
P =AY ———(817/82 ) X, +0X, +&. (17)
i=1 Z (05B|C.1)

This equation permits establishing the restrictionsr the parameters of the models under
which BMA does better than any mogl€equations 15 and 16).

In addition, the following proposition establisitbe asymptotic behavior of (17)



(-0.5*BIC, ;)
" : Aip A e :
Proposition 3. Under the assumptions above, a't""/af‘ -0 and — -0

z e(—o.5*3| C,)
i

Oi #k, i.e. except for the model that includes the exogenous shock in the actual policy
(-0.5*BIC, ;)
rule. For model k we have &;° / & -9 and Ke - 1, that is, the REE.
S Ze(_O'S*Blck")

Proof. see appendix.

In other words, the BMA forecast converges asynigadly to the rational
expectations forecast. The intuition of this ressltthat the model that includes the
exogenous shock in the actual policy rule will,amerage, do better than the other models.
This, in turn, implies that agents will tend to rease the BMA weights attached to this
model over time. As they do so, the least squastisnates of the model that uses the
exogenous shock in the monetary policy rule corevéoghe REE.

6. Conclusion

Proposition 2 actually applies #ny pooled forecast: A pooled forecast could
dominate individual forecasts simply because fasgma chose to use it. This would
explain why non-BMA pooled forecasts, such as nucaémaverages, also do better than
individual forecasts. The advantage of focusingB&hA is that it is theex ante optimal
way of forecasting in the presence of model una@staFurther, BMA forecasting allows
us to investigate the convergence properties ofétfereferential system.



Appendix

Proof of Proposition 2
First consider the mean-square forecast error oARig a function oBg,, , :

_ 2
%MA(BRE,BMA) - (1_/‘) B;E,BMA + 0-; (A.1)
Plotting ¢y, as a function 0B g, Yields a parabola that reaches a minimunrat
Next consider the mean-square forecast error aleijo

(01( REBMA) ( REJ /]BREBMA) +0-§- (A-Z)
Note that
¢,(0)=Bk, +o7 >0 (A-3)
¢j/ - _2/]( RE,j _ABBMA,RE) (A-4)
¢ =21>0 (A.5)
BRE,j

(A.2), (A.4) and (A.5) imply that; reaches a minimum oﬁ at éRE,BMA =—

Finally, the mean-square forecast errors of treertwodels are equal when
0= (1_ ZA)BlgE,BMA + 2/]BRE,BMABRE,J' - BéE,j . (A-G)
The roots to this equation arB, . and - B, .. /(1-24). This identifies four different

constellations of parameter values, depending upensigns ofBg ; and 1-24, from
which proposition 2 follows.

Proof of Proposition 3.

Our argument follows Bray and Savin’'s (1986) analyef least squares
convergence to the REE.

ten
Fix §,,, and 7. By the strong law of large numbens >’ X? ) - [Var(xi)]_1

I=t-1
_1_
almost surely and—(z X,,lej Amé , _Var(X;). This implies &, =Am4,, Oi
N\i=2
except for modek. If we now allow & to evolve over time, and sincér <1, this

estimates converge to zero. Furthermore, sincecti®ficients attached to any model
besides the RE model converge to zBi@,, and as a result the BMA weights, also

converge to zero
Using a similar argument, for model k we haag = A4, ., +5X,_,. In the limit

this converges to&j‘l; but, since for this modetr=1 we obtain the REE.
-Amr
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