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Abstract

In the case of a single net-benefit maximizing agent facing a resource constraint, the
economic interpretation of the Lagrange multiplier is that of the shadow value of the
constraining resource. The formal justification for this economic interpretation is by way of
the classical envelope theorem. Once an environment of strategically interacting agents is
contemplated, however, the Lagrange multiplier no longer represents the shadow value of the
resource to an agent. A concise proof of this claim and a revised economic interpretation of
the Lagrange multiplier are given in this note.
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1.  Introduction 
 
Samuelson (1947, p. 66) first established that the value of the Lagrange multiplier associated 
with the output constraint in the neoclassical model of the cost-minimizing firm has the eco-
nomic interpretation of marginal cost.  He reached this conclusion by proving that the partial de-
rivative of the firm’s minimum cost function with respect to the output rate is equal to the value 
of the Lagrange multiplier at the cost-minimizing solution, i.e., he proved the envelope theorem 
in the context of said model.  Almost three decades later a proof of the envelope theorem for the 
general class of differentiable, constrained optimization problems was provided by Silberberg 
(1974) by way of his elegant primal-dual formalism.  Numerous research papers and books have 
subsequently applied the envelope theorem to impart an economic interpretation to the Lagrange 
multipliers in single agent constrained optimization problems. 
 When the objective function of a constrained optimization problem represents the 
monetized net benefits of an agent and the constraint reflects the finite availability of some re-
source, the envelope theorem implies that the partial derivative of an agent’s indirect (or maxi-
mized) objective function is equal to the value of the corresponding Lagrange multiplier at the 
solution.  This, in turn, implies that the said value of the Lagrange multiplier has the economic 
interpretation of the marginal value, or so-called shadow value, of the limiting resource.  In con-
trast, this note shows that the value of the Lagrange multiplier at the solution is not, in general, 
the shadow value of the limiting resource in models with strategically interacting agents.  In par-
ticular, it is demonstrated that in such an environment, the partial derivative of an agent’s indi-
rect objective function with respect to a constraint parameter is not equal to the value of the 
agent’s Lagrange multiplier associated with that constraint at the Nash equilibrium.  Moreover, 
by studying a given agent’s best-response equilibrium and corresponding best-response indirect 
objective function, an intuitive explanation is provided for this surprising conclusion.  Such an 
approach also leads to the correct economic interpretation of the Lagrange multiplier in an envi-
ronment consisting of strategically interacting agents.  This paper is therefore in the spirit of the 
works of Dorfman (1969) and Léonard (1987). 
 In order to emphasize the economics rather than the mathematics, technical details are 
kept to a minimum.  To that end, the next section indicates how the archetype economic interpre-
tation of the Lagrange multiplier is properly determined in the single agent setting.  This is fol-
lowed by a section establishing the aforementioned claim in the context of an oligopoly model 
characterizing a pair of strategically interacting pollution-regulated profit-maximizing firms.  A 
proof in the general case then follows. 
 

2.  The Prototypical Economic Interpretation of the Lagrange Multiplier 
 
In order to demonstrate the main result of the note in an uncomplicated manner, a simple model 
of a profit maximizing and polluting firm is developed.  It is essentially a generalization of one 
of the models of Besanko (1987) and Helfand (1991), and may be formally stated as follows: 

 (E) =def max
a,q

R(q) C(a,q) s.t. e(a,q) E{ } , (1) 

where a > 0  is the rate of pollution abatement by the firm, q > 0  is the rate of output produced 
by the firm, R( ) C (1)  is the firm’s total revenue function, C( ) C (1)  is the firm’s total cost 
function, e( ) C (1)  is the firm’s pollution production function, i.e., the function that determines 
the rate of pollution emitted (or emissions rate), and (E)  is the maximum value of profit that 
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the firm can earn given the maximum allowable emissions rate of E > 0  dictated by the regula-
tory body.  It is assumed that ( ) C (1)  locally and that a locally C (1)  solution to the con-
strained profit maximization problem (1) exists, denoted by a (E),q (E)( ) , with (E)  being 
the corresponding value of the Lagrange multiplier associated with the pollution constraint.  Fi-
nally, it is assumed that the emissions constraint binds at the optimum, for otherwise there is es-
sentially no constraint in the problem and thus no Lagrange multiplier to interpret.  Note, in pass-
ing, that one could contemplate the addition of numerous other parameters and decision variables 
to, and complications of, the model defined by Eq. (1), but none of these would lend insight to, 
nor have any material effect on, what follows. 
 The Lagrangian function L( )  for problem (1) is defined as 

 L(a,q, ;E) =def R(q) C(a,q) + E e(a,q)[ ] , (2) 

where  is the Lagrange multiplier associated with the emissions constraint.  The goal of this 
section is to carefully and rigorously justify the economic interpretation of (E)  as the shadow 
value of pollution.  To that end, first recall that (E)  is the maximum profit that the firm can 
earn given the maximum allowable rate of pollution E .  This definition of (E)  along with the 
definition of the partial derivative imply that (E) E  may be interpreted as the increase in 
the maximum value of profit resulting from an increase in the maximum allowable rate of pollu-
tion.  In other words, (E) E  is the most the firm would pay for a marginal increase in the 
allowable rate of pollution, seeing as it is the maximum additional profit that it could earn when 
the pollution restriction is relaxed at the margin.  Consequently, (E) E  has the economic 
interpretation of the shadow value of pollution.  But by the classical envelope theorem [see, e.g., 
Silberberg and Suen (2001), p. 160], it follows that 

 
E
(E) =

L

E
(a,q, ;E) a=a (E )

q=q (E )
= (E )

= (E) > 0 , (3) 

the strict inequality following from the first-order necessary conditions and the assumptions 
C(a,q) a > 0  and e(a,q) a < 0 .  Thus, by Eq. (3), (E) E  equals (E) , and because 

of this equality, (E)  may be legitimately interpreted as the shadow value of pollution. 
 In the ensuing section it is shown that the equality exhibited in Eq. (3) does not generally 
hold in an oligopoly version of an otherwise identical model.  This result therefore implies that 
the Lagrange multiplier is not the shadow value of the limiting resource in such a setting. 
 

3. The Lagrange Multiplier is not the Shadow Value of Pollution 
 
Consider a generalization of problem (1) that includes a second profit-maximizing firm produc-
ing a substitute product and generating a flow of pollution of the same ilk as the first firm.  The 
two firms that make up the oligopoly are assumed to face an industry-wide limit on the rate of 
pollution emitted.  Consequently, they are asserted to solve the following pair of simultaneous 
constrained optimization problems: 

 ˆ1(E) =def max
a1 ,q1

R1(q1,q2 ) C1(a1,q1) s.t. e1(a1,q1) + e2 (a2 ,q2 ) E{ } , (4) 

 ˆ 2 (E) =def max
a2 ,q2

R2 (q1,q2 ) C 2 (a2 ,q2 ) s.t. e1(a1,q1) + e2 (a2 ,q2 ) E{ } , (5) 
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where a superscript on a variable or function references a particular firm, and where all the func-
tions and variables have their obvious economic interpretation extended from §2.  It is assumed 
that ˆ i ( ) C (1)  locally, i = 1,2 , and that a locally C (1)  Nash equilibrium exists to the oligopoly 
model defined by Eqs. (4) and (5), say â1(E), q̂1(E), â2 (E), q̂2 (E)( ) , with ˆ1(E), ˆ 2 (E)( )  being 
the corresponding values of the Lagrange multipliers for each firm.  Sufficient conditions for the 
existence of a Nash equilibrium can be found in Besanko (1987).  In this setting, ˆ i (E) , i = 1,2 , 
is the maximum value of profit that firm i can earn at the Nash equilibrium when the sum of the 
rate of pollution emitted by both firms is constrained to be less than or equal to the rate E > 0 .  
As in §2, it is also assumed that the industry-wide emissions constraint binds at the Nash equilib-
rium, for otherwise there is essentially no constraint in the game and thus no Lagrange multipli-
ers to interpret.  As before, it should be remarked that one may generalize problems (4) and (5) to 
include any finite number of firms, additional parameters and decision variables, and so forth, 
but such generalizations haven’t any essential bearing on what follows. 
 Fully analogous to the economic interpretation developed in §2 is the fact that the shadow 
value of pollution for firm 1 at the Nash equilibrium is given by the expression ˆ1(E) E .  
This follows from the definition of the partial derivative and the fact that ˆ1(E)  is by definition 
the maximum value of profit that firm 1 can earn at the Nash equilibrium when the industry faces 
a maximum allowable pollution rate of E .  In order to justify the interpretation of ˆ1(E)  as the 
shadow value of pollution of firm 1, it must therefore be formally established that ˆ1(E) E  
equals ˆ1(E) .  As will now be shown, this equality does not generally hold. 
 In order to establish said claim, first define the Lagrangian function G1( )  for firm 1 by 

 G1(a1,q1,a2 ,q2 , 1;E) =def R1(q1,q2 ) C1(a1,q1) + 1 E e1(a1,q1) e2 (a2 ,q2 ) , (6) 

where 1  is the Lagrange multiplier for firm 1 associated with the industry wide pollution con-
straint.  Second, an expression for the partial derivative ˆ1(E) E  must be derived, analogous 
to what was done in §2.  In other words, an envelope theorem for the game defined by Eqs. (4) 
and (5) is required.  Caputo (1996) has provided just such an envelope theorem that is, moreover, 
applicable to a much wider class of games than that under consideration here.  Stated in terms of 
the functions and variables defined above, Theorem 1 of Caputo (1996) asserts that 

 

ˆ1

E
(E) =

G1

E
(a1,q1,a2 ,q2 , 1;E)

ai = âi (E ), i=1,2
qi = q̂i (E ), i=1,2
1
=
ˆ1 (E )

+
G1

a2
(a1,q1,a2 ,q2 , 1;E)

ai = âi (E ), i=1,2
qi = q̂i (E ), i=1,2
1
=
ˆ1 (E )

â2

E
(E)

+
G1

q2
(a1,q1,a2 ,q2 , 1;E)

ai = âi (E ), i=1,2
qi = q̂i (E ), i=1,2
1
=
ˆ1 (E )

q̂2

E
(E).

 (7) 

Using the function G1( )  defined in Eq. (6), Eq. (7) may be written as 

 

ˆ1

E
(E) = ˆ1(E) ˆ1(E)

e2

a2
â2 (E), q̂2 (E)( )

â2

E
(E)

+
R1

q2
q̂1(E), q̂2 (E)( ) ˆ1(E)

e2

q2
â2 (E), q̂2 (E)( )

q̂2

E
(E).

 (8) 

Equation (8) is the alluded to formal evidence that ˆ1(E)  cannot universally be interpreted as the 
shadow value of pollution for firm 1 at the Nash equilibrium, because it demonstrates that 
ˆ1(E) E ˆ1(E)  in general. 
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 For the reason that ˆ1(E)  cannot, in general, be interpreted as the shadow value of pollu-
tion of firm 1 at the Nash equilibrium, it is important to determine the correct economic interpre-
tation of ˆ1(E) .  This is achieved by focusing on the constrained optimization problem that de-
fines the best-response equilibrium of firm 1, videlicet, problem (4). 
 To begin, first observe that firm 1 determines its best-response functions by considering 
problem (4) in isolation of problem (5).  That is to say, in deriving its best response functions, 
firm 1 solves problem (4) for the profit-maximizing value of its decision variables, taking as 
given the decision variables of firm 2.  In other words, the best-response functions 

 
a1( )  and 

 
q1( )  of firm 1 are defined by 

 
 

a1(a2 ,q2;E),q1(a2 ,q2;E)( ) =def argmax
a1 ,q1

R1(q1,q2 ) C1(a1,q1) s.t. e1(a1,q1) + e2 (a2 ,q2 ) E{ } , (9) 

with corresponding value of the best-response Lagrange multiplier given by 
 

1(a2 ,q2;E) , best-
response profit function 

 

1( )  defined by 

 
 

1(a2 ,q2;E) =def max
a1 ,q1

R1(q1,q2 ) C1(a1,q1) s.t. e1(a1,q1) + e2 (a2 ,q2 ) E{ } , (10) 

and Lagrangian function G1( )  defined in Eq. (6). 
 From Eq. (10), it follows that 

 

1(a2 ,q2;E)  is the maximum value of profit that firm 1 can 
earn when facing the industry-wide pollution limit E , holding constant the actions of firm 2.  In 
turn, this and the definition of the partial derivative imply that 

 

1(a2 ,q2;E) E  is the non-
strategic shadow value of pollution, the adjective “nonstrategic” being necessitated by the facts 
that, in general, the actions of firm 2 change when E  undergoes a change and thus have a 
nonzero impact on the profits of firm 1, whereas the actions of firm 2 are held fixed in the calcu-
lation of 

 

1(a2 ,q2;E) E  by the definition of a partial derivative. 
 Inasmuch as the determination of the best-response functions for firm 1 is formally a sin-
gle-agent constrained optimization problem, the classical envelope theorem [see, e.g., Silberberg 
and Suen (2001), p. 160] is fully applicable to it.  Hence, by the classical envelope theorem ap-
plied to problem (10), it follows that 

 

 

1

E
(a2 ,q2;E) =

G1

E
(a1,q1,a2 ,q2 , 1;E)

a1 =a1 (a2 ,q2 ;E )
q1 =q1 (a2 ,q2 ;E )
1
=

1 (a2 ,q2 ;E )

=
1(a2 ,q2;E) . (11) 

Equation (11) therefore formally establishes that at the best-response equilibrium of firm 1, the 
value of its Lagrange multiplier corresponding to the industry-wide pollution constraint can be 
legitimately interpreted as the nonstrategic shadow value of pollution. 
 Now observe that the envelope result in Eq. (11) establishes the economic interpretation 
of 

 

1(a2 ,q2;E) , not of ˆ1(E) .  This is a relatively easy matter to correct, however, for the defini-
tions of a Nash equilibrium and best-response equilibrium imply that the value 

 

1(a2 ,q2;E)  co-
incides with the value ˆ1(E)  when the former is evaluated at the Nash equilibrium solution of 
firm 2, i.e., when 

 

1(a2 ,q2;E)  is evaluated at a2 = â2 (E)  and q2 = q̂2 (E) .  In other words, the 
definitions of a Nash equilibrium and best-response equilibrium imply that 

 
 

ˆ1(E) =def 1 â2 (E), q̂2 (E);E( ) . (12) 

Upon evaluating Eq. (11) at (a2 ,q2 ) = â2 (E), q̂2 (E)( )  and using Eq. (12), it follows that ˆ1(E)  
has the economic interpretation of the nonstrategic shadow value of pollution of firm 1 at the 
Nash equilibrium.  Nonetheless, recalling that ˆ1(E) E ˆ1(E)  by Eq. (8), it is clear that 
ˆ1(E)  does not represent the increment to the maximum value of profit to firm 1 when the indus-
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try-wide pollution limit is relaxed at the Nash equilibrium and both firms are permitted to adjust 
to the relaxation in E , for by Eqs. (11) and (12), ˆ1(E)  fails to capture the response of firm 2 to 
the perturbation in E .  As such, ˆ1(E)  is not the shadow value of pollution to firm 1 at the Nash 
equilibrium. 
 Alternatively, the nonstrategic shadow value interpretation of ˆ1(E)  can be justified by 
relating the value of the indirect profit function of firm 1 in the best-response equilibrium, scili-
cet 

 

1(a2 ,q2;E) , to the value of the indirect profit function of firm 1 in the Nash equilibrium, 
namely ˆ1(E) .  As was done in establishing the relationship between the values of the Lagrange 
multipliers in Eq. (12), it follows from the definitions of a Nash equilibrium and a best-response 
equilibrium that 

 
 
ˆ1(E) =def 1 â2 (E), q̂2 (E);E( ) . (13) 

This relationship asserts that the maximum value of profit that firm 1 can earn at the Nash equi-
librium is by definition equal to the maximum value of profit that it can earn at its best-response 
equilibrium when the actions of firm 2 are evaluated at its Nash equilibrium solution.  The real 
insight from Eq. (13) regarding the Lagrange multiplier, however, is gleaned by differentiating it 
with respect to E  using the chain rule.  Doing just that yields  

 

 

ˆ1

E
(E)

shadow value
 of pollution

=

1

a2
â2 (E), q̂2 (E);E( )

â2

E
(E) +

1

q2
â2 (E), q̂2 (E);E( )

q̂2

E
(E)

strategic effect 

+ ˆ1(E)
nonstrategic shadow
  value of pollution

, (14) 

where Eqs. (11) and (12) were used on the last term on the right-hand side.  Equation (14) shows 
the decomposition of the shadow value of pollution in the Nash equilibrium into its intrinsic 
parts, to wit, (i) a nonstrategic portion given by the value of the Lagrange multiplier at the Nash 
equilibrium, and (ii) a strategic part given by the effect that a change in the industry-wide pollu-
tion limit has on the Nash equilibrium values of the decision variables of firm 2, and the resulting 
effect the change in these decision variables of firm 2 has on the maximum profit of firm 1 at the 
Nash equilibrium.  It is this latter strategic (or cross-firm) effect exhibited in Eq. (14) that the 
Lagrange multiplier ˆ1(E)  fails to capture in a strategic setting, and is precisely why the La-
grange multiplier does not represent the shadow value of pollution to firm 1.  In passing, note 
that upon applying the classical envelope theorem to Eq. (10) and evaluating the results at the 
Nash equilibrium, and then using Eq. (12) and the fact that 

 
q̂1(E) =def q1 â2 (E), q̂2 (E);E( ) , it can 

be shown that Eqs. (8) and (14) are identical. 
 

4.  A General Result on the Economic Interpretation of the Lagrange Multiplier 
 
The goal of this section is to provide a compact but general proof of the fact that the partial de-
rivative of an agent’s maximized objective function with respect to a constraint parameter is not 
equal to the value of the agent’s corresponding Lagrange multiplier at the Nash equilibrium.  
This implies that, in general, the Lagrange multiplier corresponding to a given constraint in a 
static game does not have the economic interpretation of the shadow value of the limiting re-
source represented by that constraint, for it ignores the strategic response of the other agents to 
the perturbation in the constraint parameter. 
 As discussed by Caputo (1996, pp. 205–206), the following set of P  simultaneous con-
strained optimization problems may be mapped into a normal form static game:  
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p ( ) =def max
x p R

N p
f p (x1,x2 ,…,xP ) s.t. g(x1,x2 ,…,xP ) ={ } , p = 1,2,…,P . (15) 

The corresponding Lagrangian functions Gp ( )  are defined by 

 Gp (x1,x2 ,…,xP , p; ) =def f p (x1,x2 ,…,xP ) + p † g(x1,x2 ,…,xP ) , p = 1,2,…,P , (16) 

where  
p

R
K , p = 1,2,…,P , is the pth player’s vector of Lagrange multipliers, 

 
R

K  is the 
vector of constraint parameters, and “†” denotes transposition.  The following assumptions are 
imposed on the game defined by Eq. (15): 
 
(A.1) 

  
f p ( ) :RN1

R
N 2

R
NP

R , f p ( ) C (1) , p = 1,2,…,P . 
(A.2) 

  
g( ) :RN1

R
N 2

R
NP

R
K , g( ) C (1) , K < N p , p = 1,2,…,P . 

(A.3) There exists a unique Nash equilibrium to the game defined by Eq. (15) for each value of 
 in an open neighborhood of 

  
R

K , denoted by x̂( ) =def x̂1( ), x̂2 ( ),…, x̂P ( )( ) , 
where 

 
 

x̂ p ( ) =def argmax
x p R

N p
f p x p , x̂ p ( )( ) s.t. g x p , x̂ p ( )( ) ={ } , p = 1,2,…,P , 

 and where x̂ p ( ) =def x̂1( ), x̂2 ( ),…, x̂ p 1( ), x̂ p+1( ),…, x̂P ( )( ) , p = 1,2,…,P . 
(A.4) x̂ p ( ) C (1)  for all  in an open neighborhood of 

  
R

K , p = 1,2,…,P . 
 
Seeing as these assumptions were thoroughly discussed by Caputo (1996, p. 207), there is no 
reason to discuss them here.  With these technical assumptions in place, the main result of the 
paper may now be stated and proven. 
 
Theorem 1:  Under assumptions (A.1)–(A.4), the static game defined by the P  simultaneous 
constrained optimization problems in Eq. (15) has the envelope property 

 
p

( ) = ˆ p ( )† +
Gp

x j
x̂( ), ˆ p ( );( )

x̂ j
( )

j=1
j p

P

, p = 1,2,…,P , (17) 

where ˆ p ( ) , p = 1,2,…,P , is the corresponding Nash equilibrium value of the Lagrange multi-
plier vector for player p . 
 
Proof:  The proof follows by applying Theorem 1 of Caputo (1996) to the Lagrangian function 
Gp ( )  defined in Eq. (16).         Q.E.D. 
 
 Theorem 1 demonstrates the central claim of the note, namely, that inasmuch as 

p ( ) ˆ p ( )† , the Lagrange multiplier ˆ p ( )  is not the shadow value of the constraint pa-
rameter  of agent p  at the Nash equilibrium.  Moreover, by mimicking the mathematics and 
logic used in the last four paragraphs of §3, it follows that ˆ p ( )  has the economic interpretation 
of the nonstrategic shadow value of the constraint parameter  of agent p  at the Nash equilib-
rium.  That is to say, ˆ p ( )  is the incremental measure of the value of the constraint parameter 

 to agent p  when the actions of the P 1 other agents are held fixed at their Nash equilibrium 
values. 
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5.  Concluding Remarks 
 
One view of the results derived here is that the Lagrange multiplier from single-agent and multi-
ple-agent strategic models have analogous economic interpretations, videlicet, as the nonstrategic 
shadow value of the limiting resource.  In the single agent case the adjective “nonstrategic” is 
fully appropriate in view of the fact that there is literally no other agent to be concerned about 
when a decision is made.  That is to say, “nonstrategic” is an appropriate adjective to apply to the 
shadow value interpretation of the Lagrange multiplier in the single agent setting because of the 
degenerate nature of the single agent “game,” for it, by construction, rules out strategic consid-
erations.  In other words, what has been shown is that the economic interpretation of the La-
grange multiplier in the single-agent setting essentially carries over to the multiple-agent strate-
gic setting.  This economic interpretation notwithstanding, Theorem 1 establishes that, in gen-
eral, the Lagrange multiplier associated with a constraint cannot legitimately be interpreted as 
the correct measure of the marginal value of the limiting resource associated with that constraint 
as soon as one moves to a multiple-agent strategic setting, for it ignores the strategic considera-
tions of the other agents.  Consequently, said Lagrange multiplier is not the shadow value of a 
limiting resource to an agent in a static game.  The legitimate shadow value of a limiting re-
source in a multiple-agent strategic setting is given by the partial derivative of an agent’s indirect 
objective function with respect to that limiting resource, just as it is in the single-agent con-
strained optimization framework. 
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