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Abstract

We examine the social desirability of learning about the regulated agent in a generalized
principal-agent model with incomplete information. An interesting result we obtain is that
there are situations in which the agent prefers a Bayesian regulator to have more, yet
incomplete, information about his private type.
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1. Introduction

The issue of learning has occupied an important place in the recent literature of game theory
while most of the pioneering studies have focused on learning in repeated games with in-
complete information. For example, Jordan (1991) considers a noncooperative normal form
game where each player is endowed with full Bayesian rationality and has prior beliefs about
his opponents’ privately known payoffs. The Bayesian Nash equilibrium of this game needs
not coincide with the Nash equilibrium of the complete information (true) game. However,
Jordan shows that under certain restrictions on beliefs the players in a repeated play of the
described normal form game can learn to play the Nash equilibrium of the complete infor-
mation game even though they will not necessarily attain complete information. Kalai and
Lehrer (1993) and Blume and Easley (1995) obtain a similar convergence result for infinitely
repeated games that involve non-myopic players. The empirical evaluations of the Jordan’s
Bayesian learning model was later evaluated in Cox, Shachat and Walker (2001), which shows
that when the true game had a unique pure strategy equilibrium, the experimental subjects’
play converged to the equilibrium, while this was not the case if the true game had multiple
equilibria.
In the existing literature, learning occurs while each player maximizes his infinite horizon

expected utility and updates his prior beliefs using the Bayes rule. However, in this paper
we examine the issue of Bayesian learning as a direct goal of (one of the) players in a static
decision problem and ask the following questions: in a principal-agent model of regulation
with incomplete information that borrows from Guesnerie and Laffont (1984), (i) what is
‘more information’ in a situation of ‘incomplete’ learning where the belief of the regulator
about the regulated agent does not coincide with the truth? (ii) is ‘more information’
about the regulated agent always desirable for the regulator and the principal or, conversely,
undesirable for the regulated agent?
The organization of the paper is as follows: Section 2 introduces the Bayesian regulation

model. We present our results in Section 3. Finally, Section 4 concludes.

2. Model

Consider two players with quasi-linear utility functions

up(x, t, θ) = Vp(x, θ)− t, (1)

ua(x, t, θ) = Va(x, θ) + t, (2)

where Vp and Va (up and ua) stand for the utilities (net utilities) of the principal and the
agent, respectively. Here, θ is the agent’s private information about his utility function, x is
called a decision and t is the total monetary transfer from the principal to the agent.1

1For example, in a setting of monopoly regulation, θ can be considered as the private cost parameter of
a monopolist, x the output decision, Vp the consumers’ surplus, and Va the monopolist’s operating profits.
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The private type parameter θ of the agent is commonly known to lie in some closed
interval Θ of reals. Define θ0 = min(Θ) and θ1 = max(Θ). We also assume that:

A0. argmaxxVp(x, θ) 6= argmaxxVa(x, θ)
A1. ∂(Vp + Va)/∂x > 0
A2. ∂2(Vp + Va)/∂x

2 < 0
A3. ∂2Vp/∂x∂θ ≤ 0
A4. ∂2Va/∂x∂θ ≤ 0
A5. ∂Va/∂θ < 0
A6. ∂3Va/∂x∂θ

2 ≤ 0
A7. ∂3Va/∂x

2∂θ ≤ 0

The regulator announces a contract between the principal and the agent. The instruments
of the contract are the control of the decision x and the transfer t to the agent. By the
Revelation Principle (Gibbard, 1973; Myerson, 1979), the regulator can restrict himself to
direct revelation mechanisms which ask the agent to report his private information and which
give to the agent no incentive to lie. The optimal regulatory policy is designed to satisfy two
conditions. First, the agent must never expect a greater net utility by misreporting than he
could by truthfully reporting his private information:

(IC) ua(x(θ), t(θ), θ) ≥ ua(x(θ̂), t(θ̂), θ), for all θ, θ̂ ∈ Θ (3)

The second condition is that the regulator must never regulate the agent without guaran-
teeing him a nonnegative net utility:

(IR) ua(x(θ), t(θ), θ) ≥ 0, for all θ ∈ Θ (4)

Now, let Ua(θ, θ̂) denote the net utility of the agent when he reports his private parameter
as θ̂ while θ is the actual parameter. Condition (IC) implies that Ua(θ, θ) = Ua(θ) satisfies

Ua(θ) = max
θ̂∈Θ

ua(x(θ̂), t(θ̂), θ) = ua(x(θ), t(θ), θ) (5)

for all θ ∈ Θ. From the envelope theorem, we obtain

dUa

dθ
=

∂ua
∂θ

=
∂Va
∂θ

. (6)

Similarly, denote by Up(θ) the net utility of the principal when the agent truthfully reports
his private parameter as θ.
The social welfare W (θ) is defined as the sum of the principal’s net utility and a fraction

of the agent’s net utility:

W (θ) = Up(θ) + αUa(θ), (7)
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where α ∈ [0, 1] is the relative weight assigned to the net utility of the agent. Integrating
(6), using the assumption (A5), yields

Ua(θ) = −
Z θ1

θ

∂

∂θ̃
Va(x(θ̃), θ̃)dθ̃. (8)

Inserting Up(θ) = Vp(x(θ), θ)−t(θ) and t(θ) = Ua(θ)−Va(θ) into (7), the actual social welfare
becomes:

W (θ) = Vp(x(θ), θ) + Va(x(θ), θ) + (1− α)
Z θ1

θ

∂

∂θ̃
Va(x(θ̃), θ̃)dθ̃ (9)

Assumptions 6 and 7 are sufficent for the optimal decision x(.), if exists, to be nonin-
creasing and implemented by the described subsidy mechanism. However, it is known that
there exists no feasible solution x(.) that maximizes (9) unless the two players’ welfares are
equally weighted in the social welfare function or that the utility of the agent is seperable in
its two arguments. The common remedy is to introduce a Bayesian regulator.
We consider a Borel field T Θ on the type space Θ and regard the subset AΘ of probability

measures on T Θ with densities that are strictly positive at each element of Θ as the set of
admissible prior beliefs for the regulator. Let f ∈ AΘ be the prior belief of the regulator and
F be the respective cumulative distribution function. We assume that f becomes common
knowledge before the regulator asks the agent to report his type. Let the pair (f,Θ) denote
the information structure that is commonly known by all parties in the society.
The objective function of the regulator under the structure (f,Θ) is the expected social

welfare:Z θ1

θ0

Ã
Vp(x(θ), θ) + Va(x(θ), θ)+(1− α)

Z θ1

θ

∂

∂θ̃
Va(x(θ̃), θ̃)dθ̃

!
f(θ)dθ (10)

Modifying (10), we obtain the problem of the Bayesian regulator as:

max
x(.)

Z θ1

θ0
(Vp(x(θ), θ) + Va(x(θ), θ) + (1− α)

F (θ)

f(θ)

∂

∂θ
Va(x(θ), θ)

!
f(θ)dθ (11)

s.t. (IC) and (IR)

To simplify the solution and its analysis, we will assume that for all Θ ⊂ IR and f ∈ AΘ:

A8. F (θ)/f(θ) is nondecreasing in θ

Proposition 1. The solution to Bayesian regulation problem (11) satisfies

∂Vp
∂x

+
∂Va
∂x

= −(1− α)
F (θ)

f(θ)

∂2Va
∂x∂θ

. (12)

We henceforth assume α ∈ [0, 1) and ∂2Va/∂x∂θ < 0 in order to be in the Bayesian
framework where the beliefs of the regulator affects the optimal program (12) through the
term F (θ)/f(θ), so called “the inverse of the reverse hazard rate”.
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Let x̄f denote the solution to (12), and let Ūf
p (θ), V̄

f
p (x̄

f(θ), θ), Ūf
a (θ), V̄

f
a (x̄

f(θ), θ), t̄f(θ),
and W̄ f(θ) respectively denote the net and gross utilities of the principal and the agent, the
subsidy and the social welfare at the report θ ∈ Θ under the belief f(.).

3. Results

We first define a dominance relation over the set of admissible beliefs to compare the regu-
latory outcomes that these beliefs lead to.

Definition 1. Let f1 ∈ AΘ1 and f2 ∈ AΘ2, where Θ1,Θ2 ⊂ Θ. The belief f1 sto-
chastically dominates (in inverse of the reverse hazard rate) the belief f2 on Θ1 ∩ Θ2 if
F1(θ)/f1(θ) ≤ F2(θ)/f2(θ) for all θ ∈ Θ1 ∩Θ2.

Lemma 1. Let f1 ∈ AΘ1 and f2 ∈ AΘ2, where Θ1,Θ2 ⊂ Θ, be such that f1 stochastically
dominates the belief f2 on Θ1 ∩Θ2. Then

x̄f1(θ) > x̄f2(θ) and Ūf1
a (θ) > Ūf2

a (θ) (13)

for all θ ∈ Θ1 ∩Θ2.

The finding that the optimal decision x̄f is decreasing in the rate F/f will be the crux of
our welfare results. Lemma 1 implies that using the described dominance concept the agent
can rank some admissible beliefs if they have the same support. But a similar preference
relation over the beliefs is not available for the society (or the principal). In other words, on
a given support of positive length there exists no belief of the regulator which is desired most
by the whole society. However, this negative result is not disappointing for us. Indeed, as
the rest of this paper will make it clear, there are situations where the social welfare is very
sensitive to the support of beliefs that are believed to contain the searched type parameter.
Hereafter, we fix and denote by θT the private type parameter of the agent, and define

ΘT = {θT}. Now we consider a single-stage learning prior to regulation, which changes
the current information structure (f0,Θ0) to (f1,Θ1) where f i ∈ AΘi

and Θ1 ⊂ Θ0 with
Θ1 /∈ {Θ0,ΘT}. We further suppose that the regulator has not acquired any additional
information about the distribution of the types in the finer support Θ1. Then the posterior
belief f1 on Θ1 should be obtained by some (pre-announced) update rule from the prior f0

on Θ0.
Here we simply assume that the learning of the regulator is exogenous, and moreover the

underlying learning technology is such that it always pays to spend on learning from the
viewpoint of the society. In the following definition we state the minimal restriction on f1

to ensure that the information structure (f1,Θ1) is superior to (f0,Θ0).

Definition 2. The structure (f1,Θ1) contains valuable (more) information about θT than
the structure (f0,Θ0) if Θ1 ⊂ Θ0 and f1(θT )/f0(θT ) ≥ f1(θ)/f0(θ) for all θ ∈ Θ1.

In the single-stage learning we consider the information about θT is incomplete. Thus,
more information resulting from learning does not necessarily imply that the regulator, and
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the society, are aware of its presence. Indeed, one can naturally ask the following question:
can the regulator be ever certain that he has “more information” under some incomplete
learning? Note that the regulator can simply check whether Θ1 is a subset of Θ0. So,
the above question boils down to whether the regulator can certify that f1(θT )/f0(θT ) ≥
f1(θ)/f0(θ) for all θ ∈ Θ1 without actually knowing what the value of θT is. Apparently, the
answer is ‘yes’ only if f1(θ)/f0(θ) is constant over Θ1. This observation leads us to focus on
the following belief update rule.

Definition 3. The belief f1 on Θ1 is the Bayesian update of f0 on Θ0 where Θ1 ⊂ Θ0 if
f1(θ) = f0(θ)(1 + γ) for all θ ∈ Θ1, where γ = [

R
Θ1 f(θ)dθ]

−1 − 1.

Then, a regulator can convince the society that he knows more about the regulated agent
only if the regulator is a Bayesian learner. We state this result, which requires no further
proof, as follows:

Proposition 2. The regulator knows that the structure (f1,Θ1) contains more information
about θT than the structure (f0,Θ0) only if f1 is the Bayesian update of f0.

In sequel, we point to situations in which the agent prefers the Bayesian regulator to
have more information about his private type.

Proposition 3. Suppose the regulator knows that the learned structure (f1,Θ1) contains
more information than the prior structure (f0,Θ0), where min(Θ1) > min(Θ0) and max(Θ1) =
max(Θ0). Then the welfare of the regulated agent is higher under the learned structure, i.e.
Ūf1

a (θ) > Ūf0

a (θ) for all θ ∈ Θ1.

With Bayesian learning that shrinks the type space from the left, the regulator’s posterior
belief stochastically dominates his prior belief. Then the welfare of the agent increases by
Lemma 1, whereas the changes in the welfare of the principal and the society are ambiguous.
The below corollary to Proposition 3 points to the potential of honest signalling of the agent
about his type space before the implementation of the regulatory mechanism.

Corollary 1. Let (f0,Θ0) be the current information structure and the regulator be known
to use Bayes rule in updating his beliefs. Then the agent finds it profitable to signal that his
type parameter cannot be in the interval [min(Θ0), θT ).

The following proposition symmetrically examines learning with right-sided contraction
of the type space.

Proposition 4. Suppose the regulator knows that the learned structure (f1,Θ1) contains
more information than the prior structure (f0,Θ0), where min(Θ1) = min(Θ0) and max(Θ1) <
max(Θ0). Then the welfare of the regulated agent is lower whereas the welfare of the prin-
cipal and the society are both higher under the learned structure, i.e. Ūf1

a (θ) < Ūf0

a (θ),

5



Ūf1

p (θ) > Ūf0

p (θ) and W̄
f1(θ) > W̄ f0(θ) for all θ ∈ Θ1.

Note that Bayesian learning that shrinks the type space only from the right leaves the
inverse of the reverse hazard rate, hence the optimal decision variable, unchanged. Nev-
ertheless, the informational rents of the agent become reduced as the upper bound of the
integral expression in (8) becomes smaller under the new information structure. With lower
informational rents, the social welfare in (9) becomes higher independently from the weight
α of the agent’s welfare. It follows that the welfare of the principal, which coincides with
the social welfare when α = 0, becomes higher, too. Obviously, the regulator must keep on
this kind of learning until a point where the expected gain of getting more information is
balanced by the cost of learning.

4. Conclusions

In a generalized principle-agent model, we have examined a Bayesian regulator’s learning
about the private information of the regulated agent. We have specified what ‘more infor-
mation’ means and demonstrated that more information about the informed agent needs not
be undesirable for him. We have also characterized situtations in which the principal and
the society benefit from the regulator’s learning.
Our findings support the view that one should be careful in determining what to ex-

pect from Bayesian mechanisms with their existing specifications. It has long been noticed
that the subjective nature of beliefs may cast some doubts on the implementability of the
Bayesian mechanisms. Crew and Kleindorfer (1986), Vogelsang (1988), Koray and Sertel
(1990) criticized the Bayesian approach in regulation on the grounds of unaccountability
and manipulability of the regulator’s subjective prior beliefs. In a very recent study, Ko-
ray and Saglam (2005) examine the same issue in the Baron and Myerson (1982) model
of monopoly regulation. They show that all interest groups in the society are extremely
sensitive to the prior belief of the regulator. There exist beliefs yielding values arbitrarily
close to the supremum of actual welfare and expected welfare of the regulated agent (mo-
nopolist) and the principal (consumers), respectively. Moreover, under some other beliefs
one can come as close to the infimum of actual welfare of both parties as possible. When
the belief of the regulator is unverifiable by the public, the existence of such critical beliefs
leads to a bargaining game over the beliefs between a corrupt or captured regulator and the
interest groups in the society, which distorts the regulatory outcome predicted by Baron and
Myerson (1982).
What we add to the previous results is that Bayesian mechanisms may yield unpredictable

and sometimes undesirable outcomes even in the presence of a benevolent and sincere regula-
tor if the socially efficient type of learning is not completely specified as part of the regulatory
mechanism.
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Appendix

Proof of Proposition 1. The integrand in the objective function of (11) is differentiated
with respect to x(θ) to obtain the optimality condition (12). Using the asssumptions (A2)
and (A7), it is easy to check that the same integrand is concave in x.
To show that the solution to (12) satisfies the incentive-compatibility constraint (IC), we

will first prove that the optimal solution x̄ is nonincreasing in θ. Total differentiation of (12)
with respect to θ yieldsÃ

∂2Vp
∂x2

+
∂2Va
∂x2

+ (1− α)
F (θ)

f(θ)

∂3Va
∂2x2∂θ

!
dx̄

dθ
=

Ã
−(1− α)

d

dθ

Ã
F (θ)

f(θ)

!
− 1

!
∂2Va
∂x∂θ

− ∂2Vp
∂x∂θ

− (1− α)
F (θ)

f(θ)

∂3Va
∂x∂θ2

.

Using the assumptions (A2), (A3), (A4), (A6) and (A7) together with the assumption that
F (θ)/f(θ) is nondecreasing in θ, we conclude that dx̄/dθ is nonpositive.
The net utility of the agent when he truthfully reports his type as θ is

Ua(θ) = −
Z θ1

θ

∂

∂θ̃
Va(x̄(θ̃), θ̃)dθ̃

by (8). The net utility of the agent when he misreports its unknown parameter as θ̂ while θ
is the true parameter is

Ua(θ, θ̂) = Va(x̄(θ̂), θ) + Ua(θ̂)− Va(x̄(θ̂), θ̂). (14)

Subtracting Ua(θ) from (14) we get

Ua(θ, θ̂)− Ua(θ) = −
Z θ

θ̂

∂

∂θ̃
Va(x̄(θ̃), θ̃)dθ̃ + Va(x̄(θ̂), θ)− Va(x̄(θ̂), θ̂)

= −
Z θ

θ̂

∂

∂θ̃

³
Va(x̄(θ̃), θ̃)− Va(x̄(θ̂), θ̃)

´
dθ̃ ≤ 0

from (A4) and dx̄(θ)/dθ ≤ 0. Thus, the optimal program (12) is incentive-compatible.
Finally to check condition (IR), i.e. Ua(θ) ≥ 0 at the optimal solution x̄, is straightfor-

ward from (8) thanks to assumption (A5).

Proof of Lemma 1. Total differentiation of (12) at the optimal decision x̄f with respect
to F (θ)/f(θ) yieldsÃ

∂2Vp
∂x2

+
∂2Va
∂x2

+ (1− α)
F (θ)

f(θ)

∂3Va
∂2x2∂θ

!
dx̄f

d[F (θ)/f(θ)]
= −(1− α)

∂2Va
∂x∂θ

.

From assumptions (A2), (A4) with strict inequality and (A7) it follows that x̄f is de-
creasing in F (θ)/f(θ). Considering equation (8), using assumptions (A4) and (A5) and
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F1(θ)/f1(θ) < F2(θ)/f2(θ), we conclude that Ū
f1
a (θ) > Ūf2

a (θ) for all θ ∈ Θ.

Proof of Proposition 3. Since f1 is a Bayesian update of f0 on a finer support, f1(θ) >
f0(θ) and hence F 1(θ) < F 0(θ) for all θ ∈ [min(Θ1),max(Θ0)) while F 1(max(Θ0)) =
F 0(max(Θ0)) = 1. This implies that F 1(θ)/f1(θ) < F 0(θ)/f0(θ) for all θ ∈ Θ1. Then
from Lemma 1, x̄f

1
(θ) > x̄f

0
(θ) and Ūf1

a (θ) > Ūf0

a (θ) for all θ ∈ Θ1.

Proof of Proposition 4. Since f1 is a Bayesian update of f0, f1(θ) = f0(θ)(1 + γ) for
all θ ∈ Θ1, where γ = [F (max(Θ1))]

−1 − 1. Note that F 1(θ)/f1(θ) = F 0(θ)/f0(θ) and
therefore xf

1
(θ) = xf

0
(θ) for all θ ∈ Θ1. Then from (8) we obtain Ūf1

a (θ) < Ūf0

a (θ), since
maxΘ1 < maxΘ0.
We have W̄ f1(θ) > W̄ f0(θ) since W̄ f1(θ) = V̄ f1

p + V̄ f1

a − (1 − α)Ūf1

a = W̄ f0(θ) + (1 −
α)(Ūf0

a − Ūf1

a ). Finally, Ū
f1

p (θ) > Ūf0

p (θ) follows from the fact that W̄ f0(θ) = Ūf0

p (θ) when
α = 0.
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