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Abstract

The equal allocation of nonseparable costs (EANSC) can be expressed as the sum of both
"internal dividends" and "external losses" for a given transferable utility (TU) game.
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1 Introduction

Let N be a player set. Harsanyi (1963) argued that when a coalition S in
N forms, then the two complementary coalitions S and N \ S form and
they make conflicting threats each other in order to get their maximal
profits. Also Harsanyi introduced the notion of “internal dividend”. He
argued that when a coalition S forms, then every member of S is influ-
enced by S. Hence, every member of S can receive an internal dividend
from S. The final payoff of a given player i will be the sum of the internal
dividends to i from all coalitions of which he is a member. The Shapley
value (1953) exactly refers to such a formula.

In this note, we consider a more complicated situation. Namely, when
a coalition S forms, then every member of S is influenced not only by
S but also by its complement N \ S. So, when coalition S forms, every
member of S can receive an internal dividend from S. Also he can receive
a specific amount from N \ S, which we name “external loss”. The final
payoff of a given player i will be the sum of both the internal dividends
to i from all coalitions of which he is a member and the external losses to
i from all coalitions of which he is not a member. Interesting, the equal
allocation of nonseparable costs (EANSC) refers to such a formula. ∗

2 Preliminaries

Let U be the universe of players. A coalition is a non-empty finite subset
of U . Let N be a coalition and let IR be the set of real numbers, the
cardinality of N is denoted by |N |.

A transferable utility (TU) game is a pair (N, v), where N is a coalition
and v : 2N → IR is a characteristic function satisfying v(∅) = 0. Let G
denote the set of all TU games. We call S a subcoalition if S is a subset
of N . (S, v) denotes a subgame of (N, v) obtained by restricting v to
subsets of S only.

Recall some facts for the Shapley value. The Shapley value φ is the
function on G that assigns to each TU game (N, v) a vector φ(N, v) in
IRN given by

φi(N, v) =
∑
S⊆N

i∈S

(|S \ {i}|!)(|N \ S|!)
|N |!

(v(S)− v(S \ {i})).

∗The EANSC emerged originally in the cost-sharing literature. Later, Straffin and
Heaney (1981), and Moulin (1985) investigated it on the class of TU games. Specially,
Moulin (1985) introduced a reduced game in the context of quasi-linear cost allocation
problems to characterize EANSC.
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Definition 1 A dividend function on G is a function d assigns to each
TU game (N, v) ∈ G with a configuration (dT (N, v))T⊆N satisfying the
following condition:

v(S) =
∑
T⊆S

|T |dT (N, v) (Efficiency), (1)

for all S ⊆ N , where d∅(N, v) = 0.

It is well-known that for T ⊆ N , dT (N, v) can be interpreted to
be “internal dividend” allocated by coalition T to its members, and
dT (S, v) = dT (N, v) for T ⊆ S ⊆ N . For convenience, we use nota-
tion dT = dT (S, v) = dT (N, v) for T ⊆ S ⊆ N .† A remarkable result for
the Shapley value is as follows.

Theorem 1 There exists a unique dividend function on G. Moreover,
the Shapley value can be expressed as the sum of internal dividends for a
given TU game. That is, let (N, v) ∈ G and i ∈ N , the Shapley value

φi(N, v) =
∑
T⊆N

i∈T

dT .

3 Main Result

In this section, we show that EANSC can be expressed as the sum of both
“internal dividends” and “external losses” for a given TU game. First,
we introduce the definition of EANSC and a dividend-loss function. It is
known that the EANSC ϕ of TU games can be given the following simple
game theoretic formulation:

ϕi(N, v) = v(N)− v(N \ {i}) + 1
|N | [v(N)−

∑
k∈N v(N)− v(N \ {k})]

= 1
|N |{v(N)− (|N | − 1)v(N \ {i}) +

∑
k∈N\{i} v(N \ {k})}.

†Let (N,uN
T ) be the unanimity game given by, for each T ⊆ N ,

uN
T (S) =

{
1 , if T ⊆ S
0 , otherwise.

It is well-known that each TU game (N, v) can be expressed as a linear com-
bination of unanimity games and this decomposition exists uniquely. That is,
v =

∑
T⊆N

cT (N, v)uN
T =

∑
T⊆N

|T |dT uN
T .
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Definition 2 A dividend-loss function on G is a function D assigns to
each TU game (N, v) ∈ G with a pair configuration (D+

T (N, v), D−
T (N, v))T⊆N

satisfying the following two conditions:

v(S) =
∑
T⊆S

D+
T (N, v) + D−

T (N, v) (Efficiency), (2)

for all S ⊆ N , and

D+
T (N, v) + D−

T (N, v) = |T | D+
T (N, v)− |N \ T | D−

T (N, v) (Balancedness),
(3)

for all T ⊆ N , where D+
∅ (N, v) = D−

∅ (N, v) = 0.

The condition (2) can be referred to the efficiency property. As to
condition (3), we image that when a coalition T forms, then

1. T possesses both the internal dividend “D+
T (N, v)” and the external

loss “D−
T (N, v)”, hence, the sum is “D+

T (N, v) + D−
T (N, v)”

2. T allocates “D+
T (N, v)” to its every member as internal dividend

3. T allocates “−D−
T (N, v)” to every member in N \ T as external

loss.

These mean that “|T | D+
T (N, v)” is the sum of internal dividends and

“−|N \ T | D−
T (N, v)” is the sum of external losses. Hence, the left part

of the equality in condition (3) can be interpreted as the amount of
“supply” when a coalition T forms; and the right part is referred to the
amount of “demand” when a coalition T forms. The condition (3) means
that supply is equal to demand. Note that D+

T (S, v) 6= D+
T (N, v) and

D−
T (S, v) 6= D−

T (N, v) for T ⊆ S ⊆ N in general.

Theorem 2 There exists a unique dividend-loss function on G. More-
over, the EANSC can be expressed as the sum of both internal dividends
and external losses for a given TU game. That is, let (N, v) ∈ G and
i ∈ N , the EANSC

ϕi(N, v) =
∑
T⊆N

i∈T

D+
T (N, v)−

∑
T⊆N

i/∈T

D−
T (N, v).

Proof: Let (N, v) ∈ G and T ⊆ N . Put D+
T (N, v) = |N |−|T |+1

|N | |T |dT and

D−
T (N, v) = |T |−1

|N | |T |dT , then it is easy to verify that there exists a unique
dividend-loss function on G, we omit it.
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To verify the expression, let T ⊆ N , by substituting v(T ) with∑
K⊆T |K|dK to the formulation of the EANSC of (N, v), we obtain that

ϕi(N, v) = 1
|N |{v(N)− (|N | − 1)v(N \ {i}) +

∑
k∈N\{i}

v(N \ {k})}

= 1
|N |{

∑
T⊆N

|T |dT − (|N | − 1)
∑

T⊆N\{i}
|T |dT +

∑
k∈N\{i}

∑
T⊆N\{k}

|T |dT}.

Repeat to calculate the above expression, we see that

ϕi(N, v) = 1
|N |{

∑
T⊆N

i∈T

|T |dT +
∑

T⊆N

i/∈T

|T |dT − (|N | − 1)
∑

T⊆N\{i}
|T |dT +

∑
T⊆N

i∈T

(|N | − |T |)|T |dT

+
∑

T⊆N

i/∈T

(|N | − |T | − 1)|T |dT}

= 1
|N |{

∑
T⊆N

i∈T

(|N | − |T |+ 1)|T |dT +
∑

T⊆N

i/∈T

[1− (|N | − 1) + (|N | − |T | − 1)]|T |dT}

= 1
|N |{

∑
T⊆N

i∈T

[|N |+ (1− |T |)]|T |dT +
∑

T⊆N

i/∈T

(1− |T |)|T |dT}

= 1
|N |{

∑
T⊆N\{i}

[(|N | − |T |)(|T |+ 1)dT∪{i} − (|T | − 1)|T |dT ]}

=
∑

T⊆N

i∈T

D+
T (N, v)−

∑
T⊆N

i/∈T

D−
T (N, v). Q.E.D.
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