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Abstract

We show that decreasing absolute prudence implies kurtosis aversion. The ``proof'' of this
relation is usually based on the identification of kurtosis with the fourth centered moment of
the return distribution and a Taylor approximation of the utility function. A more sound
analysis is required, however, as such heuristic arguments have been shown to be logically
flawed.
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1 Introduction

Empirical finance has shown that the distribution of returns on financial assets sampled
at a daily, weekly or monthly frequency is not well described by a normal distribution.
Most notably, the empirical return distributions tend to be leptokurtic, that is, they
are more peaked and fatter tailed than the normal distribution. This leads to consid-
erable interest in the implications of non–Gaussian distributional shape characteristics
for investor’s welfare and portfolio choice. As the mean and the variance are given by
the first two moments of a distribution, an often adopted approach, inspired by tra-
ditional mean–variance theory, is to identify preferences for moments higher than the
second, and in particular the third and fourth standardized moments, which are fre-
quently associated with skewness and kurtosis (e.g., Scott and Horvath, 1980; Dittmar,
2002; de Athayde and Flôres Jr., 2004; Vinod, 2004; Brandt et al., 2005; Guidolin and
Timmermann, 2005; and Jondeau and Rockinger, 2005, 2006).1

With regard to kurtosis, it is often argued in an expected utility framework that
decreasing absolute prudence, which requires a negative fourth derivative of the expected
utility function (Kimball, 1990), implies kurtosis aversion. However, the argument is
based on a Taylor approximation of the utility function along with the identification of
kurtosis with the centered fourth moment of the return distribution.

It is well–known that such arguments have several weaknesses (e.g., Brockett and
Garven, 1998). Briefly, a given value of a particular moment, computed by averaging
over the whole support of a random variable, can correspond to very different distri-
butional shapes. Thus, while investors have preferences over different shapes of the
distribution of future wealth, their ordering of distributions need not correspond to the
ordering with respect to particular moments. Consequently, it is not possible to establish
any general connection between the signs of the derivatives of the utility function and
some kind of “moment preferences”. However, it is shown in this paper that decreasing
absolute prudence implies kurtosis aversion when kurtosis is appropriately defined as a
comparative shape property, i.e., as peakedness and tailedness.

2 Kurtosis

We assume that the random variables involved are continuous with existing fourth mo-
ment. The analysis makes use of a ceteris paribus assumption insofar as kurtosis is
the only shape property considered. In particular, all density functions are symmet-
ric. Moreover, we assume that the random variables are supported on the whole real
line, but the derivations are easily modified for bounded variables. Zero means can be
assumed without loss of generality.

Kurtosis of a density g relative to a density f can then be defined as follows (e.g.,
Finucan, 1964).

1 The book edited by Jurczenko and Maillet (2006) is entirely devoted to the moment–based approach
to portfolio selection and asset pricing. A partial review of earlier papers arguing in this direction
can be found in Brockett and Kahane (1992) and Brockett and Garven (1998).
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Definition 1 If there are two distributions with densities f and g, each being symmet-
rical with mean zero and common variance σ2 = σ2

f = σ2
g , then g is said to have higher

kurtosis than f , if there are numbers a and b such that

g(x) < f(x) for a < |x| < b,

while
g(x) > f(x) for |x| < a or |x| > b.

The above definition of kurtosis captures the pattern which is usually reported in the
empirical finance literature since the publication of the seminal papers of Mandelbrot
(1963) and Fama (1965).

Note that kurtosis according to Definition 1 means that g has more probability
weight in the tails and is more concentrated about the mean, so that we cannot say
that it is more dispersed than f , and thus kurtosis does not fit into the Rothschild and
Stiglitz (1970) framework of increasing risk. An example of two densities satisfying the
conditions of Definition 1 is shown in Figure 1. Both densities are symmetric around
µ = 5 and have the same variance σ2 = 2.8. However, while g(x) has fatter tails, it has
also much more weight in the center.2 Thus, if you have to invest a certain amount of
money in one of two portfolios, with return densities given by those in Figure 1, it is not
immediately obvious which one to choose. Loosely speaking, while risk aversion implies
that investors dislike large losses more than they like large profits, kurtosis aversion
requires that they dislike fat tails more than they like high peaks.

Finucan (1964) has shown that, if g has greater kurtosis than f according to Defini-
tion 1, then the fourth moment is greater for the g distribution than for the f distribu-
tion.3 The reverse, however, is not true, and a counterexample was already presented
by Kaplansky (1945), viz a density less peaked but with a higher fourth moment than
the normal.

3 Decreasing prudence implies kurtosis aversion

3.1 Definitions and assumptions

To show that decreasing absolute prudence implies kurtosis aversion, we employ the
concept of stochastic dominance, which was introduced into economics by Hadar and
Russell (1969) and Hanoch and Levy (1969). This theory deals with the development of
conditions for a given distribution to be preferred over an alternative from the point of
view of each and every individual, when all individuals’ utility functions, U , are assumed

2 Density f is the normal density function with mean 5 and variance 2.8, while g is a dis-

crete scale normal mixture with g(x) = 0.8 × φ(x; 5, 1) + 0.2 × φ(x; 5, 10), where φ(x;µ, σ2) =
(2πσ2)−1/2 exp{−(x− µ)2/(2σ2)} is the density of a normal distribution with mean µ and variance
σ2.

3 In the literature, “kurtosis” often refers to the standardized fourth moment. However, we will use
this term to allude to the (comparative) shape property in Definition 1, because it is exactly this
property for which the (standardized) fourth moment is often believed to be a reasonable proxy.
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Figure 1: Illustration of Definition 1.

to belong to a given class of functions (see Levy, 1992, for an overview). The stochastic
dominance rule of order n identifies the preferred distributions for utility functions in
Un, where

Un = {U : (−1)iU (i)(x) ≤ 0, ∀x ∈ R, i = 1, . . . , n}, (1)

and U (i)(x) is the ith derivative of U at x. That is, random variable X is said to nth–
order stochastically dominate random variable Y if and only if E[U(X)] ≥ E[U(Y )] for
all U ∈ Un. It is often argued that, for a typical investor, U ∈ U4, where the signs follow
from non–satiation, risk aversion, prudence (or decreasing absolute risk aversion), and
decreasing absolute prudence, respectively. We will not make an attempt to justify these
assumptions. We only note that they are frequently deemed plausible and show that
they indeed imply kurtosis aversion.

To this end, define the repeated integrals

Fn(t) =

∫ t

−∞

Fn−1(x)dx, n ≥ 1, where F0(t) =

∫ t

−∞

f(x)dx (2)

is the cumulative distribution function associated with density f . Also, let

∆n(t) = Fn(t)−Gn(t), (3)

where Gn(t) is defined analogous to (2). The f distribution stochastically dominates
the g distribution to the nth order if and only if (Jean, 1980; Ingersoll, 1987, p. 138)

∆n−1(t) ≤ 0, ∀t ∈ R, and lim
t→∞

∆k(t) ≤ 0, k = 1, . . . , n− 2. (4)
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We wish to establish that an ordering of distributions with respect to kurtosis implies
an expected utility ordering for all U ∈ U4. The definition of kurtosis in (1) implies that
f and g have the same first and second moments. Thus, using (cf. Rao, 1973)

µf =

∫

∞

0

[1−F0(x)−F0(−x)]dx, and σ2
f = 2

∫

∞

0

[F1(x)− x + µf + F1(−x)]dx− µ2
f ,

where µf is the mean associated with density f , we have ∆1(t) → 0 and ∆2(t) →
0 as t → ∞, so that the f distribution fourth–order stochastically dominates the g
distribution if and only if ∆3(t) ≤ 0 for all t.

We also need a relation between Fn(t) defined in (2) and the lower partial moment
of order n of f , defined by

LPMf
n(t) =

∫ t

−∞

(t− x)nf(x)dx. (5)

We have (Bawa 1975; Ingersoll, 1987)

LPMf
n(t) = n!Fn(t). (6)

3.2 Establishing kurtosis aversion

Marsaglia, Marshall and Proschan (1965) provided a generalization of Finucan’s (1964)
result concerning the relation between kurtosis and the standardized fourth moment,
which, as it will serve as an input in our subsequent analysis, will be stated as Lemma
1. To do so, we adopt the notation

νf
s =

∫

∞

−∞

|x|sf(x)dx, νg
s =

∫

∞

−∞

|x|sg(x)dx. (7)

Lemma 1 (Marsaglia, Marshall and Proschan, 1965) Let f and g satisfy the assump-
tions of Definition 1, then

νf
s > νg

s for 0 < s < 2.

If s < 0 or s > 2 and νg
s is finite, then νf

s is finite and

νf
s < νg

s .

We also observe the following symmetry property of the functions defined in (3).

Lemma 2 For symmetric densities f and g with mean zero and common positive integer
even moments up to the N th power, the quantities (3) satisfy ∆n(t) = (−1)n+1∆n(−t),
n = 1, . . . , N + 1.

Proof. For even n, we have, using (6),

n![∆n(−t) + ∆n(t)] =

∫

−t

−∞

(t + x)n[f(x)− g(x)]dx +

∫ t

−∞

(t− x)n[f(x)− g(x)]dx

=

∫

∞

−∞

(t− x)n[f(x)− g(x)]dx = 0,
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where we have used symmetry of the densities involved, i.e., f(x) = f(−x).
For n odd, we have

LPM f
n (t)− LPM f

n (−t) =

∫ t

−∞

(t− x)nf(x)dx−

∫

−t

−∞

(−t− x)nf(x)dx (8)

=

∫ t

−∞

(t− x)nf(x)dx +

∫

−t

−∞

(t + x)nf(x)dx

=

∫

−t

−∞

[(t− x)n + (t + x)n]f(x)dx +

∫ t

−t

(t− x)nf(x)dx.

Using the binomial formula, we find

(t− x)n + (t + x)n =
n

∑

i=0

(

n

i

)

tn−i(−1)ixi +
n

∑

i=0

(

n

i

)

tn−ixi = 2

(n−1)/2
∑

i=0

(

n

2i

)

tn−2ix2i,

and

∫ t

−t

(t−x)nf(x)dx =
n

∑

i=0

(

n

i

)

tn−i(−1)i

∫ t

−t

xif(x)dx = 2

(n−1)/2
∑

i=0

(

n

2i

)

tn−2i

∫ 0

−t

x2if(x)dx,

using that, by symmetry,
∫ t

−t
xif(x)dx = 0 for i odd. Thus, (8) becomes

LPM f
n (t)− LPM f

n (−t) = 2

(n−1)/2
∑

i=0

(

n

2i

)

tn−2i

∫ 0

−∞

x2if(x)dx

=

(n−1)/2
∑

i=0

(

n

2i

)

tn−2i

∫

∞

−∞

x2if(x)dx =

(n−1)/2
∑

i=0

(

n

2i

)

tn−2iE(X2i).

As the moments involved are identical for the densities f and g, we conclude that
LPM f

n (t)− LPM f
n (−t) = LPM g

n(t)− LPM g
n(−t) ⇔ ∆n(t) = ∆n(−t).

Now we can show that kurtosis aversion holds within all utility functions U ∈ U4.

Proposition 3 The f distribution fourth–order stochastically dominates the g distribu-
tion if g has more kurtosis than f according to Definition 1.

Proof. We will successively elaborate the graphs of the functions ∆0(t), ∆1(t), ∆2(t),
and ∆3(t), in order to show that ∆3(t) < 0 for all t.

A zero of a function x 7→ h(x) will be called nodal if the function changes sign as x
passes through this point. A function h has a local extremum at a point ξ if and only
if ξ is a nodal zero of its derivative h′.

(1) Let c be defined by
∫ c

0
f(x)dx =

∫ c

0
g(x)dx. This fixes a unique value c ∈ (a, b).

The equation ∆0(t) = 0 has three roots, namely −c, 0, and c, all of which are
nodal zeros. That is ∆0(t) < 0 for t < −c or 0 < t < c, and ∆0(t) > 0 for
−c < t < 0 or t > c.
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(2) As ∆0(t) = ∆′

1(t), and the zeros of ∆0(t) are nodal, ∆1(t) has three local extrema,
located at −c, 0, and c. Also, limt→−∞∆1(t) =: ∆1(−∞) = 0 and ∆′

1(t) < 0 for
t < −c. This implies ∆1(t) < 0 for t ≤ −c. However, ∆1(t) has a nodal zero in
(−c, 0), because, from Lemma 1 and (6),

∆1(0) = −

∫ 0

−∞

x{f(x)− g(x)}dx =
1

2

∫

∞

−∞

|x|{f(x)− g(x)}dx = (νf
1 − νg

1)/2 > 0.

By symmetry (Lemma 2), then, ∆1(t) has exactly two zeros, which are nodal and
equal in absolute value, and which we denote by −d and d, with d ∈ (0, c). Also,
∆1(t) < 0 for t < −d or t > d, and ∆1(t) > 0 for −d < t < d.

(3) As ∆1(t) = ∆′

2(t), and the zeros of ∆1(t) are nodal, ∆2(t) has two local extrema,
located at −d and d. Also, ∆2(−∞) = 0 and ∆′

2(t) < 0 for t < −d. In addition,
we know that ∆2(0) = (σ2

f − σ2
g)/2 = 0. Thus, by Lemma 2, we have ∆2(t) < 0

for t < 0 and ∆2(t) > 0 for t > 0.

(4) ∆3(t) has only one extremal point, located at t = 0. By Lemma 1 and (6),
∆3(0) = (νf

3 − νg
3)/2 < 0. Then, from ∆3(−∞) = 0, ∆′

3(t) < 0 for t < 0 and
Lemma 2, we have ∆3(t) < 0 ∀t ∈ R.

4 Conclusions

We have shown that decreasing absolute prudence implies kurtosis aversion. Kurto-
sis was defined to be a property of the entire distributional shape rather than just a
particular moment, as is required for establishing stochastic dominance relationships.
The usefulness of the result derives from the growing interest in the implications of
distributional properties such as skewness and kurtosis for the welfare and the portfolio
decisions of economic agents. For example, if we accept the argument that the special
features of financial return data do allow for the use of particular moments as proxies
for characteristic shape properties, then the result of the present paper may provide
a partial theoretical justification for the moment–based approach to portfolio choice,
which assumes that agents have preferences over a few moments of the portfolio re-
turn distribution, such as mean, variance, and moment–based proxies for skewness and
kurtosis.
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de Athayde, G. M. and R. G. Flôres (2004) “Finding a Maximum Skewness Portfolio—
A General Solution to Three–Moments Portfolio Choice” Journal of Economic
Dynamics and Control 28, 1335–52.

Dittmar, R. F. (2002) “Nonlinear Pricing Kernels, Kurtosis Preference, and Evidence
from the Cross Section of Equity Returns” Journal of Finance 57, 369–403.

Fama, E. F. (1965) “The Behavior of Stock Market Prices” Journal of Business 38,
34–105.

Finucan, H. M. (1964) “A Note on Kurtosis” Journal of the Royal Statistical Society
26, 111–12.

Guidolin, M. and A. Timmermann (2005) “Optimal Portfolio Choice under Regime
Switching, Skew and Kurtosis Preferences” Working Paper 2005–006, Federal Re-
serve Bank of St. Louis.

Hadar, J. and W. R. Russell (1969) “Rules for Ordering Uncertain Prospects” American
Economic Review 59, 25–34.

Hanoch, G. and H. Levy (1969) “The Efficiency Analysis of Choices Involving Risk”
Review of Economic Studies 36, 335–46.

Ingersoll, J. E. (1987) Theory of Financial Decision Making, Rowman & Littlefield
Publishing: Savage.

Jean, W. H. (1980) “The Geometric Mean and Stochastic Dominance” Journal of
Finance 35, 151–58.

Jondeau, E. and M. Rockinger (2005) “Conditional Asset Allocation Under Non-
Normality: How Costly is the Mean-Variance Criterion?” Fame research paper
no. 132, International Center for Financial Asset Management and Engineering,
University of Geneva.

Jondeau, E. and M. Rockinger (2006) “Optimal Portfolio Allocation Under Higher
Moments” European Financial Management 12, 29–55.

Jurczenko, E., and B. Maillet (2006) Multi–moment Asset Allocation and Pricing Mod-
els, John Wiley & Sons: New York.

Kaplansky, I. (1945) “A Common Error Concerning Kurtosis” Journal of the American
Statistical Association 40, 259.

7



Kimball, M. S. (1990) “Precautionary Saving in the Small and in the Large” Econo-
metrica 58, 53–73.

Levy, H. (1992) “Stochastic Dominance and Expected Utility: Survey and Analysis”
Management Science 38, 555–93.

Mandelbrot, B. (1963) “The Variation of certain Speculative Prices” Journal of Business
36, 394–419.

Marsaglia, G., A. W. Marshall, and F. Proschan (1965) “Moment Crossings as Related
to Density Crossings” Journal of the Royal Statistical Society 27, 91–93.

Rao, C. R. (1973) Linear Statistical Inference and Its Applications, 2nd ed., John Wiley
& Sons: New York.

Rothschild, M., and J. E. Stiglitz (1970) “Increasing Risk: I. A Definition” Journal of
Economic Theory 2, 225–43.

Scott, R. C., and P. A. Horvath (1980) “On the Direction of Preference for Moments of
Higher Order than the Variance” Journal of Finance 35, 915–19.

Vinod, H. D. (2004) “Ranking Mutual Funds Using Unconventional Utility Theory and
Stochastic Dominance” Journal of Empirical Finance 11, 353–77.

8


