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Abstract

Distinct parametric models in continuous time for the interest rates are tested by means of a
comparative analysis of the implied parametric and nonparametric densities. In this research
the statistic developed by Ait-Sahalia (1996a) has been applied to the Mexican CETES (28
days) interest rate in the period 1998-2006. With this technique, the discrete approximation to
the continuous model is unnecessary even when the data are discrete. The results allow to
affirm that the models of interest rate shown in this paper are unable to describe the data of
the Mexican CETES.
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1. Introduction 

 

In this note we applied the methodology developed in Ait-Sahalia (1996a) to evaluate some 

models for the Mexican interest rate data (CETES) and test if these approaches describe its 

empirical evolution. There are many processes which have been proposed to explain the 

evolution of the interest rate through time (see for example, Vasicek, (1977), Cox, Ingersoll and 

Ross (1985), Courtadon (1982) and Chan (1992), among others).  One of the most important 

applications of these models is the pricing of interest rate derivative securities; unfortunately the 

prices of these derivatives are different, depending on the short rate dynamics (Ait-Sahalia, 

1996b, Jiang, 1998).  

 

The typical dynamics specified is the stationary diffusion processes 

 

                                             tttt dWXdtXdX )()( σµ +=                                                           (1) 

 

Where { }0, ≥tWt  is a standard Brownian motion .The functions )( tXµ and )(2

tXσ are 

respectively, the drift and the diffusion functions of the process. The parametrization can be 

written as 

 

                             ),()(,),,()( 22 θσσθµµ xxandxx == where k
R⊂Θ∈θ                              (2) 

 

There is no financial theoretical rationale for the election of the parametric drift and diffusion. 

Therefore, we will test different models in the literature. After parameterizing the drift and 

diffusion, a common method to estimate (1) consists in discretizing the model (see for example 

Hansen (1982), Chan (1992)), and it is assumed that the frequency of data is an important 

issue,i.e., more data means higher frequency data. Ait-Sahalia (1992) developed an estimator 

designed to take into account the discrete character of the data without use of the discrete 

approximation of the continuous time model (in this paper the null hypothesis state that there 

exist parameters of the type (2)). As we choose specific parameters, we define a density function 

for the interest rate observations. The statistic test applied compares the density implied by the 

parametric model and a nonparametric estimator (which is always consistent). This test is valid 

even if the parametric model is misspecified. 

 

The paper is organized as follows. Section 2 presents the statistic test developed by Ait-Sahalia 

(1996a) and its assumptions. Section 3 presents the application and results from the empirical 

research .Sections 4 presents conclusions. 

 

2. The test for the parametric specifications of the interest rate dynamics. 

We consider processes of the interest rate which are univariate diffusions, strictly stationary with 

the Markov property, where the zero and infinity are attainable in a finite number of expected 

steps and that the discrete data are mixing at a sufficiently fast rate (i.e.,the classical asymptotic 

theory can be applied). When we take a specific parameterization of the process, we are working 

with the joint parametric family: 

 

                                         { }Θ∈≡ θθσθµ )(.,),(.,( 2
P                                                           (3) 
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Where Θ is a compact subset of KR . The null and alternative hypothesis are written as 
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Where P  is described by (3). And more generally, given )(.,θµ and  ( )θσ .,  in P , there is a 

correspondence with a parameterization of the marginal and transitional densities: 

 

                            { }Θ∈∈≡Π θθσθµθθπ ,))(.,),(.,()).,.,(.,.,),(.,( 2 Pp  

 

Where ),( θπ x  is the marginal density at x  and ),,,( θxtysp is the transition probability density 

from x  at time t  to y  at time s . The estimation of the densities explicitly takes into account the 

discreteness of the data. The marginal density corresponding to the pair ),( 2σµ  is given by 
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We show a sketch of the proof of (5), (based on Karlin and Taylor, 1981): The Forward-

Kolmogorov equation is defined as 

 

 

 

 

It is assumed that the distribution is stationary for ),( ytψ . Therefore 

 

 

 

Integrating we have: 

 

 

 

 

Where 1C  is the integration constant. So 
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On the other hand, we know that: 
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To get the equality between this equation with equation (6), it is necessary: 
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The integral  ( ) ( ) εε d∫=
x

sxS , is called the scale function and the speed of the density is                            

( )
( ) ( )xsx

xm
2

1

σ
= . 

If the density is stationary, we have  

 

                                                        ( ) ( ) ( )[ ]21 CxsCxmx +=ψ                                       (7) 

 

If ( ) 0>xψ  in the interval ( )rl, , then: 

1) 01 =C , and 

2) there exists 2C  such thah ( ) xx
r

l
d1 ∫= ψ . 

 

Substituting the value of  ( )xm  and ( )xs  in (7), we have 
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Changing  ψ  by π  and 2C  by ε  we have 

                                             ( ) ( )
( )

( )
( ) 








= ∫ dy
y

y

x
x

θσ

θµ

θσ

θξ
θπ

,

,2
exp

,
,

22
                                          (8) 

 

which is the expected result. The density (8) is used for each parametric model, and depending 

on the expression we have to use a particular method of integration. 
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Let the true marginal density of the process be ( )
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Therefore the null and alternative hypotheses are: 
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Whether or not the parametric model is correctly specified, a nonparametric estimator of the 

density will converge to the true density. The parametric model of the density will converge to 

the true density only if it is correctly specified. Ait-Sahalia (1996a) proposed a measure of the 

distance M between the two densities estimates, where the null hypothesis to be tested is that the 

parametric specification is correct. The proposed statistic is 
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The nonparametric estimator is calculated using the kernel estimator of the marginal density 
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and MΩ  given in Ait-Sahalia (1996a, p.421), and we use the Gaussian kernel 
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3. Testing Rate Models 

The interest rate used is the daily Mexican CETES of 28 days (1998-2006). A time series plot 

and summary statistics are provided in figure 1 (see appendix).  

     

3.1 The parametric specifications of the short rate process. 

The general specification is 
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The constraints which are consequence of the properties 1 through 5 are (Ait-Sahalia, 1996a): 
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The list of models is shown in table 1. It can be proved from the assumptions that the drift and 

diffusion are not directly dependent on time 

 
Insert Table 1 here 

 

Applying (8) we get the analytical expression for some models (table 2). In other cases is 

necessary to apply numerical integration. The next step is calculating the statistics (9) for each 

model. 
          Insert Table 2 here 

 

3.2 The results 

The table 3 shows the estimation of the statistic (9) (with a 5% of significance). In the same table 

the application of the statistical criterion (10) allows to affirm that all these continuous models 

are rejected in order to describe the dynamics of the Mexican CETES data. The result has an 

important financial implication: the application of these models is incorrect to the study of the 

Mexican CETES.  
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Table 3  

Results 

 

 VASICEK CIR 
Brennan & 
Schwartz Chan General   Drift MERTON 

Min 2,565.40747 2,565.87317 645.43314 612.37889 2,565.43618 2,225.27921 

M 74.45160 74.46512 18.73135 17.77207 74.45244 64.58062 

Result Rejected Rejected Rejected Rejected Rejected Rejected 

       

 CIR SR Dothan CIR VR GBM CEV 
Brennan  & 
Schwartz 

min 2,564.47988 908.92776 2,564.52981 2,565.87224 2,565.92205 2,565.87205 

M 74.42469 26.37832 74.42613 74.46509 74.46654 74.46509 

Result Rejected Rejected Rejected Rejected Rejected Rejected 

 

  
4. Conclusions 

The election of an adequate stochastic differential equation that explains the dynamics of the 

empirical interest rate is still an unsolved problem. With this fact in mind, it has tested a 

group of known models, observing an important empirical fact: the interest rate models 

shown in this paper are unable to describe the dynamics of the Mexican CETES data.  

 

Even though, these models have been used by practitioners with different goals in mind, but 

the use in pricing  interest rate derivative securities has negative consequences over the 

measuring of some important variables (for example in risk management). As an alternative, 

it can include jumps in the stochastic differential equation (an alternative to be studied by the 

authors in the future), or the use of multivariate models. 
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Appendix   

 

 
Figure 1. The time series of the level CETES rate, November 1998 to April 2006 and Summary Statistics 

 
Table 1Models 

Parametric Model ( )θµ ,x  ( )θσ ,2 x  

Vasicek (1977) x10 αα +  
0β  

Cox, Ingersoll y 

Ross (1985) 
x10 αα +  x1β  

Brennan & 

Schwartz (1982) 
x10 αα +  2

2xβ  

Chan (1992) x10 αα +  3

2

ββ x  
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* CIR SR x10 αα +  2/1

1xβ  

* GBM  x1α  x1β  

* CEV x1α  γβ x2  

* Brennan & 

Schwartz 
x10 αα +  2/3

1xβ  

 

Standard First 
Mean Deviation Skewness  Kurtosis Autocorrelation 

r t 0.11118 0.06296 1.48273 5.07239 0.99551 
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Figure 1.      CETES Rate Level 
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Table 2 

Analytical expressions 
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