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Abstract

This model provides a closed form solution to the problem of liquidity constrained
consumption with stochastic income. To keep the model tractable we employ a quadratic
utility function. Income follows a geometric Brownian motion. The analytical solution
exhibits a smooth, non linear, relation between consumption and income along the
optimizing path even when the constraint binds. This outcome confirms the assertions in the
literature that even liquidity constrained consumers may satisfy the standard Euler equation.
But, in our model this result emerges from the analytical solution.

I thank Enrico Saltari and Martin Forster for useful comments and suggestions. I wish also to thank an anonymous referee. I
thank MIUR (Italy) for financial support (Prin 2005). All errors and omissions remain my own.
Citation: Giuseppe, Travaglini, (2008) "An exact consumption rule with liquidity constraints and stochastic income."
Economics Bulletin, Vol. 5, No. 5 pp. 1-9
Submitted: January 23, 2008.  Accepted: February 14, 2008.
URL: http://economicsbulletin.vanderbilt.edu/2008/volume5/EB-08E20001A.pdf

http://economicsbulletin.vanderbilt.edu/2008/volume5/EB-08E20001A.pdf


1 Introduction

Closed form solutions to the problem of liquidity constrained consumption
cannot, in general, be derived even without uncertainty. Thus, numerical
solutions have become the standard tool for modelling consumption under
constraints and uncertainty (Zeldes 1989a, 1989b; Deaton, 1991; Carroll and
Kimball, 2001). Recently, Park (2006) has found a closed form solution to
the constrained consumption function in continuos time, but under perfect
foresight. His work is very close to Seater (1997) who was the �rst to pro-
vide an optimal control solution to the liquidity constraint problem under
certainty. In his setup the relationship between consumption and income
is non linear. Our model can be seen as an update of these papers. We
provide a closed form solution to the problem of consumption with liquidity
constraints and stochastic income in continuos time. We formally de�ne the
problem as follows. A quadratic utility function is employed to keep the
model tractable. The theory of Brownian motion and its control is used to
solve the consumption problem. Our closed form solution exhibits a smooth
non linear relation between consumption and stochastic income along the
entire optimizing path even when the constraint binds. This result con�rms
the assertion in literature that even liquidity constrained consumers may sat-
isfy the standard Euler equation. But, in our model this result emerges from
the analytical solution.

2 The model

Consumer acts in an imperfect capital market, where �nancing constraints
are simple quantity restrictions on wealth. We assume that the interest rate
r is constant over time. � is the consumer�s discount rate. As in Seater
(1997) we con�ne our attention to the case � = r.1 The dynamics of income
follows a continuous-time random walk. We assume an in�nite horizon. The
consumer�s problem is

1Under the assumption r = � it is easy to show that the results of Deaton (1991) on
falling consumption in presence of liquidity constraints �arise because Deaton assumes
r < �, not because of the liquidity constraint. The presence of liquidity constraint in his
model actually causes c to fall less rapidly over time than it would without the constraint�
(Seater 1997, p.131).
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max
cs

Z 1

t

Et fu (cs)g e�r(s�t)ds (1)

subject to the constraint _as = ras + ys � cs; where cs and ys are consump-
tion and income processes and as is wealth. The transversality condition is
lim
s!1

ase
�r(s�t) = 0. If utility function is quadratic, the Euler equation implies

constant expected consumption over time Et (cs) = ct: Solving the budget
constraint we get

ct = rat + r

Z 1

t

Et fysg e�r(s�t)ds (2)

with

ht =

Z 1

t

Et fysg e�r(s�t)ds (3)

the discounted value of the expected future income:
We assume that income is distributed lognormally

dyt = �ytdt+ �ytdz (4)

where � is the growth rate and � is the volatility, with dz being a random
variable with zero mean and variance dt: This is a geometric Brownian motion
with the property that percentage changes in yt are normally distributed. The
expected value of income is

Et fysg = yt +
�
�� �

2

2

�
(s� t) (5)

with variance �2(s� t). Substituting (5) in (3) it gives the solution

ht =
yt
r
+
�� �2

2

r2
(6)

and using (6) in (2) we see that current changes in income imply changes of
current consumption in the same direction, with variance a¤ecting negatively
its value.
The yt process drifts upwards but also �uctuates randomly, and this vari-

ation a¤ects actual consumption. In practice there are restriction on the
range. Following Besley (1995) it may be that

0 � yt � ymax (7)
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Income cannot fall below the �oor y
min
= 0 and it is bounded above because

it cannot rise beyond a certain level. We require that assets be non-negative
at all times

as � 0 with s > t (8)

This is a set of restrictions which inhibits the consumer to anticipate the
future income. Note that when 0 < yt < ymax the inability to borrow does not
imply inability to save. Within the bounds the income can change freely, but
once the barrier ymax has been reached, its value can only decrease randomly
with probability 1. Thus, ymax is a re�ecting barrier. We refer to ymax as the
�liquidity constraint�.

3 Constraints and uncertainty

The model admits a closed form solution. Consumption is determined by the
discounted value of income (3). But, expression (3) is a function ht = h(yt)
so that to calculate its variation we must compute the di¤erentials of such
function w.r.t. income. By Ito�s lemma we have

1

dt
Et (dh) = �yh

0(yt) +
1

2
h00(yt)y

2
t �

2

where h0(yt) and h00(yt) denote the partial derivatives. From the di¤erential
form of (3)

rh(yt) = yt +
1

dt
Et (dh)

substituting for the expectation we obtain the second order di¤erential equa-
tion of h(yt)

1

2
h00(yt)�

2y2t + h
0(yt)�yt + yt � rh(yt) = 0 (9)

Note that the expression in (6) is a particular solution of ht = h(yt). So, all
solutions of (9) are a linear combination of (6) with solutions of its homoge-
neous part

h(yt) = B1y
�1
t +B2y

�2
t (10)

where B1 and B2 are two constants to be determined from the boundary
conditions, and �1 > 0 and �2 < 0 are the roots of the characteristic equation

1

2
�2�2 +

�
�� �

2

2

�
�� r = 0
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The boundary condition (7) implies that B2 = 0 to avoid that consumption
becomes bigger and bigger as income tends to zero. The general solution of
the integral (3) can, thus, be written as

h(yt) =
yt
r
+
�� �2

2

r2
+B1y

�1
t

3.1 Switching between regimes

To solve this problem we look for a rule in which consumption is a function
ct = c (yt). Using the previous result we may write (2) as

c(yt) = yt +
�� �2

2

r
+ rB1y

�1
t (11)

which is the general solution of c(yt) under the assumption at = 0 and � = r:
If the constraint is absent, the constant B1 must be set to zero because

no e¤ective liquidity constraint occurs when income tends to +1. However,
we get that the variance of income �2 reduces the level of consumption for a
given yt even with the quadratic utility function.
If the constraint limits the random increase of income, the upper bound

impinges upon consumption. In this scenario, B1 exerts its e¤ects on con-
sumption even in the intermediate phases before the constraint binds. Indeed,
as long as yt lies within the range its evolution is described by (4). Once yt
reaches ymax its process changes since income can only decrease randomly.
As a consequence, the level of consumption approaches to its maximum value
cmax when income approaches to the threshold ymax. Also, consumption de-
creases randomly when income falls down.
Any rational agent anticipates this process, and �nds optimal to select a

policy which accounts for constraints at the outset. To maximize his expected
utility, the forward-looking consumer smooths consumption along the entire
path even in the neighborhood of cmax. Whether this condition were violated
the consumption function c(yt) would have no derivative in ymax; implying
a violation of the Euler equation along the optimal switching path.2 The

2Saltari and Travaglini (2006) use this same principle to study the behavior of �rms
which are neither always constrained nor always unconstrained. They calculate the optimal
investment path switching between regimes. Their analytical solution shows that the
future �nancing constraints a¤ect the optimal investment policy of �rms at the outset.
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Figure 1: The consumption function with stochastic income and liquidity
constraints

boundary condition corresponding to this control is

c0(ymax) = 0 (12)

Expression (12) is sometimes called smooth pasting condition and it is su¢ -
cient to �x the constant B1: Applying (12) to (11) we get

c(yt) = yt +
�� �2

2

r
�
�

1

�1 (ymax)
�1�1

�
y�1t (13)

Figure 1 shows both the linear function yt +
���2

2

r
, and the locus repre-

senting the non linear functional form c(yt) which is tangent at cmax when
the liquidity constraint binds.
Note that when yt < y� the level of consumption rises along the straight

line yt +
���2

2

r
. Once, however, income passes this critical value the curve

becomes concave smoothly since the consumer anticipates the e¤ect of the
constraint: the consumer perceives closeness to the upper bound as an exac-
erbation of the liquidity constraint becoming more reluctant to consume.
Two are the consequences of this behavior.
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Firstly, note that the precautionary component of saving rises as the value
of income is over the value y�: But, for y < y� saving, st = yt � ct; is given
by the expression

st =
1

r

�
�2

2
� �

�
that is, saving rises with uncertainty (precautionary e¤ect) relative to the
drift of income (income e¤ect) even when current income is low.
Secondly, when yt > y� consumption rises more slowly than income, and

saving increases as well. Figure 1 illustrates what happens when income is
equal to y1: If consumer behaves in a myopic way consumption would be C1 on
the straight line. But, the forward-looking consumer anticipates that income
will never move outside ymax, and that the closer is the liquidity constraint
the higher is the probability that income will be lower in the future. This
bearish expectation a¤ects consumption, reducing its current level along the
concave curve in Cc1. The distance between this curve and the straight
line provides a measure of the additional saving. Hence, the propensity to
consume is much greater at low levels of income than at high level.
Finally, note that the more uncertain is income, the less is spent and the

more is saved. Di¤erentiating (13) totally with respect to �2 we get c�2 < 0.
The greater is the amount of uncertainty the larger is the wedge between the
straight line and the function c(yt), that is, the larger is saving to smooth
consumption in bad times.

3.2 Consumption absent uncertainty

Assume that uncertainty is absent. Yet, when � = 0 the e¤ect of the upper
bound remains. The income process becomes

dyt
yt
= �dt

Let�s denote the initial income as y0, so that over time yt = y0e�t: Consider
the following dynamics for yt

yt = y0e
�t when t � T = ln ymax � ln y0

�
yt = ymax otherwise

For 0 � t � T income grows at the rate �, then it remains for ever to the
upper bound when ymax is realized. Now, ymax is an absorbing barrier. The
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changes of consumption over time can be expressed through the changes of yt
because ct = c (yt). Also consumption is a continuos function of time because
ct is a continuos function of yt, and yt is a continuos function of time. Thus,
as long as t < T; changes in ct can be written as

dct
dt
= c0(yt)

dy

dt
= c0(yt)�yt

For t < T the di¤erential equation is

c (yt) = yt + c
0(yt)�yt

with solution
c (yt) =

yt
1� � +By

1
�

t (14)

To determine the constant B; note that as time approaches T; yt tends
to ymax. Given, however, that consumption depends on income the function
c (yt) also tends to its maximum value cmax as time approaches T: Thus, as
c(yt) approaches the bound its variation with respect to income tends to zero.
As before, this implies

c0(ymax) = 0

that is B = � �

(1��)(ymax)
1
��1

< 0. Finally, substituting the expression of B in

(14) we obtain the explicit consumption function

c (yt) =
yt

1� � �
(

�

(1� �) (ymax)
1
�
�1

)
y
1
�

t (15)

This is a concave function with respect to yt. Given an initial value for
income, any future increase (or decrease) in income, implies a corresponding
increase (or decrease) in current consumption. A forward-looking consumer
will anticipate this trend so that it is not surprising that as yt tends to ymax
consumption converges smoothly to cmax; becoming tangent at this value in
such a way as to satisfy the Euler equation. Finally, note that the solution
(15) does not depend on �. Hence, the concavity of the consumption function
is induced by the anticipated e¤ect of the latent constraint, and saving is
driven exclusively by the optimal constrained consumption smoothing.
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4 Conclusions

In this paper we have provided a closed form solution to the problem of
consumption with stochastic income and liquidity constraints. To derive the
analytical solution we have used a quadratic utility function and a geometric
Brownian motion for income. The logic of the model is that consumers
free from restrictions at the current time �nd optimal to make sequential
decisions in order to achieve a coherent and optimal consumption plan at the
outset of the planning horizon. This forward-looking behavior gives rise to a
concave consumption rule with the variance of income a¤ecting consumption
in each period. Further, if income is deterministic, the consumption function
remains concave. Consumption is sensitive only to what consumer believes
about future �nancing constraints, and concavity is the consequence of the
optimal constrained consumption behavior.
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