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Abstract

In this paper, I develop and estimate a dynamic model of strategic network forma-
tion with heterogeneous agents. While existing models have multiple equilibria, I prove
the existence of a unique stationary equilibrium, which characterizes the likelihood of
observing a specific network in the data. As a consequence, the structural parameters
can be estimated using only one observation of the network at a single point in time.
The estimation is challenging because the exact evaluation of the likelihood is compu-
tationally infeasible. To circumvent this problem, I propose a Bayesian Markov Chain
Monte Carlo algorithm that avoids direct evaluation of the likelihood. This method
drastically reduces the computational burden of estimating the posterior distribution
and allows inference in high dimensional models.

I present an application to the study of segregation in school friendship networks,
using data from Add Health containing the actual social networks of students in a
representative sample of US schools. My results suggest that for white students, the
value of a same-race friend decreases with the fraction of whites in the school. The
opposite is true for African American students.

The model is used to study how different desegregation policies may affect the struc-
ture of the network in equilibrium. I find an inverted u-shaped relationship between
the fraction of students belonging to a racial group and the expected equilibrium seg-
regation levels. These results suggest that desegregation programs may decrease the
degree of interracial interaction within schools.
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1 Introduction

In this paper, I develop and estimate a dynamic model of strategic network formation with

heterogeneous agents. The main theoretical result is the existence of a unique stationary

equilibrium, which characterizes the probability of observing a specific network in the data.

As a consequence, structural parameters can be estimated using only one observation of the

network at a single point in time. The estimation is challenging, since the exact evaluation of

the likelihood function is computationally infeasible even for very small networks. To over-

come this problem, I propose a Bayesian Markov Chain Monte Carlo algorithm that avoids

the direct evaluation of the likelihood. This method drastically reduces the computational

burden of estimating the posterior distribution and allows inference in high dimensional

models.

The methodological contributions of this work are motivated by a growing evidence docu-

menting how the structure of social networks influences individual performance. The number

and socioeconomic composition of friends affect employment prospects, school performance,

risky behavior, adoption of new technologies and health outcomes.1 The literature has pro-

posed two alternative approaches to study the determinants of network structure.2 Strategic

models interpret the network as the equilibrium outcome of a strategic game. Rational

individuals invest in social ties and choose friends by considering the cost and benefits of

each relationship. The network structure is thus the result of strategic interactions among

agents.3 In contrast, in models of random network formation each link occurs with a certain

probability, and the network structure is the realization of a stochastic process. While ran-

dom models provide a better fit of social network data, they lack any microfoundation, thus

severely limiting their use for policy evaluation. At the same time, strategic models provide

sharp predictions about networks observed in the real world, but they are unable to fit many

features of the data.

Several recent contributions4 show that the development and estimation of an empirical

model for strategic network formation faces two main challenges. First, strategic network for-

mation models tend to have multiple equilibria, which makes the identification of structural

parameters problematic; furthermore, estimation requires data containing multiple obser-

1For example, see the recent contributions of Topa (2001); Laschever (2009); Cooley (2010); De Giorgi
et al. (2010); Nakajima (2007); Bandiera and Rasul (2006); Conley and Udry (forthcoming).

2For a survey see Jackson (2008).
3See Bala and Goyal (2000), Jackson and Wolinsky (1996), Galeotti (2006), Breuckner (2006), De Marti

and Zenou (2009).
4See for example Currarini et al. (2009, 2010); Comola (2008); Mayer and Puller (2008); Christakis et al.

(2010)
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vations of the network. Second, strategic models have inherent computational complexity:

the number of possible network configurations increases exponentially with the number of

players. This feature makes the computation of equilibria for large networks extremely hard.

This curse of dimensionality imposes a severe limit to the estimation of these models, allow-

ing inference only for small networks or specifications with few parameters.

The model I develop eliminates the first problem and drastically reduces the second.

First, I establish existence of a unique stationary equilibrium, that allows estimation and

identification of the structural parameters using only one observation of the network at a

single point in time. Second, the proposed estimation algorithm eliminates the curse of di-

mensionality by avoiding direct evaluation of the likelihood. The computational burden is

reduced further by exploiting the properties and characterization of the stationary equilib-

rium.

I present an application to the study of segregation in school friendship networks, using

data from the National Longitudinal Study of Adolescent Health (Add Health). This unique

dataset contains detailed information on the actual friendship networks of students in a rep-

resentative sample of US schools. My final sample contains 14 schools with a total of 1139

students.5 I find that race, gender and grade are important determinants of network forma-

tion in schools. There is overwhelming evidence of homophily, i.e. students tend to interact

and form social ties with similar people, other things being equal. My results suggest that

for white students the value of a same-race friend decreases with the fraction of whites in

the school. The opposite is true for African American students: the value of an African

American friend increases with the proportion of blacks in the school. Hispanic preferences

seem to mirror those of whites.

My model can be usefully employed in policy analysis, because it allows the researcher

to simulate counterfactual policy experiments.6 This model provides useful guidance to pol-

icymakers who care about promoting policies that affect the structure of the network. For

example, I consider two schools from the sample, one with 98% whites and the other with

96% blacks. I simulate alternative swaps of students across schools and then measure the

average segregation in the new stationary equilibrium of the model. I find that there is an

inverted U-shape relationship between the fraction of students belonging to a racial group

5I use only the schools from the saturated sample. The sampling scheme of Add Health involved in-
school interviews for all the students. A subsample of 20745 students was also interviewed at home, to
collect detailed individual information. The saturated sample contains schools for which both interviews
were administered to each student enrolled. Therefore this sample does not contain any missing information
about individual controls. This is not the case for most schools in Add Health.

6Alternatively, it could be used as a guide for designing randomized experiments that modify students
assignments.
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and the expected levels of equilibrium segregation.7 For example, a reduction in the white

student share from 90% to 80% implies an average increase of expected segregation by .20,

as measured by the Freeman (1972) segregation index.8

My model incorporates ingredients from both strategic and random network formation

literature (Jackson, 2008). The link formation is sequential: each period only one agent

is active and he updates only one link. At the beginning of the period, a random agent

(John) is drawn from the population and he meets another agent (Liz) according to a ran-

dom matching technology. At this point he can choose to update his social tie to Liz. The

implicit assumption is that meetings are very frequent and the agents have the opportunity

to revise their strategies frequently.

My model allows for rich indirect payoffs from link formation. Individuals care about

the socioeconomic composition of their friends, friends of friends and feedback from those

friends payoffs. Concretely, John’s utility from linking to Liz depends on her socioeconomic

attributes; additionally, he values the socioeconomic composition of her friends and how

befriending her could affect his popularity among the other players. Finally, a link provides

additional utility when it is reciprocated. When updating the link, John receives a random

shock to his preferences, which is unobserved by the econometrician. This shock models

unobservables: for example, John may be in a bad mood when he meets Liz, and this affects

his linking strategy. The link is formed when the social relationship provides positive utility;

otherwise the agent does not form (or severs, if already in place) the friendship.

To preserve tractability, I assume that individuals do not take into account how their

current linking strategy affects the shape of future networks: they follow a stochastic best-

response dynamics à la Blume (1993).9 This assumption reduces the computational com-

plexity and makes analysis of the network dynamics feasible.10

The model has two desirable features. First, there are two levels of heterogeneity. Each

individual is endowed with a set of exogenous attributes. Furthermore, the dynamics of

network formation generates endogenous heterogeneity: each individual has a different set

of friends and different compositions of friends’ attributes. In equilibrium, two agents with

7 Currarini et al. (2010) use a different model and find the same relationship.
8The index measures the difference between the expected and actual number of links among individuals

of different groups. An index of 0 means that the actual network closely resembles one in which links are
formed at random. Higher values indicate more segregation. The maximum of 1 corresponds to a network
in which there are no inter-group links.

9It is possible to relax the assumption of myopic agents, but the computational burden becomes much
more challenging. The simple characterization of equilibrium behavior, long run dynamics and the estimation
strategy depend on the best-response dynamics and may not extend to networks with forward-looking agents.

10Alternatively, it is possible to interpret this model as an equilibrium selection device, that selects one of
the possible networks as the result of an evolutionary game.
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exactly the same exogenous attributes may exhibit very different linking strategies, due to

their different endogenous positions in the network and the socioeconomic composition of

their friends. Most models of strategic network formation incorporate the first level of het-

erogeneity but are unable to generate different equilibrium behavior, because the agents in

these models only care about their direct links.11

Second, the network formation game can be characterized as a potential game.12 All the

players’ incentives in any state of the network are completely summarized by an aggregate

function, the potential, mapping networks and socioeconomic characteristics into potential

levels. When an agent updates a link, the change in his utility is equal to the change in this

potential. This simple characterization is key to making analysis of a network with many

agents feasible because the potential summarizes the incentives of all players with a single

number: there is no need to keep track of the choices and utility levels of all n players.

The existence of a potential allows one to characterize the stationary equilibrium in closed

form. Assuming that preference shocks follow an extreme value distribution (i.i.d. over time

and across agents), and that any pair of agents can meet with positive probability, I prove

that the unique stationary equilibrium characterizes the probability of observing a specific

network structure as an exponential function of the potential. This result provides the like-

lihood function underlying the estimation.

The estimation of the posterior distribution imposes a computational challenge: both the

posterior and the likelihood are functions of normalizing constants, which are infeasible to

calculate.13 To solve this problem, I propose a Markov Chain Monte Carlo algorithm that

removes the need to evaluate the likelihood. This method belongs to the class of exchange

algorithms, first developed by Murray et al. (2006) for a similar family of distributions.14

I prove that the algorithm generates a Markov chain of parameters whose invariant distri-

bution is the posterior. Therefore, samples from the algorithm can be used as (correlated)

samples from the posterior. Using the properties of the stationary equilibrium and following

11An exception is the model of De Marti and Zenou (2009), where the cost of linking an individual also
depends on the composition of friends of friends. While the structure of the preference is similar to mine, they
present a static model and the link formation requires mutual agreement of the players. The consequence is
that their model has multiple equilibria.

12See Monderer and Shapley (1996) for a description of games with a potential. Gilles and Sarangi (2004)
investigates a model of network formation with a potential function. Their model only considers the utility
from direct links, while mine includes indirect links, mutual links and popularity.

13To evaluate the likelihood function, one needs to compute the sum of exponential functions of the
potential, where the sum is computed over all possible network configurations. To be concrete, a network
with n = 10 agents has 290 ≈ 1027 possible network configurations. A state of the art supercomputer will
take several years to evaluate the likelihood once.

14Similar algorithms have been proposed in the Exponential Random Graph literature by Caimo and Friel
(2010), Koskinen (2008), Liang (2010).
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a suggestion in Liang (2010), I modify the algorithm to reduce the computational burden

even further, by relaxing the need for exact sampling from the stationary equilibrium of the

model. This method allows estimation of high dimensional models in reasonable time. When

data from multiple networks are available, the algorithm is easily extended.15

The remainder of the paper is organized as follows. Section 2 describes the model and

the stationary equilibrium. Section 3 develops the estimation method and describes the Add

Health data. Section 4 discusses the empirical results and the policy experiments. Section 5

concludes. Appendix A collects all the proofs for the theoretical model, while Appendix B

provides the details about the MCMC algorithm and convergence.

2 A Model of Network Formation

2.1 Setup

Let I = {1, 2, ..., n} be the set of agents, each identified by a vector of A (exogenous)

attributes Xi = {Xi1, ..., XiA}, e.g. gender, wealth, age, location, etc. The attributes of the

population are contained in the matrix X = {X1, X2, ..., Xn} and X denotes the set of all

possible matrices X. Time is discrete.

The social network is represented as a (random) n× n binary matrix G ∈ G, where G is

the set of all n× n binary matrices. The generic element of the matrix G is

Gij =

{
1 if individual i nominates individual j as a friend

0 otherwise

and I follow the convention in the literature, assuming Gii = 0, for any i.

The network represented by G is directed : the existence of a link from i to j does not

imply the existence of the link from j to i, i.e. gij 6= gji. This modeling choice reflects the

structure of the Add Health data, where friendship nominations are not necessarily mutual.

Some authors refer to this data as perceived networks.16

Let the realization of the network at time t be denoted as gt and the realization of the

link between i and j at time t be gtij. The network including all the current links but gtij, i.e.

gt\gtij, is denoted as gt−ij.

Preferences are defined over network realizations and population characteristics. I assume

15In my estimation I use a parallel version of this algorithm for the estimation with multiple school
networks. The details are discussed in the computational appendix.

16See Wasserman and Faust (1994) for references.
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there is an utility function Ui : G × X → R for each i, mapping networks and individual

characteristics into utility levels.

2.1.1 Network Formation Process

Individuals form links over time according to a stochastic best-response dynamic, generating

a Markov chain of networks. The main ingredients of this process are random matching and

utility maximization. The implicit assumption is that individuals meet frequently and have

the opportunity to revise their links.

Matching Technology. At the beginning of each period an agent i is randomly selected

from the population, and he meets another individual j according to a matching technology.

Formally, the meeting process is a stochastic sequence m = {mt}∞t=1 with support I × I.

The realizations of the meeting process are ordered pairs mt = {i, j}, indicating which agent

i should play and which link gij can be updated at period t.17

Player i meets agent j with probability

Pr
(
mt = ij|gt−1, X

)
= ρ

(
gt−1, Xi, Xj

)
(1)

where
∑n

i=1

∑n
j=1 ρ (gt−1, Xi, Xj) = 1 for any g ∈ G. The matching probability depends on

the current network (e.g. the existence of a common friend between i and j) and the charac-

teristics of the pair. This structure includes matching technologies with a bias for same-type

individuals as in Currarini et al. (2009). The simplest example of matching technology is

an i.i.d. discrete uniform process with ρ (gt−1, Xi, Xj) = 1
n(n−1)

. An example with bias for

same-type agents is ρ (gt−1, Xi, Xj) ∝ exp [−d (Xi, Xj)], where d (·, ·) is a distance function.

Utility Maximization Conditional on the meeting mt = ij, player i updates the link ij to

maximize his current utility, taking the existing network gt−ij as given. The agents have com-

plete information since they can observe the entire network and the individual attributes

of all agents. Before updating his link to j, individual i receives an idiosyncratic shock

ε ∼ F (ε) to his preferences that the econometrician cannot observe. This shock is meant

to model unobservable events that could influence the utility of a link, e.g. mood, gossips,

fights, etc. Player i links player j at time t, i.e. gtij = 1, if and only if it is a best response

to the current network configuration, i.e. gtij = 1 if and only if

Ui
(
gtij = 1, gt−1

−ij , X
)

+ ε1t ≥ Ui
(
gtij = 0, gt−1

−ij , X
)

+ ε0t. (2)

17Several models incorporate a matching technology in the network formation process. Jackson and Watts
(2002) assume individuals meet randomly according to a discrete uniform distribution. Currarini et al.
(2009) introduce a matching process that is biased towards individuals of the same type, similar to the one
modeled here.
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I assume that when the equality holds, the agent plays the status quo.18 The stochastic

process described by this match formation process generates a sequence [g0, g1, ...., gt] of net-

works. In each period only one element of the random matrix G is updated, conditioning on

the existing network. Therefore the sequence is a Markov chain, with transition probabilities

determined by the meeting process and agents’ linking choices. 19

2.1.2 Preferences

The preferences are defined over networks and individual characteristics. The utility of player

i from a network g and population attributes X = (X1, ..., Xn) is given by

Ui (g,X) =
n∑
j=1

gijuij︸ ︷︷ ︸
direct friends

+
n∑
j=1

gijgjimij︸ ︷︷ ︸
mutual friends

+
n∑
j=1

gij

n∑
k=1
k 6=i,j

gjkvik

︸ ︷︷ ︸
friends of friends

+
n∑
j=1

gij

n∑
k=1
k 6=i,j

gkiwkj

︸ ︷︷ ︸
popularity

(4)

where uij ≡ u (Xi, Xj), mij ≡ m (Xi, Xj), vij ≡ v (Xi, Xj) and wij ≡ w (Xi, Xj) are

(bounded) real-valued functions of the attributes. The utility of the network is the sum

of the net benefits received from each link. The total benefit from an additional link has

four components.

• When the agent links another individual, she receives an additional direct net benefit

uij. The direct utility includes both costs and benefits and it may possibly be negative:

when only homophily enters payoffs of direct links, the net utility uij is positive if i and

j belong to the same group, while it is negative when they are of different types. This

is illustrated in Panel A of Figure 1 with a simple network of 8 agents. Each agent can

belong to either the blue group or the yellow group. The link that agent 4 forms to

individual 5 provides different direct utility in the two networks, since the identity of 5

is different: blue for the left network and yellow for the right one. In many models this

component is parameterized as uij = bij − cij, where bij indicates the (gross) benefit

18This assumption does not affect the main result and is relevant only when the distribution of the
preference shocks is discrete.

19The derivation of the transition matrix is straightforward. The set of all possible states is G, the
probability of transition from a network gt = g to next period network gt+1 =

(
g′ij , g−ij

)
is

ρ (g,Xi, Xj) I{Ui(g′ij ,g−ij ,X)+ε(g′ij)≥Ui(gij ,g−ij ,X)+ε(gij)} (3)

where I{...} is an indicator function. The transition probability is zero if the networks differ in more than
one element.
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Figure 1: Components of the utility function

A. Direct friends

B. Mutual friends

C. Friends of friends

D. Popularity

The network contains n = 8 agents, belonging to two groups: blue and yellow. All the panels show a
situation in which 4 is forming a new link to individual 5 (the dashed arrow from 4 to 5). Agent 4 receives
different direct utility when he links a blue (Panel A, left) or a yellow (Panel A, right) individual. Agent
4’s utility for an additional link is different if the link is unilateral (Panel B, left) or reciprocated (Panel B,
right). Furthermore, agent 4’s utility from friends of friends varies with their socioeconomic composition: 3
blue individuals (Panel C, left) provide different utility with respect to 2 blue and 1 yellow (Panel C, right).
Finally, agent 4 values how his new link affects his popularity, since he creates a new indirect friendship for
those who already have a link to him (agents 1,2 and 3). The utility of link to agent 5 (which is yellow)
when agents 1,2 and 3 are all blue (Panel D, left) is different when agent 2 is yellow and 1 and 2 are blue
(Panel D, right).

and cij the cost of forming the additional link gij. I use the notation uij, since it does

not require assumptions on the cost function.
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• Agents receive additional utility mij if the link is mutual; friendship is valued differ-

ently if the other agent reciprocates. The idea is that an agent may perceive another

individual as a friend, but that person may not perceive the relationship in the same

way. Panel B of Figure 1 isolates this component: a link from agent 4 to agent 5 has

a different value if agent 5 reciprocates (right network).

• The players value the composition of friends of friends. When i is deciding whether

to link j, she observes j’s friends and their socioeconomic characteristics. Each of

j’s friend provides additional utility v(Xi, Xk) to i. In this model, an agent who has

the opportunity to form an additional link, values a white student with three Hispanic

friends as a different good than a white student with two white friends and one African

American friend.20 In other words, individuals value both exogenous heterogeneity and

endogenous heterogeneity: the former is determined by the socioeconomic character-

istics of the agents, while the latter arises endogenously with the process of network

formation. I assume that only friends of friends are valuable and they are perfect

substitutes: individuals do not receive utility from two-links-away friends. In Panel C

of Figure 1, from the perspective of agent 4, agent 5 in the left network is a different

good than agent 5 in the right network, since the composition of his friends is different.

• The fourth component corresponds to a popularity effect. Consider Panel D in Figure

1. When agent 4 forms a link to agent 5, he automatically creates an indirect link for

agents 1, 2 and 3. Thus agent 4 generates an externality. For example, suppose there

is homophily in indirect links. Then in the left network the externality is negative for

all three agents (1, 2 and 3); and in the right network it is negative for 1 and 3, but

positive for 2. Therefore, in the left network the popularity of 4 goes down, while in

the right network the fall in popularity is less pronounced. 21

20A similar assumption is used in De Marti and Zenou (2009) where the agents’ cost of linking depend
on the racial composition of friends of friends. Their model is an extension of the connection model of
Jackson and Wolinsky (1996), and the links are formed with mutual consent. The corresponding network is
undirected.

21One can contemplate an alternative interpretation of this last component. One can view it as a feature
that captures forward-looking behavior in the model in a reduced form, since the ”popularity” affects how
more/less likely the other agents are to maintain or create a link to individual i in future meetings.
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2.2 Equilibrium Analysis

I impose an additional assumption on the functional forms of the utility functions. The

assumption is not too strong, but it provides an important identification restriction. I

assume that the utility mij obtained from mutual links is symmetric and that the utility of

an indirect link vij has the same functional form as the utility from the popularity effect wij.

ASSUMPTION 1 (Preferences) The utility function satisfies the following restrictions

m (Xi, Xj) = m (Xj, Xi) for all i, j ∈ I
w (Xk, Xj) = v (Xk, Xj) for all k, j ∈ I

therefore the utility function is

Ui (g,X) =
n∑
j=1

gijuij +
n∑
j=1

gijgjimij +
n∑
j=1

gij

n∑
k=1
k 6=i,j

gjkvik +
n∑
j=1

gij

n∑
k=1
k 6=i,j

gkivkj (5)

The symmetry in mij does not imply that a mutual link between i and j gives both the same

utility. Indeed if i and j have a mutual link, they receive the same common utility compo-

nent (mij) but they may perceive that particular friendship in a different way, as long as the

utility from direct or indirect links are different for i and j. As a result, two individuals with

the same exogenous characteristics Xi = Xj (say two males, whites, enrolled in eleventh

grade) who form a mutual link receive the same uij and mij, but they may have different

utilities from that additional link because of the composition of their friends of friends and

their popularity. Therefore, this part of the assumption helps in identifying the utility from

indirect links and popularity.

The second restriction is more technical. When i forms a link to j, i creates an external-

ity for all k’s who have linked her: any such k now has an additional indirect friend, i.e. j,

who agent k values by an amount v (Xk, Xj). When w (Xk, Xj) = v (Xk, Xj), an individual

i values his popularity effect as much as k values the indirect link to j, i.e., i internalizes the

externality he creates.

Assumption 1 is the main ingredient that guarantees a closed form solution for the sta-

tionary equilibrium of the model. Without this assumption, the model would still have a

unique stationary equilibrium, however it would be impossible to characterize the likelihood

function in closed form.22 The first part of the assumption is a normalization of the utility

22Estimation of such a model could be performed using Approximate Bayesian Computations (see Marjo-
ram et al. (2003) for example), but the computational burden is even more challenging.
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function that allows identification for the utility of indirect links and popularity. The second

part of the assumption is an identification restriction, that guarantees the model’s coherency

in the sense of Tamer (2003). In simple words, this part of the assumption guarantees that

the system of conditional linking probabilities implied by the model generates a proper joint

distribution of the network matrix.23

The assumption delivers a very simple characterization of the stationary equilibrium.

The following proposition highlights a crucial result of this paper.

PROPOSITION 1 (Potential Function)
Under Assumption 1, the deterministic component of the incentives of any player in any
state of the network are summarized by a potential function, Q : G × X → R

Q (g,X) =
n∑
i=1

n∑
j=1

gijuij +
n∑
i=1

n∑
j>i

gijgjimij +
n∑
i=1

n∑
j=1
j 6=i

n∑
k=1
k 6=i,j

gijgjkvik, (6)

and the network formation game is a Potential Game.

Proof. See Appendix A

The intuition for the result is simple. Under the restrictions of Assumption 1, for any

player i and any link gij we have

Q (gij, g−ij, X)−Q (1− gij, g−ij, X) = Ui (gij, g−ij, X)− Ui (1− gij, g−ij, X)

Consider two networks, g = (gij, g−ij) and g′ = (1−gij, g−ij), that differ only with respect

to one link, gij, chosen by individual i: the difference in utility that agent i receives from the

two networks, Ui (g,X)−Ui (g′, X), is exactly equal to the difference of the potential function

evaluated at the two networks, Q (g,X) − Q (g′, X). That is, the potential is an aggregate

function that summarizes both the state of the network and the deterministic incentives of

the players in each state.

Characterizing the network formation as a potential game facilitates analysis. In order to

compute the equilibria of the model, there is no need to keep track of each player’s behavior:

the potential function contains all the relevant information. This property is key for the

analysis of networks with many players: the usual check for existence of profitable deviations

from the Nash equilibrium can be performed using the potential, instead of checking each

player’s possible deviation in sequence.

23Similar restrictions are also encountered in spatial econometrics models (Besag, 1974) and in the litera-
ture on qualitative response models (Heckman, 1978; Amemiya, 1981)
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It should be emphasized that the potential Q (g,X) is not equivalent to the welfare

function W (g,X), that describes the total utility of all agents in the network,

W (g,X) =
n∑
i=1

Ui (g,X)

= Q (g,X) +
n∑
i=1

n∑
j>i

gijgjimij +
n∑
i=1

n∑
j=1

n∑
k=1
k 6=i,j

gijgkivkj

To analyze the long run behavior of the model, I impose more structure on the matching

technology.24

ASSUMPTION 2 (Meeting Process) Any meeting is possible, i.e., for any ij ∈ I × I

ρ(gt−1, Xi, Xj) > 0 (7)

The meeting process is such that any individual can be chosen and any pair of agents can

meet. This assumption guarantees that any equilibrium network can be reached with positive

probability. For example, a discrete uniform distribution satisfies this assumption.

It is helpful to consider a special case of the model, in which there are no preference

shocks: the characterization of equilibria and long run behavior for such model provides

intuition about the dynamic properties of the full structural model.

Let N (g) be the set of networks that differ from g by only one element of the matrix, i.e.

N (g) ≡ {g′ : g′ = (g′ij, g−ij), for all g′ij 6= gij, for all i, j ∈ I}. (8)

A Nash network is defined as a network in which any player has no profitable deviations from

his current linking strategy, when randomly selected from the population. The following

results characterize the set of the pure-strategy Nash equilibria and the long run behavior

of the model with no shocks.

PROPOSITION 2 (Model without Shocks: Equilibria and Long Run)
Consider the model without idiosyncratic preference shocks. Under Assumptions 1 and 2:

1. There exists at least one pure-strategy Nash equilibrium network

24Christakis et al. (2010) assume that individuals can meet only once and their link remains in place forever.
This assumption is convenient when estimating a large network, but it does not allow the characterization
of the stationary equilibrium.
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2. The set NE(G, X, U) of all pure-strategy Nash equilibria of the network formation game
is completely characterized by the local maxima of the potential function.

NE(G, X, U) =

{
g∗ : g∗ = arg max

g∈N (g∗)
Q (g,X)

}
(9)

3. Any pure-strategy Nash equilibrium is an absorbing state.

4. As t→∞, the network converges to one of the Nash networks with probability 1.

Proof. In Appendix A

Suppose that the current network is a Nash network. As a consequence, if an agent deviates

from the current linking strategy, he receives less utility.25 Since the change in utility for any

agent is equivalent to the change in potential, any deviation from the Nash network must

decrease the potential. It follows that the Nash network must be a local maximizer of the

potential function over the set of networks that differ from the current network for at most

one link.

Furthermore, the network must converge to one of the Nash Equilibria in the long run,

independently of the initial network. Suppose an agent is drawn from the meeting process.

Such agent will play a best response to the current network configuration. Therefore, his

utility cannot decrease. This holds for any player and any period. It follows that the potential

is nondecreasing over time. Since there is a finite number of possible networks, in the long

run, the sequence of networks must reach a local maximum of the potential, i.e., a Nash

equilibrium.

With the intuition from the simpler model in mind, we can now analyze the full structural

model with preference shocks. In the full model there is a high probability of hitting a Nash

network. However, the shocks allow the network to escape from such networks: this makes

the model ergodic and eliminates absorbing states.

I make the following parametric assumption on the shocks, that allows me to characterize

the stationary distribution and transition probabilities.

ASSUMPTION 3 (Idiosyncratic Shocks) The shock follows a Type I extreme value
distribution, i.i.d. among links and across time.

25When the utility from the equilibrium and the deviation is the the same, the agent plays the status quo,
i.e., the Nash strategy.
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The probability of a link between i and j, given a meeting mt = ij and previous period

network configuration gt−1

Pr
(
gtij = 1

∣∣ gt−1
−ij , X

)
= Pr

[
ε0t − ε1t ≤ Ui

(
1, gt−1
−ij , X

)
− Ui

(
0, gt−1
−ij , X

)]

=

exp

[
uij + gt−1

ji mij +
∑
k 6=i,j

gt−1
jk vik +

∑
k 6=i,j

gt−1
ki vkj

]

1 + exp

[
uij + gt−1

ji mij +
∑
k 6=i,j

gt−1
jk vik +

∑
k 6=i,j

gt−1
ki vkj

] (10)

Under Assumptions 1-3, the network evolves as a Markov chain with transition probabil-

ities given by the conditional choice probabilities (10) and the probability law of the meeting

process mt.

One can show that the sequence [g0, g1, ...., gt] is:

1. irreducible, i.e. every state of the network can be reached with positive probability in

a finite number of steps

2. aperiodic, i.e. the chain does not get trapped in cycles, because the probability of

moving from a state to another is always positive under the extreme value assumption

Intuitively, because Pr (mt = ij) > 0 for all ij, there is always a positive probability of

reaching a new network in which the link gij can be updated. The logistic assumption implies

that there is always a positive probability of switching to another state of the network, thus

eliminating absorbing states.

THEOREM 1 (Uniqueness and Characterization of Stationary Equilibrium)
Consider the network formation game with idiosyncratic shocks, under Assumptions 1-3.

1. There exists a unique stationary distribution π(g,X), i.e.,

lim
t→∞

P
(
Gt = g

∣∣G0 = g0, X
)

= π (g,X) . (11)

2. Suppose that the meeting probability of i and j does not depend on the existence of a
link between them, i.e.,

ρ
(
gt−1, Xi, Xj

)
= ρ

(
gt−1
−ij , Xi, Xj

)
. (12)

Then the stationary distribution π(g,X) is

π (g,X) =
exp [Q (g,X)]∑

ω∈G
exp [Q (ω,X)]

, (13)

where Q (g,X) is the potential function (6).
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Proof. In Appendix A

The first part of the proposition follows directly from the irreducibility and aperiodic-

ity of the Markov process generated by the network formation game. The uniqueness of

the stationary distribution is crucial in estimation, since one does not need to worry about

multiple equilibria. Furthermore, the stationary equilibrium characterizes the likelihood of

observing a specific network configuration in the data. As a consequence, I can estimate

the structural parameters from observations of only one network at a specific point in time,

under the assumption that the observed network is drawn from the stationary equilibrium.

The second part of the proposition provides a closed-form solution for the stationary

distribution. The intuition is straightforward: in the long run, the system of interacting

agents will visit more often those states/networks that have high potential. Networks with

high potential correspond to Nash equilibria described in Proposition 2. Therefore a high

proportion of the possible networks generated by the network formation game, will corre-

spond to the Nash networks.

The stationary distribution π (g,X) includes a normalizing constant

c (G, X) ≡
∑
ω∈G

exp [Q (ω,X)] (14)

that reflects the fact that it is a proper probability distribution. Unfortunately, this nor-

malizing constant greatly complicates estimation, since it cannot be evaluated exactly or

approximated with precision. How this is circumvented is explained in the next section.

3 Estimation Strategy

3.1 Computational Problem

To estimate the model, I assume that the utility functions depend on a vector of parameters

θ = (θu, θm, θv):

uij = u (Xi, Xj, θu)

mij = m (Xi, Xj, θm)

vij = v (Xi, Xj, θv)

The goal is to recover the parameters’ posterior distribution, given the data and the prior.

Let p (θ) be the prior distribution. Given the likelihood function π (g,X, θ) of the observed
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data (g,X), the posterior distribution of θ can be written as

p (θ|g,X) =
π (g,X, θ) p (θ)∫

Θ
π (g,X, θ) p (θ) dθ

. (15)

Estimation of the posterior faces two computational challenges. First, the posterior depends

on the normalizing integral
∫

Θ
π (g,X, θ) p (θ) dθ. This problem is common to any Bayesian

analysis, and is often solved using a Metropolis-Hastings algorithm that avoids direct compu-

tation of the integral. This algorithm generates a Markov chain of parameters whose unique

invariant distribution is the posterior (15). The empirical distribution of the chain is used

as estimate of the posterior.

At each iteration t, with current parameter θt = θ, a new parameter vector θ′ is proposed

from a distribution qθ (·|θ). At iteration t + 1 the new parameter θt+1 is updated according

to

θt+1 =

{
θ′ with prob. α (θ, θ′)

θ with prob. 1− α (θ, θ′) ,
(16)

where α (θ, θ′) is computed as

α (θ, θ′) = min

{
1,
p (θ′|g,X) qθ (θ|θ′)
p (θ|g,X) qθ (θ′|θ)

}
(17)

The appealing feature of this scheme is that one does not need to evaluate the integral to

compute α (θ, θ′), because the ratio of the posteriors is p (θ′|g,X) /p (θ|g,X) = π(g,X,θ′)p(θ′)
π(g,X,θ)p(θ)

.

However, the naive version of the Metropolis-Hastings algorithm cannot be used for the

model formulated above. The likelihood function π (g|X, θ) is known up to a normalizing

constant that cannot be computed in practice. The acceptance probability in (17) can be

rewritten to make the likelihood contribution explicit

α (θ, θ′) = min

{
1,

exp[Q(g,X,θ′)]
c(G,X,θ′) p (θ′) qθ (θ|θ′)

exp[Q(g,X,θ)]
c(G,X,θ) p (θ) qθ (θ′|θ)

}

= min

{
1,

exp [Q (g,X, θ′)]

exp [Q (g,X, θ)]

c (G, X, θ)
c (G, X, θ′)

p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

}
.

The Metropolis-Hastings acceptance α (θ, θ′) depends on the ratio c (G, X, θ) /c (G, X, θ′),
whose exact evaluation is computationally infeasible even for very small networks. To

be concrete, consider a small network with n = 10 agents. From (14) we know that

c (G, X, θ) =
∑
ω∈G

exp [Q (ω,X, θ)]. To compute the constant at the current parameter θ

we would need to evaluate the potential function for all 290 w 1027 possible networks with
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10 agents and compute their sum. This task would take several years even for a state-of-the

art supercomputer. In general with a network containing n players, we have to sum over

2n(n−1) possible network configurations.26

3.2 Estimation Algorithm

To solve the estimation problem, I develop a variation of the exchange algorithm, first de-

veloped by Murray et al. (2006). This algorithm uses a double Metropolis-Hastings step to

avoid the computation of the normalizing constant c (G, X, θ) in the likelihood. This im-

provement comes with a cost: the algorithm may produce MCMC chains that have very

poor mixing properties (Caimo and Friel, 2010) and high autocorrelation. I partially correct

for this problem by choosing the proposal distribution in an adaptive way.

While several authors have proposed similar algorithms in the related literature on Ex-

ponential Random Graphs Models (ERGM),27 the models estimated with this methodology

typically have very few parameters and use data from very small networks. To the best of

my knowledge, this is the first attempt to estimate a high dimensional model using data

from multiple networks.

In this section I describe the algorithm for a single network, while in the appendix I

provide the extension for multiple independent networks.28

The idea of the algorithm is to sample from an augmented distribution using an auxiliary

variable. At each iteration, the algorithm proposes a new parameter vector θ′, drawn from

a suitable proposal distribution qθ(θ
′|θ); in the second step, it samples a network g′ from

the likelihood π (g′, X, θ′); finally, the proposed parameter is accepted with a probability

αex(θ, θ
′), such that the Markov chain of parameters generated by these update rules, has

the posterior (15) as unique invariant distribution.

I first describe the algorithm used to sample a network from the stationary distribution

26A supercomputer that can compute 1012 potential functions in 1 second would take almost 40 million
years to compute the constant once for a network with n = 10. The schools used in the empirical section
have between 20 and 181 enrolled students. This translates into a minimum of 2380 and a maximum of 232580

possible network configurations.
27Caimo and Friel (2010) use the exchange algorithm to estimate ERGM. They improve the mixing of

the sampler using the snooker algorithm. Koskinen (2008) proposes the Linked Importance Sampler Aux-
iliary variable (LISA) algorithm, which uses importance sampling to provide an estimate of the acceptance
probability. Another variation of the algorithm is used in Liang (2010).

28When the data consist of several independent school networks, I use a parallel version of the algorithm
that stores each network in a different processor. Each processor runs the simulations independently and the
final results are summarized in the master processor, that updates the parameters for next iteration. Details
in Appendix.
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of the model; then I provide the full algorithm for estimation of the posterior.

3.2.1 Network Simulations

To use the exchange algorithm, I need to draw random samples from the stationary distri-

bution of the network formation model. Direct simulation is not possible because the nor-

malizing constant c (G, X, θ) is computationally infeasible, for the reasons explained above.

Therefore I rely on Markov Chain Monte Carlo simulation methods.

The algorithm used in this paper is similar to the Metropolis-Hastings algorithm pro-

posed in Snijders (2002).29 For a fixed parameter value θ, the algorithm simulates a Markov

chain of networks whose unique invariant distribution is (13). As the number of iterations

R becomes large, the simulated networks are (approximate) samples from the stationary

distribution of the model evaluated at parameter θ.

ALGORITHM 1 Fix a parameter value θ. At iteration t, with current network gt = g

1. Propose a network g′ from a proposal distribution

g′ ∼ qg (g′|g) (18)

2. Update the network according to

gt+1 =

{
g′ with prob. αmh(g, g

′)
g with prob. 1− αmh(g, g′)

(19)

where

αmh(g, g
′) = min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

qg (g|g′)
qg (g′|g)

}
(20)

At each iteration a random network g′ is proposed, and the update is accepted with prob-

ability αmh(g, g
′). The main advantage of this simulation strategy is that the acceptance

ratio (20) does not contain the normalizing constant c (G, X, θ) of the stationary distribu-

tion. Each quantity in the acceptance ratio can be computed exactly.

The Metropolis-Hastings structure of the algorithm guarantees that the sampled networks

are drawn from the stationary equilibrium of the model.

29I also experimented with the Simulated Tempering algorithm proposed in ?. The latter is extremely
useful when the stationary distribution of the network formation model has more than one mode. It also
improves the mixing of the chain. However, it does so by increasing the time needed to collect a sample. In
this context, a set of experiments with artificial data revealed virtually no difference between the Simulated
Tempering results and the simpler Metropolis-Hastings updates, so I use the latter in this paper.
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PROPOSITION 3 The updates in ALGORITHM 1 produce a Markov Chain of networks
that has the stationary equilibrium of the model at parameter θ as unique stationary distri-
bution.

Proof. See Appendix B

In the implementation of this algorithm, I use several proposals. First, a move that

updates only one link per iteration, proposing to swap the link value. At each iteration a

random pair of agents (i, j) is selected from a discrete uniform distribution, and it is pro-

posed to swap the value of the link gij to 1 − gij. Second, to improve convergence, I allow

the sampler to propose bigger moves: instead of proposing to swap only one link, it proposes

to swap the entire network matrix.30 With a small probability pinv, the sampler proposes a

new network g′ = 1− g, which is accepted with probability αmh(g, g
′).

The algorithm has a very useful property that can be exploited in the posterior sim-

ulation to reduce the computational burden. Adapting the suggestion in Liang (2010),

define P(R)
θ′ (g′|g) as the transition probability of a Markov chain that generates g′ with R

Metropolis-Hastings updates of the algorithm, starting at the observed network g and using

the proposed parameter θ′. Then,

P(R)
θ′ (g′|g) = Pθ′(g1|g)Pθ′(g2|g1) · · · Pθ′(g′|gR−1), (21)

where Pθ′(gj|gi) = qg(g
j|gi)αmh(gi, gj) is the transition probability of the network simulation

algorithm above. Since the Metropolis-Hastings algorithm satisfies the detailed balance

condition, we can prove the following

LEMMA 1 Simulate a network g′ from the stationary distribution π (·, X, θ′) using a Metropolis-
Hastings algorithm starting at the network g observed in the data. Then

P(R)
θ′ (g|g′)
P(R)
θ′ (g′|g)

=
exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]
(22)

for all R, g, g′ ∈ G and for any θ′ ∈ Θ.

Proof. See Appendix B

One should notice that as long as the algorithm is started from the network g observed in

the data (which is assumed to be a draw from the stationary equilibrium of the model), the

equality in (22) is satisfied for any R.

30This move is suggested in Geyer (1992) and Snijders (2002). Snijders (2002) argues that this is particu-
larly useful in case of a bimodal distribution.
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3.2.2 Posterior Simulation

I propose a modified version of the exchange algorithm developed by Murray et al. (2006) to

sample from distributions with intractable constants. In the original algorithm, one needs

to draw exact samples from the stationary equilibrium of the model. However, this would

require an enormous number of steps using the network simulation algorithm. My strategy

is instead to exploit the result in Lemma 1 to decrease the number of simulations needed

to collect an approximate sample from the stationary equilibrium. The samples from the

posterior distribution are generated using the following steps

ALGORITHM 2 (FAST EXCHANGE ALGORITHM)
Fix the number of simulations R. At each iteration t, with current parameter θt = θ and
network data g:

1. Propose a new parameter θ′ from a distribution qθ(·|θ),

θ′ ∼ qθ(·|θ). (23)

2. Start ALGORITHM 1 at the observed network g, iterating for R steps using param-
eter θ′ and collect the last simulated network g′

g′ ∼ P(R)
θ′ (g′|g). (24)

3. Update the parameter according to

θt+1 =

{
θ′ with prob. αex (θ, θ′)
θ with prob. 1− αex (θ, θ′)

where

αex(θ, θ
′) = min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]

}
. (25)

The appeal of this algorithm is that all quantities in the acceptance ratio (25) can be eval-

uated: there are no integrals or normalizing constants to compute. I provide the algorithm

details, and the relative proofs of convergence to the posterior and some evidence on mixing

in Appendix B. The algorithm used to estimate the model using multiple school networks

on parallel processors is an extension of ALGORITHM 2. I also present it in Appendix B.

Here I explain intuitively why the sampler works, with the help of Figure 2.

For ease of exposition, suppose that the prior is relatively flat, so that p(θ)/p(θ′) ' 1.

Suppose we start the sampler from a parameter θ that has high posterior probability, given

the data g. That is, there is good agreement between the data and the parameter, so it is
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Figure 2: The Exchange Algorithm

A. Posterior Distribution B. Two Stationary Equilibria

The graph on the left is the posterior distribution, given the data. The graph on the right represents two
stationary equilibria of the model, one at parameter θ (blue) and one at parameter θ′ (red). The iteration
t starts with parameter θ. It is proposed to update the parameter using proposal θ′. The algorithm start
sampling networks from the stationary distribution at parameter θ′ (red) and quickly moves from g to g′.

The probability of accepting the proposed parameter θ′ is proportional to the ratio π(g′,X,θ)
π(g′,X,θ′)

π(g,X,θ′)
π(g,X,θ) , which

is small as indicated in the graph. In summary, a move from the high density region of the posterior (θ) to
a low density region (θ′) is likely to be rejected. For the same reasoning a move from θ′ to θ is very likely to
be accepted. Therefore the algorithm produces samples from the correct posterior distribution.

likely that the data are generated from a model with parameter θ. This is displayed on the

left panel of Figure 2. Now, suppose we propose a parameter θ′ that belongs to a low prob-

ability region of the posterior. This means that there is a low probability that the observed

network g is generated by parameter θ′. As a consequence the ratio

p(θ′|g,X)

p(θ|g,X)
' π(g,X, θ′)

π(g,X, θ)

would be very small, as indicated in the right panel of Figure 2. Let’s start the network

simulations using parameter θ′. The sequence of simulated networks will start approaching

the new stationary distribution π(·, X, θ′), moving away from the stationary distribution

π(·, X, θ). This is indicated in Figure 2 with a simulation of 2 steps: starting from g we obtain

two networks, g1 and g′. Network g′ is closer to a high probability region of π(·, X, θ′) than

to a high probability region of π(·, X, θ), as long as the algorithm was run for a sufficiently

large number of steps R. It also follows that the ratio

π(g′, X, θ)

π(g′, X, θ′)

22



is small. Notice that

π(g′, X, θ)

π(g′, X, θ′)

π(g,X, θ′)

π(g,X, θ)
=

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]

c(G, X, θ′)
c(G, X, θ)

c(G, X, θ)
c(G, X, θ′)

=
exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]
.

This ratio is contained in (25). As a consequence the acceptance ratio of the exchange al-

gorithm is low and the proposed parameter θ′ is very likely to be rejected. Let’s repeat the

reasoning while starting the sampler at θ′ and proposing an update θ: this proposal is very

likely to be accepted by the same intuitive argument.

In summary, the sampler is likely to accept proposals that move towards high density regions

of the posterior, but it is likely to reject proposals that move towards low density regions

of the posterior. Therefore, it produces samples of parameters that closely resemble the

posterior distribution.

An important tuning parameter of the algorithm is R, the number of network simula-

tions to be performed in the second step. Clearly, as R → ∞ the algorithm converges to

the original exchange algorithm of Murray et al. (2006), producing exact samples from the

posterior distribution. While I do not propose an optimal way to choose R, I provide some

evidence with simulated data in Appendix B, showing that there is not much difference in

the estimates or convergence using different length of simulations. The value of R has a

stronger effect on the standard deviation than on the mean of the posterior, as one would

expect.

3.3 Connections to Exponential Random Graphs

Considerable attention has been paid to exponential random graph models (ERGM).31 These

models are statistical models of random network formation, with complex dependence struc-

tures among links. These models have been successfully used to fit social networks, providing

a useful benchmark for alternative models.

A remarkable feature of my model is that it contains ERGMs as a special case. Assume

that the utility functions u, m and v depend linearly on a vector of parameters. Define

θu = (θu1, θu2, ..., θuP )′, θm = (θm1, θm2, ..., θmL)′ and θv = (θv1, θv2, ..., θvS)′. Define the

function H : RA × RA → R.

31Frank and Strauss (1986) developed the theory of Markov random graphs. These are models of random
network formation in which there is dependence among links: the probability that a links occur depends
on the existence of other links. Wasserman and Pattison (1996) generalized the Markov random graphs to
general dependence structures, developing the Exponential Random graph models. Snijders (2002) reviews
these models and the related estimation techniques.
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ASSUMPTION 4 (Linearity of Utility) The utility functions are linear in parameters

uij = u (Xi, Xj, θu) =
P∑
p=1

θupHup (Xi, Xj) = θ′uHu (Xi, Xj)

mij = m (Xi, Xj, θm) =
L∑
l=1

θmlHml (Xi, Xj) = θ′mHm (Xi, Xj)

vij = v (Xi, Xj, θv) =
S∑
s=1

θvsHvs (Xi, Xj) = θ′vHv (Xi, Xj)

This assumption leaves room for many interesting specifications. In particular, the functions

H do not exclude interactions among different characteristics, for example interactions of

race and gender of both individuals. We can consider different specifications and include

different sets of variables for direct, mutual and indirect links.

PROPOSITION 4 (Exponential Family Likelihood)
Under Assumptions 1-4, the stationary distribution π (g,X) belongs to the exponential
family, i.e., it can be written in the form

π (g,X) =
exp [θ′t (g,X)]∑

ω∈G
exp [θ′t (ω,X)]

, (26)

where θ = (θu, θm, θv)
′ is a (column) vector of parameters and t (g,X) is a (column) vector

of canonical statistics.

Proof. See Appendix A

The vector t (g,X) = (t1 (g,X) , ..., tK (g,X)) is a vector of sufficient statistics for the

network formation model. This vector can contain the number of links, the number of whites-

to-whites links, the number of male-to-female links and so on. Interactions between different

variables are possible, e.g. the number of black-males-to-white-females links, or interactions

of individual controls with school-level controls.

This likelihood is very similar to the one of exponential random graph models. My theo-

retical model can be interpreted as providing the microfoundations for exponential random

graph models. In this sense, we can interpret the ERGM as the stationary equilibrium of a

strategic game of network formation with myopic agents following a stochastic best response

dynamics, when utility are linear functions of the parameters.

The identification of parameters for the linear utility case follows from the theory of
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exponential families (Lehman, 1983). Identification is guaranteed as long as the sufficient

statistics t(g,X) are not linearly dependent. The nonlinear case is more complex and there

are no general conditions that guarantee identification.32 For this reason, I consider estima-

tion of the model only in the linear case.

The Bayesian framework can help to achieve identification of the parameters in the non-

linear case, by using prior distributions. This is familiar in the DSGE estimation literature,

where parameters are often ill-identified and prior distributions are used to produce more

precise estimates (as long as the prior is reasonable). This possibility is not explored here,

and it is left to future research.

The linear case also allows for specifications of the utility function involving network-level

controls, when estimation is performed using multiple networks. This can be achieved by

specifying parameters

θp = θp0 +
C∑
c=1

θpcZc (27)

where Zc is a network-level variable. This specification allow network fixed effects and inter-

actions of network controls with individual controls. The estimation methodology presented

above can be applied to this specification without any change. However, estimation of a

model with random coefficients would require significant additional computational effort.

3.4 Practical Implementation

As noted above, it is possible to modify the precision of the estimates when there is some

previous information that can be incorporated in the prior. I choose somewhat vague priors

for the parameters, in order to extract most of the information from the data. I assume

independent normal priors

p (θ) = N (0, 3IP ) , (28)

where P is the number of parameters.

The proposal distribution for the posterior simulation is

qθ(·|θ) = N (0, δΣ) , (29)

where δ is a scaling factor and Σ is a covariance matrix. I use an adaptive procedure to

determine a suitable Σ. I start the iterations with Σ = λIP , where λ is a vector of standard

32Geyer (1992) provides some guidance in this matter. He provides conditions that guarantee convergence
of the Monte Carlo Maximum Likelihood estimate to the exact MLE. However, to the best of my knowledge,
there are no sufficient conditions that guarantee identification in this setting.
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Figure 3: A School Network

white=Whites; blue = African Americans; yellow = Asians; green = Hispanics; red = Others

Note: The graphs represent the friendship network of a school extracted from AddHealth. Each
dot represents a student, each arrow is a friend nomination. The colors represent racial groups.

deviations. I choose λ so that the sampler accepts at least 20%-25% of the proposed param-

eters, as is standard in the literature (Gelman et al., 2003; Robert and Casella, 2005). I run

the chain and monitor convergence using standard methods. Once the chains have reached

approximate convergence, I estimate the covariance matrix of the chains and use it as an

approximate Σ. The scaling factor is δ = 2.382/P as suggested in Gelman et al. (1996).

The network sampler uses a proposal qg (g|g′), that selects a link to be updated at each

period according to a discrete uniform distribution. The probability of network inversion is

pinv = 0.01.

The posterior distributions shown in the graphs are obtained with a simulation of 50000

Metropolis-Hastings updates of the parameters. These simulations start from values found

after extensive experimentation with different starting values and burn-in periods, monitor-
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ing convergence using standard methods. For each parameter update, I simulate the network

for 3000 iterations to collect a sample from the stationary distribution.

3.5 The Add Health Data

The National Longitudinal Study of Adolescent Health (Add Health) is a dataset contain-

ing information on a nationally representative sample of US schools. The survey started

in 1994, when the 90118 participants were entering grades 7-12, and the project collected

data in four successive waves.33 Each student responded to an in-school questionnaire, and

a subsample of 20745 was given an in-home interview to collect more detailed information

about behaviors, characteristics and health status. In this paper I use only data from the

saturated sample of Wave I, containing information on 16 schools. Each student in this

sample completed both the in-school and in-home questionnaires. I exclude the two largest

schools, 58 and 77: they have respectively 811 and 1664 students, while the third largest

school has 159 students. To keep the sample as homogeneous as possible I prefer to not use

these schools. My final sample includes 1139 students in 14 schools.

The in-school questionnaire collects the social network of each participant. Each student

was given a school roster and was asked to identify up to five male and five female friends.34

I use the friendship nominations as proxy for the social network in a school. The resulting

network is directed : Paul may nominate Jim, but this does not imply that Jim nominates

Paul.35 The model developed in this paper takes this feature of the data into account.

A sub-sample of 20745 students was also given an in-home questionnaire, that collected

most of the sensible data. I use data on racial group, grade and gender of individuals. A stu-

dent with a missing value in any of these variables is dropped from the sample. Each students

that declares to be of Hispanic origin is considered Hispanic. The remaining non-Hispanic

students are assigned to the racial group they declared. Therefore the racial categories are:

White, Black, Asian, Hispanic and Other race. Other race contains Native Americans.

Descriptive statistics are in Table 1. The smallest school has 20 enrolled students while

the largest used in estimation has 159 students. There is a certain amount of variation in

the number of links: some schools are more social and form many links per capita, while

other schools have very few friendship nominations. The ratio of boys to girls is balanced in

33More details about the sampling design and the representativeness are contained in Moody (2001) and
the Add Health website http://www.cpc.unc.edu/projects/addhealth/projects/addhealth

34One can think that this limit could bias the friendship data, but only 3% of the students nominated 10
friends (Moody, 2001).

35Some authors do not take into account this feature of the data and they recode the friendships as mutual:
if a student nominates another one, the opposite nomination is also assumed.
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almost all schools, except school 369, where female students are large majority.

Panel A summarizes the racial composition. Most schools are extremely racially homo-

geneous. School 1, 28, 126 and 175 are more diverse as reflected in the Racial Fragmentation

index. This is an index that measure the degree of heterogeneity of a population. It is

interpreted as the probability that two randomly chosen students in the school belong to

different racial groups.36 An index of 0 indicates that there is only one racial group and the

population is perfectly homogeneous. Higher values of the index represents increasing levels

of racial heterogeneity. Panel B summarizes the grade composition. Most schools offer all

grades from 7th to 12th, with homogeneous population across grades. Several schools only

have lower grades.

Panel C analyzes the racial and gender segregation of each school friendship network.

The level of segregation is measured with the Freeman (1972) segregation index. If there is

no segregation, the number of links among individuals of different groups does not depend

on the group identity. The index measures the difference between the expected and actual

number of links among individuals of different groups. An index of 0 means that the actual

network closely resembles one in which links are formed at random. Higher values indicate

more segregation. The index varies between 0 and 1, where the maximum corresponds to a

network in which there are no cross-group links.

Since most schools are racially homogeneous, the measured segregation is zero. Schools

with a racially diverse student population show high level of segregation for each racial group.

On the other hand gender segregation is quite low and homogeneous across schools.

4 Empirical Results

4.1 Parameter Estimates

4.1.1 One school network

An important feature of the model is that it allows estimation using only one network ob-

servation. In this section, I estimate the model using data from school 28 of Add Health.

The school has 150 enrolled students, 58.7% of whom are girls, with a total of 355 friend

nominations. The clustering coefficient is 0.2906 and the racial fragmentation is 0.606. The

36If there are K racial groups and the share of each race is sk, the index is

FRAG = 1−
K∑
k=1

(sk)2 (30)
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racial composition is as follows: 42% whites, 45.3% blacks, 0.667% asians, 10.6% hispanics.

Figure 3 shows the network of friendship nomination: each dot corresponds to a student,

the color represents his racial group and an arrow is a friend nomination.

The results for three alternative specifications of the model are presented in Table 2. I

Table 2: Three Specifications, School 28

Model 1 Model 2 Model 3
mean s.d. mean s.d. mean s.d.

Direct utility (uij)

constant -4.6448 0.4555 -4.1779 0.5330 -4.5947 0.6502
same gender 0.2199 0.4942
same grade 0.7720 0.5558
white-white 1.3013 0.4812 0.4012 0.7681 0.4624 0.8419
black-black 1.4942 0.4463 0.7709 0.7670 0.7132 0.7985
hispanic-hispanic 0.7628 1.1791 0.8504 1.4012 1.5408 1.1437

Mutual utility (mij)

constant 3.5171 0.5036 2.8197 1.0779 0.9503 1.3547
same gender 1.5864 1.0896
same grade 0.0060 1.0120
white-white 0.4614 1.2300 0.3804 1.1925
black-black 0.7945 1.2114 0.7624 1.1534
hispanic-hispanic -0.2865 1.9812 0.3745 1.7842

Indirect utility (vij)

constant -0.0745 0.0596 -0.2629 0.1353 -0.3628 0.1849
same gender -0.0152 0.1835
same grade 0.3559 0.1665
white-white 0.3249 0.1879 0.3354 0.2027
black-black 0.2426 0.1825 0.2761 0.1767
hispanic-hispanic -0.0404 0.7695 -0.3136 0.9793

Posterior mean and standard deviation for three alternative specifications of the model. The estimates are
obtained with a sample of 50000 simulations for the parameters, and 3000 network simulations for each
parameter proposal.

report the posterior means and standard deviations. Each estimate measures the marginal

effect of the variable: for example, the parameter associated with the direct utility of white-

white measures the marginal utility of a white individual forming a link to another white,

other things being equal.

The first column contains posterior means and standard deviations of a specification in

which the direct utility is a function of total number of links (constant), total number of
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links in which both are Whites, Blacks or Hispanic. This specification tests for the presence

of differential homophily: each racial group may have different homophily levels. A posi-

tive coefficient for the variable white-white would indicate that white students have a bias

towards same race friends. The remaining controls are for the number of reciprocated links

(mutual constant) and for the number of indirect friends (friends of friends).

These results point to strong racial homophily effects for each racial group. Each ad-

ditional link is costly as indicated by the negative coefficient of the constant. However, an

additional link is more valuable if the pair belongs to the same racial group: all the ho-

mophily coefficients are positive. A mutual link increases utility as expected, while linking

to an individual with many friends decreases it. The latter effect can be due to congestion:

individuals with many links have less time to devote to each of their friends.37

Model 2 includes controls for the racial composition of mutual friends and friends of

friends. This model confirms the existence of homophily in direct links, but also in mutual

and indirect links. The only exception is for links that involve hispanics: mutual and indirect

links decrease utility.

Model 3 includes controls for homophily in gender and grade. In this dataset more

than 50% of all friendships are within the same grade. At the same time, it is known that

gender differences are an important explanatory variable of interaction, especially among

adolescents. The estimates show that there are homophily effects for both grade and gender.

4.1.2 Multiple networks

The algorithm and the estimation methodology are easily extended to the case with multiple

independent networks. In this section, I report results from an estimation performed using

data from all the 14 schools in my sample. In the first column of Table 3, I report the results

for school 28 as a useful comparison. Not surprisingly the standard deviation of the marginal

posteriors are smaller when compared to the estimation with only one network. In Column

2 there is evidence of racial homophily in the direct links. Other things equal, a student

prefers to form links to students of the same gender, grade and race. The racial homophily

is not present for blacks.

Data from multiple schools allow the inclusion of school level variables that may help in

identifying the homophily effects. The third column presents results where the homophily

effects are interacted with the proportions of each racial group in the school. As the white

37At the same time one should notice that the homophily effect for Hispanics is estimated with higher
variability: this is because there are very few Hispanics in the dataset, and they form few links. A partial
solution is to run more simulations. Alternatively one could estimate a model with multiple schools and
exploit the variability among schools as a source of identification.
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Table 3: Estimation results, full sample
School 28 Full Sample Full Sample

mean s.d. mean s.d. mean s.d.

Direct utility (uij)

constant -4.5947 0.6502 -5.0269 0.1701 -4.9742 0.1842
same gender 0.2199 0.4942 0.1475 0.1069 0.1644 0.1065
same grade 0.7720 0.5558 1.9400 0.1364 1.9745 0.1165
white-white 0.4624 0.8419 0.3268 0.1561 0.5575 0.2017
black-black 0.7132 0.7985 0.0039 0.2485 -0.2858 0.2101
hispanic-hispanic 1.5408 1.1437 0.5230 0.4267 0.6662 0.3216
white-white * whites -0.4289 0.1316
black-black * blacks 2.0846 0.3656
hisp-hisp * hisp -1.0826 0.8320

Mutual utility (mij)

constant 0.9503 1.3547 2.9716 0.3910 2.8194 0.3756
same gender 1.5864 1.0896 1.1868 0.2479 1.1686 0.2430
same grade 0.0060 1.0120 -1.6454 0.2791 -1.7988 0.2230
white-white 0.3804 1.1925 0.2342 0.3230 0.5027 0.3257
black-black 0.7624 1.1534 0.4118 0.4275 0.6010 0.3428
hispanic-hispanic 0.3745 1.7842 -0.4523 0.8312 -0.3575 0.2487

Indirect utility (vij)

constant -0.3628 0.1849 0.0263 0.0388 0.0141 0.0424
same gender -0.0152 0.1835 -0.1223 0.0481 -0.1335 0.0470
same grade 0.3559 0.1665 0.0839 0.0281 0.0890 0.0273
white-white 0.3354 0.2027 0.0290 0.0314 0.0433 0.0339
black-black 0.2761 0.1767 -0.0206 0.0459 0.0010 0.0434
hispanic-hispanic -0.3136 0.9793 0.1104 0.1712 0.1424 0.1565

student body increases, White students receive lower utility from same race friends. Con-

versely, when the proportion of blacks in the school increases, African American students

value friends of the same racial group more. Hispanic preferences mirror those of whites.

It is important to highlight that the estimated marginal utilities for direct links are ob-

tained controlling for the structure of the network. The homophily effects are therefore net

of the network structure. Homophily effects are present in the mutual and indirect links.

Interpreting these estimates is not as simple as with the direct utility. Therefore, I present

several examples in Figure 4. In Panel A a network with 8 students is shown. The students

are assumed to be all whites, male and enrolled in the same grade. Student 4 has to choose

whether to form a new link to agent 5. To simplify the exposition, suppose that the utility

is evaluated at the posterior mean. The probability that Agent 4 forms the link is 0.067,
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Figure 4: Change in the probability of forming a link

A. Baseline B. Agent 5 is black
Direct effect: −11.4%
Total effect: −21.5%

C. Agents 5, 6, 7 and 8 are black D. Agent 5 is female
Direct effect: −11.4% Direct effect: −14.3%

Total Effect: −30.7% Total effect: 24.5%

E. Agent 5 is black female F. Agent 5 has diverse friends
Direct effect: −24.2% Direct effect: −11.4%

Total Effect: −2.1% Total effect: −27.7%

The network contains n = 8 agents. In each panel agent 4 is deciding whether to create a link to agent
5. Panel A is the baseline situation, where all the students are white. For simplicity assume they are all
males enrolled in the same grade. The remaining panels show the change in the probability that the link is
formed, when the structure of the network is altered. The direct effect is the change in probability (with
respect to Panel A) arising only because of the change in the direct utility. The total effect is the change in
the probability of linking when considering all the components of the utility function. In Panel B, agent 5 is
black: if we consider only the effect on the direct utility the probability of a link among 4 and 5 goes down
by 11%. When we consider the full utility of agent 4, the probability of the link decrease by almost twice as
much. Similar results hold for the remaining panels.

according to the estimate in column 3 of Table 3. Considering only the direct utility, this

probability would be a little lower, 0.062. In Panel B agent 5 is now African American. If we
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were to consider only the direct effect of this change, the probability of the link would drop

by 11.4%. When we consider the effect of the network structure (effect on the popularity

and friends of friends), this change implies a decline in the probability of that link of 21.5%.

The remaining graphs are variations of this simple example and all the percentage changes

are measured with respect to the baseline network in Panel A. The most intriguing result is

in Panels D and E. In Panel D, agent 5 is female. When considering only the direct effect,

this would imply a decrease in utility and therefore in the probability of linking. However,

the indirect and popularity effects counterbalance the decrease in direct utility, implying an

increase in the linking probability. A similar mechanism appears in Panel E.

4.2 Policy Experiments

The estimated model can be used to predict how alternative policies affect network structure.

Policy makers may be interested in pursuing policies that promote racial integration, or they

may consider policies that create separate schools for boys and girls. My model can provide

guidance.

Consider evaluating the effectiveness of busing programs in promoting interracial integra-

tion. School 28 has an extremely segregated friendship network: if the school administration

starts a busing program that modifies the composition of the school, does segregation in-

crease or decrease?

Using the posterior distribution estimated in column 3 of Table 2, I simulate two poli-

cies. The first policy increases the African American enrollment by transferring 8 African-

American students from a random school to school 28. The second reassigns 16 Hispanic

students from the same random school to school 28. In both cases, I compute the segrega-

tion levels in the stationary equilibrium before and after the implementation of the policy. I

use Freeman’s segregation index (see Freeman (1972)) to measure segregation for the three

relevant groups: Whites, African-Americans and Hispanics.

The results are reported in Figure 5. Panel A shows the segregation level without policy

(blue) and the distribution after the implementation of the policy (red) when we reassign

8 African-Americans to school 28. For all the racial groups the expected segregation goes

down. The probability of an increase in racial segregation is null for Whites and African

Americans and it is minimal for Hispanics (0.06). Panel B shows that the second policy

has similar results. Figure 6 analyzes the effects of the policies on gender segregation. The

policy successfully reduces both racial and gender expected segregation. The probability of

an increase in gender segregation is 0.213 and 0.131 for the two policies respectively.

These examples might suggest that policies that modify the racial composition within
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Figure 5: Policy Experiments

Panel A. Busing program transporting 8 African American students to School 28.

Panel B. Busing program transporting 16 Hispanic students to School 28.

The graphs show the distribution and average of Freeman’s Segregation Index for the 3 racial groups
after the policy is implemented (red solid) and the segregation before the policy (blue dashed). The
graphs also show the histogram of the simulated segregation and a kernel smoothed density. The
graphs in Panel A row shows a reassignment of 8 African-American students to school 28. The
graphs in Panel B refer to a policy that reassigns 16 Hispanic students to school 28.

schools reduce segregation in the social network of friendship. However, this is not always

the case.

I simulate several swaps of students among school 88 and 106. These are two schools

with an homogeneous student population: 98.9% whites and 96.3% African American re-

spectively. The simulated policies take several (white) students from school 88 and enroll

them in school 106, while the same number of (black) students in school 106 are enrolled in

school 88. This allows me to modify the ratio of Whites and African Americans in the two

schools and predict the levels of segregation.

The results of these simulations are reported in Figure 7. The relationship between pro-
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Figure 6: Policy Experiments

Panel A. Policy 1 Panel B. Policy 2

The graphs show the distribution and average of Freeman’s Segregation Index for the gender seg-
regation after the policy is implemented (red solid) and the segregation before the policy (blue
dashed). The graphs also show the histogram of the simulated segregation and a kernel smoothed
density. The graphs in Panel A row shows a reassignment of 8 African-American students to school
28. The graphs in Panel B refer to a policy that reassigns 16 Hispanic students to school 28.

portion of a racial group and the expected segregation levels has an inverted-U shape. The

graph suggests that the implementation of a policy that modifies the fraction of whites from

.9 to .8 will increase segregation on average by .2. The main lesson from this graph is that

equalizing the racial shares between the two schools is a bad idea if integration is one of the

policymaker’s goals. An alternative concern for busing programs is that a recent decision

of the Supreme Court38 declared unconstitutional the use of race to determine children as-

signment to schools. Therefore, school district administrators who want to promote racial

integration have to find alternative ways to assign students to schools. For example, one may

be tempted to create single-gender schools. Table 4 presents the results from such a policy

Table 4: Same gender schools, school 28
Current Female Male

White 0.7202 0.2768 0.3507
African Americans 0.7636 0.2791 0.3752
Hispanic 0.4288 0.0970 0.2221

using school 28. I create two schools, one with only male students and one with only female

38Parents Involved in Community Schools vs Seattle School District No. 1, 551 U.S. 701 (2007), http:
//caselaw.lp.findlaw.com/scripts/getcase.pl?court=us&vol=000&invol=05-908.
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Figure 7: Policy Experiments, School 88

The graphs shows the results of policy experiments in which students are swapped between school
88 and school 106. The expected segregation in the stationary equilibrium after the policy is plotted
against the fraction of each racial group. Each dot represents a different simulated policy. The red
solid line is the fitted value of a regression where the expected segregation is a function of fraction
of the racial group and fraction of the racial group squared.

students. The results are clear: the expected racial segregation decreases in both schools.

This could provide an alternative to busing programs based on race.

5 Conclusions

This paper develops and estimates a dynamic model of strategic network formation with

heterogeneous agents. The paper contributes to the economic literature on network forma-

tion in two ways. First, while most strategic models have multiple equilibria, I establish the

existence of a unique stationary equilibrium, which characterizes the likelihood of observing

a specific network structure in the data. As a consequence, I can estimate and identify the

structural parameters using only one observation of the network at a single point in time.
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Second, I propose a Bayesian Markov Chain Monte Carlo algorithm that drastically re-

duces the computational burden for estimating the posterior distribution. In this model, the

likelihood function cannot be evaluated or approximated with precision: a state-of-the-art

supercomputer would take several years to evaluate the likelihood once. To overcome this

problem, I propose an algorithm that generates samples from the posterior distribution and

avoids the evaluation of the likelihood. Using the properties of the stationary equilibrium,

I reduce the computational burden even further and I am able to study high dimensional

models.

The model can be used to infer the effect of different policies on network structure. To

illustrate this point, I explore different desegregation policies in US schools. The model pro-

vides predictions about the expected levels of segregation implied by busing programs: there

is an inverted U-shape relationship between the share of a racial group in the school and

the expected segregation level. These results suggest that these policies must be carefully

designed to avoid unexpected outcomes. My model can be used to guide the design of such

programs.

My methodology can be used in different settings. Models of social interactions with

sequential moves as in Nakajima (2007) share the same simple equilibrium characterization

presented in this work. In these models individuals interact in an exogenous network and

their actions are optimally chosen given the action of their neighbors. The estimation tech-

niques developed here are easily adapted to these settings.

The methodology can also be applied to the class of autologistic models in spatial econo-

metrics.39 These are models for spatial binary data that account for the spatial dependence

among variables. The likelihood of these models has the exponential form with normal-

izing constant but their estimation has relied on approximate methods: Maximum Pseu-

dolikelihood (Besag, 1974) or Markov Chain Monte Carlo Maximum Likelihood (Geyer and

Thompson, 1992). My estimation strategy provides a valid alternative from a Bayesian point

of view.40
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A Proofs

Proof of Proposition 1
The potential is a functionQ from the space of actions to the real line such thatQ (gij , g−ij , X)−Q

(
g′ij , g−ij , X

)
=

Ui (gij , g−ij , X)− Ui
(
g′ij , g−ij , X

)
, for any ij.41 A simple computation shows that, for any ij

Q (gij = 1, g−ij , X)−Q (gij = 0, g−ij , X) = uij + gjimij +

n∑
k=1
k 6=i,j

gjkvik +

n∑
k=1
k 6=i,j

gkivkj

= Ui (gij = 1, g−ij , X)− Ui (gij = 0, g−ij , X)

therefore Q is the potential of the network formation game. The welfare function is computed as

W (g,X) =

n∑
i=1

Ui (g,X)

=

n∑
i=1

n∑
j=1

gijuij +

n∑
i=1

n∑
j=1

gijgjimij +

n∑
i=1

n∑
j=1

n∑
k=1
k 6=i,j

gijgjkvik +

n∑
i=1

n∑
j=1

n∑
k=1
k 6=i,j

gijgkivkj

=

n∑
i=1

n∑
j=1

gijuij + 2

n∑
i=1

n∑
j>i

gijgjimij +

n∑
i=1

n∑
j=1

n∑
k=1
k 6=i,j

gijgjkvik +

n∑
i=1

n∑
j=1

n∑
k=1
k 6=i,j

gijgkivkj

= Q (g,X) +

n∑
i=1

n∑
j>i

gijgjimij +

n∑
i=1

n∑
j=1

n∑
k=1
k 6=i,j

gijgkivkj

41 For more details and definitions see Monderer and Shapley (1996).
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Proof of Proposition 2
1) The existence of Nash equilibria follows directly from the fact that the network formation game is a
potential game with finite strategy space. (see Monderer and Shapley (1996) for details)
2) The set of Nash equilibria is defined as the set of g∗ such that, for every i and for every gij 6= g∗ij

Ui
(
g∗ij , g

∗
−ij , X

)
≥ Ui

(
gij , g

∗
−ij , X

)
Therefore, since Q is a potential function, for every gij 6= g∗ij

Q
(
g∗ij , g

∗
−ij , X

)
≥ Q

(
gij , g

∗
−ij , X

)
Therefore g∗ is a maximizer of Q. The converse is easily checked by the same reasoning.
3) Suppose gt = g∗. Since this is a Nash equilibrium, no player will be willing to change her linking decision
when her turn to play comes. Therefore, once the chain reaches a Nash equilibrium, it cannot escape from
that state.
4) The probability that the potential will increase from t to t+ 1 is

Pr
[
Q
(
gt+1, X

)
≥ Q

(
gt, X

)]
=

=
∑
i

∑
j

Pr
(
mt+1 = ij

)
Pr
[
Ui
(
gt+1
ij , gt−ij , X

)
≥ Ui

(
gtij , g

t
−ij , X

)∣∣mt+1 = ij
]︸ ︷︷ ︸

=1 because agents play Best Response, conditioning on mt+1

=
∑
i

∑
j

ρij = 1.

By part 3) of the proposition, a Nash network is an absorbing state of the chain. Therefore any probability
distribution that puts probability 1 on a Nash network is a stationary distribution. For any initial network,
the chain will converge to one of the stationary distributions. It follows that in the long run the model will
be in a Nash network, i.e. for any g0 ∈ G

lim
t→∞

Pr
[
gt ∈ NE

∣∣ g0
]

= 1.

Proof of Theorem 1
1. The sequence of networks

[
g0, g1, ...

]
generated by the network formation game is a markov chain.

Inspection of the transition probability proves that the chain is irreducible and aperiodic, therefore it is
ergodic. The existence of a unique stationary distribution then follows from the ergodic theorem (see Gelman
et al. (1996) for details).
2. A sufficient condition for stationarity is the detailed balance condition. In our case this requires

Pgg′πg = Pg′gπg′ (31)

where

Pgg′ = Pr
(
gt+1 = g′

∣∣ gt = g
)

πg = π
(
gt = g

)
Notice that the transition from g to g′ is possible if these networks differ by only one element gij . Otherwise
the transition probability is zero and the detailed balance condition is satisfied. Let’s consider the nonzero
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probability transitions, with g = (1, g−ij) and g′ = (0, g−ij). Define ∆Q ≡ Q (1, g−ij , X)−Q (0, g−ij , X).

Pgg′πg = Pr
(
mt = ij

)
Pr (gij = 0| g−ij)

exp [Q (1, g−ij , X)]∑
ω∈G

exp [Q (ω,X)]

= ρ (g−ij , Xi, Xj)×
1

1 + exp [∆Q]
× exp [Q (1, g−ij , X) +Q (0, g−ij , X)−Q (0, g−ij , X)]∑

ω∈G
exp [Q (ω,X)]

= ρ (g−ij , Xi, Xj)×
1

1 + exp [∆Q]
× exp [Q (1, g−ij , X)−Q (0, g−ij , X)] exp [Q (0, g−ij , X)]∑

ω∈G
exp [Q (ω,X)]

= ρ (g−ij , Xi, Xj)
exp [∆Q]

1 + exp [∆Q]

exp [Q (0, g−ij , X)]∑
ω∈G

exp [Q (ω,X)]

= Pr
(
mt = ij

)
Pr (gij = 1| g−ij)

exp [Q (0, g−ij , X)]∑
ω∈G

exp [Q (ω,X)]

= Pg′gπg′

So the distribution (13) satisfies the detailed balance condition. Therefore it is a stationary distribution for
the network formation model. From part 1) of the proposition, we know that the process is ergodic and it
has a unique stationary distribution. Therefore π (g,X) is also the unique stationary distribution.

Proof of Proposition 4
The proof consists of showing that Q (g,X) can be written in the form θ′t (g,X). Consider the first part of
the potential ∑

i

∑
j

gijuij =
∑
i

∑
j

gij

P∑
p=1

θupHup (Xi, Xj)

=

P∑
p=1

θup
∑
i

∑
j

gijHup (Xi, Xj)

≡
P∑
p=1

θuptup (g,X)

= θ′utu (g,X)

where tup (g,X) ≡
∑
i

∑
j

gijHup (Xi, Xj), θu = (θu1, θu2, ..., θuP )
′
and tu (g,X) = (tu1 (g,X) , tu2 (g,X) , ..., tuP (g,X))

′
.

Analogously define θm = (θm1, θm2, ..., θmL)
′

and tm (g,X) = (tm1 (g,X) , tm2 (g,X) , ..., tmL (g,X))
′

and
θv = (θv1, θv2, ..., θvS)

′
and tv (g,X) = (tv1 (g,X) , tv2 (g,X) , ..., tvS (g,X))

′
. It follows that

∑
i

∑
j>i

gijgjimij =
∑
i

∑
j>i

gijgji

L∑
l=1

θmlHml (Xi, Xj)

=

L∑
l=1

θml
∑
i

∑
j>i

gijgjiHml (Xi, Xj)

=

L∑
l=1

θmltml (g,X)

= θ′mtm (g,X)
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and

∑
i

∑
j

gij
∑
k 6=i,j

gjkvij =
∑
i

∑
j

gij
∑
k 6=i,j

gjk

S∑
s=1

θvsHvs (Xi, Xk)

=

S∑
s=1

θvs
∑
i

∑
j

gij
∑
k 6=i,j

gjkHvs (Xi, Xk)

=

S∑
s=1

θvstvs (g,X)

= θ′vtv (g,X)

ThereforeQ (g,X) can be written in the form θ′t (g,X), where θ = (θu, θm, θv)
′
and t (g,X) = [tu (g,X) , tm (g,X) , tv (g,X)]′

Q (g,X) = θ′utu (g,X) + θ′mtm (g,X) + θ′vtv (g,X)

= θ′t (g,X)

and the stationary distribution is

π (g,X) =
exp [θ′t (g,X)]∑

ω∈G
exp [θ′t (ω,X)]

.

B Computational Details

B.1 Exchange algorithm

In this section I provide the technical details for the algorithm proposed in the empirical part of the paper.
The first set of results show that the exchange algorithm generate (approximate) samples from the posterior
distribution (15).

The original exchange algorithm developed in Murray et al. (2006) is slightly different from the one used
here. The main modification is in Step 2: the original algorithm requires an exact sample from the stationary
equilibrium of the model.

ALGORITHM 3 (Exchange Algorithm)
Start at current parameter θt = θ and network data g.

1. Propose a new parameter vector θ′

θ′ ∼ qθ(·|θ) (32)

2. Draw an exact sample network g′ from the likelihood

g′ ∼ π (·|X, θ′) (33)

3. Compute the acceptance ratio

αex(θ, θ′) = min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]

c(θ)c(θ′)

c(θ)c(θ′)

}
= min

{
1,

exp [Q(g′, X, θ)]

exp [Q(g,X, θ)]

p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]

}
(34)
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4. Update the parameter according to

θt+1 =

{
θ′ with prob. αex (θ, θ′)
θ with prob. 1− αex (θ, θ′)

(35)

The exchange algorithm works because it satisfies detailed balance condition for the posterior distribution,
i.e. for any pair of parameters (θi, θj) ∈ Θ we have

Pr [θj |θi, g,X] p (θi|g,X) = Pr [θi|θj , g,X] p (θj |g,X) (36)

The detailed balance condition is sufficient condition for the Markov chain generated by the algorithm to
have stationary distribution the posterior (15) (for details see Robert and Casella (2005) or Gelman et al.
(2003)).

LEMMA 2 The exchange algorithm produces a Markov chain with invariant distribution (15).

Proof. Define Z ≡
∫

Θ
π (g|X, θ) ρ (θ) dθ. In the algorithm the probability Pr [θj |θi, g,X] of transition to θj ,

given the current parameter θi and the observed data (g,X), can be computed as

Pr [θj |θi, g,X] = qθ (θj |θi)
exp [Q(g′, X, θj)]

c(G, X, θj)
αex (θi, θj) . (37)

This is the probability of proposing θj , qθ (θj |θi), times the probability of generating the new network g′

from the model’s stationary distribution,
exp[Q(g′,X,θj)]

c(G,X,θj) and accepting the proposed parameter αex (θi, θj).

Therefore the left-hand side of (36) can be written as

Pr [θj |θi, g,X] p (θi|g,X) = = qθ (θj |θi)
exp [Q(g′, X, θj)]

c(G, X, θj)
αex (θi, θj) p (θi|g,X)

= qθ (θj |θi)
exp [Q(g′, X, θj)]

c(G, X, θj)
αex (θi, θj)

exp[Q(g,X,θi)]
c(G,X,θi) p (θi)

Z

= qθ (θj |θi)
exp [Q(g′, X, θj)]

c(G, X, θj)

× min

{
1,

exp [Q(g′, X, θi)]

exp [Q(g,X, θi)]

p (θj)

p (θi)

qθ (θi|θj)
qθ (θj |θi)

exp [Q(g,X, θj)]

exp [Q(g′, X, θj)]

}

×
exp[Q(g,X,θi)]
c(G,X,θi) p (θi)

Z

= min

{
qθ (θj |θi)

exp [Q(g′, X, θj)]

c(G, X, θj)
exp [Q(g,X, θi)]

c(G, X, θi)
p (θi)

Z
, qθ (θi|θj)

exp [Q(g′, X, θi)]

c(G, X, θi)
exp [Q(g,X, θj)]

c(G, X, θj)
p (θj)

Z

}

= qθ (θi|θj)
exp [Q(g′, X, θi)]

c(G, X, θi)
exp [Q(g,X, θj)]

c(G, X, θj)
p (θj)

Z
×

× min

{
1,

exp [Q(g′, X, θj)]

exp [Q(g,X, θj)]

p (θi)

p (θj)

qθ (θj |θi)
qθ (θi|θj)

exp [Q(g,X, θi)]

exp [Q(g′, X, θi)]

}
= qθ (θi|θj)

exp [Q(g′, X, θi)]

c(G, X, θi)
α(θj , θi)

exp [Q(g,X, θj)]

c(G, X, θj)
p (θj)

Z

= qθ (θi|θj)
exp [Q(g′, X, θi)]

c(G, X, θi)
α(θj , θi)p (θj |g,X)

= Pr [θi|θj , g,X] p (θj |g,X)
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The latter step proves the detailed balance for a generic network g′. Since the condition is satisfied for any
network, detailed balance follows.

Unfortunately the exchange algorithm’s computational burden is phenomenal. To generate an exact sample
from the stationary equilibrium of the model it may be necessary to run the algorithm for a prohibitive
number of iterations.

The algorithm presented in this paper removes the requirement of exact sampling by exploiting a property
of the stationary equilibrium characterization, described in Lemma 1. Following a suggestion in Liang (2010),
it is possible to show that for this model it is sufficient to run a simulation of moderate size, starting at the
observed network. Lemma 1 shows that if we sample from the stationary distribution of the model using
a Metropolis-Hastings algorithm satisfying detailed balance for π (g,X, θ′), we need only a finite number of
network updates.

Proof of Lemma 1
Let P(R)

θ′ (g′|g) be defined as in (21). This is the transition probability of the chain that generates g′ with
R Metropolis-Hastings updates, starting at the observed network g and using the proposed parameter θ′.
Notice that the Metropolis-Hastings algorithm satisfies the detailed balance for π (g,X, θ′), therefore we have

P(R)
θ′ (g|g′)π (g′, X, θ′) = Pθ′(gR−1|g′)Pθ′(gR−2|gR−1) · · · Pθ′(g|g1)π (g′, X, θ′)

= Pθ′(g1|g)Pθ′(g2|g1) · · · Pθ′(g′|gR−1)π (g,X, θ′)

= P(R)
θ′ (g′|g)π (g,X, θ′)

It follows that

P(R)
θ′ (g|g′)
P(R)
θ′ (g′|g)

=
π (g,X, θ′)

π (g′, X, θ′)

=
exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]

c (G, X, θ′)
c (G, X, θ′)

=
exp [Q(g,X, θ′)]

exp [Q(g′, X, θ′)]
.

This concludes the proof.

It remains to prove that the algorithm used to simulate the network produces samples from the stationary
equilibrium of the model. This is the result of Proposition 3.

Proof of Proposition 3
The network simulation algorithm satisfies the detailed balance condition for the stationary distribution 13.
Indeed for any given θ

Pr (g′|g,X, θ)π (g,X, θ) = qg (g′|g) min

{
1,

exp [Q (g′, X, θ)]

exp [Q (g,X, θ)]

qg (g|g′)
qg (g′|g)

}
exp [Q (g,X, θ)]

c (G, X, θ)

= min

{
qg (g′|g)

exp [Q (g,X, θ)]

c (G, X, θ)
,

exp [Q (g′, X, θ)]

c (G, X, θ)
qg (g|g′)

}
= qg (g|g′) min

{
qg (g′|g)

qg (g|g′)
exp [Q (g,X, θ)]

c (G, X, θ)
,

exp [Q (g′, X, θ)]

c (G, X, θ)

}
= qg (g|g′) min

{
qg (g′|g)

qg (g|g′)
exp [Q (g,X, θ)]

exp [Q (g′, X, θ)]
, 1

}
exp [Q (g′, X, θ)]

c (G, X, θ)
= Pr (g|g′, X, θ)π (g′, X, θ)
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This concludes the proof.

Using Lemma 1 and 2, together with Proposition 3, it is easy to see that the algorithm proposed in the
estimation section is an approximate version of the exchange algorithm. For R → ∞ the two algorithms
coincide. The main advantage of my approach is the decreased computational burden.

B.2 Convergence Experiments

In this section, I provide an overview of the convergence properties of the algorithm using examples with
artificial data. Assume a toy model with three parameters, with an utility function of the following form

Ui(g,X) =

n∑
j=1

gijθ1 +

n∑
j=1

gijgjiθ2 +

n∑
j=1

gij

n∑
k 6=i,j;k=1

gjkθ3 +

n∑
j=1

gij

n∑
k 6=i,j;k=1

gkiθ3 (38)

The artificial data are generated using the vector of parameters

θ = (−2.0, 0.5, 0.01) (39)

To obtain the network dataset for the estimation, the network simulation algorithm is started at a random
network and then ran for 1 million iterations. The initial random network is generated by assuming each
link is independent and the probability of a link is p = .2. The last iteration of this long simulation is used
as dataset in all the estimation exercises below. I report results for a network with n = 50 agents, but I ran
the same simulations using a network with n = 30 and n = 100, with similar results.

To check if the exchange algorithm converges to the right region of the parameter space, the parameter
simulations are started from 5 different starting values

θ1 = (−2.0, 0.5, 0.01)

θ2 = (−10.0, 5.0, 1.0)

θ3 = (10.0,−5.0,−1.0)

θ4 = (−3.0,−0.05, 0.3)

θ5 = (−20.0, 15.0,−0.3)

The first is the parameter vector that generates the data, while the others are overdispersed initial values.
In Figure 8 I display the convergence of the simulations to the high density region of the posterior. In this
example the number of network simulations per parameter proposal is R = 3000.42 The solid horizontal black
line represents the parameter that generated the data. Each color represents a simulation started at one of
the initial values above. After 2000 iterations all the chains have converged to the region of the posterior
that contains the data generating parameters. In Figure 9 I show the autocorrelation functions for the same
example. In this example the autocorrelation disappears after 200 lags. This is mainly due to the small
amount of parameters in this toy model. High dimensional models show more persistent autocorrelation of
the chains. In Figure 10 I show the same convergence properties of Figure 8 by plotting two parameters
in each graph. I show 3 snapshots of the simulations: at 500, 1000 and 2000 iterations. The dashed lines
intersect at the parameter values that generated the data. After 500 iterations (Panel A) almost all chains
have converged to the high density region. The purple chain converges after 2000 iterations: this is because
this chain corresponds to the 5th starting value, which is the quite far from the parameter that generated the
network. In summary, convergence in this toy model is quite fast. For higher dimensional models convergence
is slower, but reasonable, in the order of 50 or 100 thousands iterations. One possible strategy is to use a
small R for the initial simulations: when the chain reaches approximate convergence we can increase the
number of network simulations and estimate the posterior with higher precision.

42Similar results hold for different R values.
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Table 5: Convergence Experiments
Starting value 1

true R=1000 R=2000 R=3000 R=5000
θ1 -2.000 mean -2.0165 -2.0643 -2.077 -2.0838

s.d. 0.2629 0.2018 0.1845 0.1635
mc s.e. 0.0125 0.0069 0.0063 0.0051

θ2 0.500 mean 0.5387 0.6083 0.6207 0.6158
s.d. 0.5519 0.4435 0.4144 0.4076

mc s.e. 0.0338 0.0294 0.0189 0.0279
θ3 0.010 mean 0.0043 0.0121 0.0147 0.0175

s.d. 0.0262 0.0201 0.0187 0.0165
mc s.e. 0.0002 0.0001 0.0001 0.0001

Starting value 2
true R=1000 R=2000 R=3000 R=5000

θ1 -2.000 mean -2.0131 -2.0651 -2.0688 -2.0673
s.d. 0.2643 0.2013 0.1814 0.1655

mc s.e. 0.0137 0.0067 0.0057 0.0046
θ2 0.500 mean 0.5542 0.6181 0.6149 0.6571

s.d. 0.5506 0.4425 0.4228 0.4046
mc s.e. 0.0363 0.0279 0.029 0.022

θ3 0.010 mean 0.0041 0.0119 0.0143 0.0157
s.d. 0.0267 0.0201 0.0185 0.0167

mc s.e. 0.0002 0.0001 0.0001 0.0001

Starting value 3
true R=1000 R=2000 R=3000 R=5000

θ1 -2.000 mean -2.0287 -2.0583 -2.0656 -2.0686
s.d. 0.2548 0.2072 0.1883 0.164

mc s.e. 0.0099 0.0081 0.0085 0.0043
θ2 0.500 mean 0.5723 0.6028 0.6275 0.6593

s.d. 0.5418 0.4473 0.4084 0.3844
mc s.e. 0.034 0.0224 0.0283 0.0207

θ3 0.010 mean 0.0058 0.0113 0.0128 0.016
s.d. 0.0255 0.0211 0.0203 0.0167

mc s.e. 0.0002 0.0001 0.0001 0.0001

Starting value 4
true R=1000 R=2000 R=3000 R=5000

θ1 -2.000 mean -2.016 -2.0727 -2.0884 -2.0724
s.d. 0.2574 0.2033 0.1842 0.1625

mc s.e. 0.01 0.0064 0.007 0.0051
θ2 0.500 mean 0.5612 0.5993 0.6354 0.6576

s.d. 0.5436 0.4442 0.4163 0.4044
mc s.e. 0.0346 0.027 0.0252 0.0256

θ3 0.010 mean 0.0047 0.0128 0.0158 0.0162
s.d. 0.0254 0.0205 0.0181 0.0165

mc s.e. 0.0002 0.0001 0.0001 0.0001

Starting value 5
true R=1000 R=2000 R=3000 R=5000

θ1 -2.000 mean -2.0309 -2.056 -2.0823 -2.0794
s.d. 0.2522 0.2059 0.1803 0.1648

mc s.e. 0.0113 0.007 0.0056 0.0051
θ2 0.500 mean 0.5668 0.6246 0.654 0.6539

s.d. 0.5464 0.4389 0.416 0.3966
mc s.e. 0.0399 0.0244 0.0249 0.0213

θ3 0.010 mean 0.0061 0.0104 0.0153 0.0168
s.d. 0.0253 0.0209 0.0183 0.0169

mc s.e. 0.0002 0.0001 0.0001 0.0001
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B.3 Parallel estimation with multiple networks

When data from multiple independent networks are available the estimation routines are easily adapted. As-
sume the researcher has data from C networks: let gc and Xc denote the network matrix and the individual
controls for network c, c = 1, ..., C. The aggregate data are denoted as g = {g1, ..., gc} and X = {X1, ..., Xc}.

Assuming each network is drawn from the stationary equilibrium of the model, each network has distri-
bution

π (gc, Xc, θ) =
exp [Q (gc, Xc, θ)]∑

ω∈Gc
exp [Q (ωc, Xc, θ)]

(40)

Since each network is independent, the likelihood of the data (g,X) can be written as

π (g,X, θ) =

C∏
c=1

π (gc, Xc, θ) =

C∏
c=1

{
exp [Q (gc, Xc, θ)]

c (Gc, Xc, θ)

}

=
exp

[∑C
c=1Q (gc, Xc, θ)

]
∏C
c=1 c (Gc, Xc, θ)

=
exp

[∑C
c=1Q (gc, Xc, θ)

]
C (G, X, θ)

where G =
⋃C
c=1 Gc and X = {X1, ..., XC}. The likelihood for multiple independent networks is of the same

form as the likelihood for one network observation. The structure of this likelihood makes parallelization
extremely easy: each network can be simulated independently using the network simulation algorithm; at
the end of the simulation we collect the last network and compute the potential; then we compute the sum
of potentials and use it to compute the probability of update.
Therefore, the algorithm is modified as follows

ALGORITHM 4 (Parallel FAST EXCHANGE ALGORITHM)
Fix the number of simulations R. Store each network data (gc, Xc) in a different processor/core. At each
iteration t, with current parameter θt = θ and network data g

1. Propose a new parameter θ′ from a distribution qθ(·|θ)

θ′ ∼ qθ(·|θ) (41)

2. For each processor c, start ALGORITHM 1 at the observed network gc, iterating for R steps using
parameter θ′ and collect the last simulated network g′c

g′c ∼ P
(R)
θ′ (g′c|gc) (42)

3. Update the parameter according to

θt+1 =

{
θ′ with prob. αpex (θ, θ′)
θ with prob. 1− αpex (θ, θ′)

where

αpex(θ, θ′) = min

1,
exp

[∑C
c=1Q(g′c, Xc, θ)

]
exp

[∑C
c=1Q(gc, Xc, θ)

] p (θ′)

p (θ)

qθ (θ|θ′)
qθ (θ′|θ)

exp
[∑C

c=1Q(gc, Xc, θ
′)
]

exp
[∑C

c=1Q(g′c, Xc, θ′)
]
 (43)

The speed of the algorithm depends on the largest network in the data. Since each parameter update
requires the result of each processor simulation there is some idle time, since small networks are simulated
much faster.
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B.4 Freeman Segregation Index

The Freeman segregation index measures the degree of segregation in a population with two groups (Freeman,
1972). Assume there are two groups, A and B. Let nAB be the total number of links that individuals of
group A form to individuals of group B. Let nBA, nBB and nAA be analogously defined. The original index
developed by Freeman (1972) is defined as

FSI =
E [nAB ] + E [nBA]− (nAB + nBA)

E [nAB ] + E [nBA]
(44)

When the link formation does not depend on the identity of individuals, then the links should be randomly
distributed with respect to identity. Therefore, the index measures the difference between the expected and
actual number of links among individuals of different groups, as a fraction of the expected links. An index of
0 means that the actual network closely resembles one in which links are formed at random. Higher values
indicate more segregation. In this paper segregation is measured using the index43

SEG = max {0, FSI} (45)

The index varies between 0 and 1, where the maximum corresponds to a network in which there are no
cross-group links.

To complete the derivation of the index, the expected number of cross-group links is computed as

E [nAB ] =
(nAA + nAB) (nAB + nBB)

nAA + nAB + nBA + nBB

E [nBA] =
(nBA + nBB) (nAA + nBA)

nAA + nAB + nBA + nBB

43The index (44) varies between -1 and 1. However, the interpretation of the index when it assumes
negative values is not clear. Therefore Freeman (1972) suggests to use only when it is nonnegative, to
measure the presence of segregation
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Figure 8: Convergence to the high density posterior region

Each graph shows convergence to the high density region of the posterior distribution. The
curves with different colors represent chains started at overdispersed initial values. The solid
black line represent the parameter that generated the data. Convergence is very fast and we
can use the initial 2000 iterations as burn-in. In this example the network has n = 50 agents
and the number of network simulations per proposal is R = 3000.
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Figure 9: Convergence to the high density posterior region

Each graph is the autocorrelation function of the chains generated by the exchange algorithm.
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Figure 10: Convergence to the high density posterior region

Panel A. 500 iterations

Panel B. 1000 iterations

Panel C. 2000 iterations

Three snapshots of the simulations at 500, 1000 and 2000 iterations of the fast exchange
algorithm. The true parameter value is indicated by the intersection of the dashed lines.
After 500 iterations only few chains have converged close to the true parameters. After 1000
the remaining chains have almost reached the high density region of the posterior. At 2000
iterations the algorithm has reached approximate convergence for all the chains.
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