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1. INTRODUCTION 

 

 The fact that a distribution of prices exists for many homogeneous goods is a 

challenge for the understanding of market-based economies. Among the explanation 

proposed are price discrimination, search frictions and sticky prices. Here I use 

scanner data on supermarket prices to test the hypothesis that price dispersion arises 

as a result of demand uncertainty.  

 I find that on average, more than 50% of the cross sectional standard deviation 

of log prices is due to demand uncertainty. This finding lends credibility to Prescott 

(1975) type models that focus on demand uncertainty as the reason for price 

dispersion.  

 The original Prescott (1975) model assumed that prices are set in advance and 

cheaper goods are sold first. In Eden (1990) I describe a sequential trade process that 

is consistent with Prescott’s assumption. Buyers arrive at the market place 

sequentially. Each buyer sees all available offers, buys at the cheapest available price 

and disappears. Sellers must make irreversible selling decisions before they know the 

aggregate state of demand and in equilibrium they are indifferent between prices that 

are in the equilibrium range because the selling probability is lower for higher prices. 

Sellers in the model make time consistent plans and do not have an incentive to 

change prices during the trading process. Prices are thus completely flexible.2  

 I choose versions of the Prescott model because of the focus on uncertainty 

about aggregate demand.3 To adapt the model to the market for food I attempt two 

                                                
2 There are versions of the Prescott model that assume price rigidity. See for example, Dana (1998, 

1999) and Deneckere and Peck (2012). For the positive implications of the theory it does not matter 
whether a flexible price or a rigid price version of the model is employed. But sometimes the rigid 
price versions of the Prescott model tends to be lumped together with menu costs models that have 
very different empirical implications. See Eden (2001) and Baharad and Eden (2004). 

3 In contrast, there is no uncertainty about aggregate demand in search models of price dispersion  and 
therefore getting price dispersion in search models is a challenge. Diamond (1971) was the first to 
point out the difficulty. In his model the equilibrium price distribution is degenerate and all firms post 
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extensions. I consider the case in which there are chains with limited monopoly 

power. I also attempt a distinction between shoppers and non-shoppers. These 

extensions do not change the main prediction about the relationship between 

aggregate demand uncertainty and price dispersion and thus demonstrate its 

robustness.     

 Section 2 is about the underlying theory. Section 3 discusses implementation 

issues. Section 4 describes the data. Section 5 is the estimation results. Section 6 is a 

robustness checks. Section 7 assesses the quantitative importance of demand 

uncertainty. Concluding remarks are in the last section.  
 

2. THEORY 

 

I start with a simplified version of Bental and Eden (1993) and derive a 

relationship between specific measures of price dispersion and specific measures of 

demand uncertainty.  
 

Sellers  

The economy lasts forever. There are many goods and many sellers who can produce 

the goods at a constant unit cost. The unit cost of producing good j  is λ j . Production 

occurs at the beginning of each period before the beginning of trade. The seller knows 

the distribution of demand but at the time of production he does not know the 

realization.  

                                                
the monopoly price. Diamond assumed that buyers sample one firm at a time. Burdett and Judd (1983) 
allowed for sampling more than one selling offer per period and show that price dispersion will arise if 
the probability of sampling more than one seller is between zero and one. If however the probability of 
sampling more than one seller goes to one we will converge to a single price equilibrium in which all 
firms post the competitive price. If the probability of sampling more than one seller goes to zero we 
will converge to a single price equilibrium in which all firms post the monopoly price (as in the 
Diamond model). For other search models of price dispersion, see Reinganum (1979), Rob (1985) and 
Stahl (1989).  
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Selling is uncertain. The representative seller faces a tradeoff between the 

probability of making a sale and the price: The lower the price, the higher is the 

probability of making a sale. In each period, sellers of good j  have to choose 

between Z j  price tags: P1 j < ...< PZj . Posted prices do not change over time and 

therefore I drop the time index. I also drop the good index and consider a good with 

prices P1 < ...< PZ .4 

The seller takes the probability that he can sell at each of the Z  prices as 

given. The probability of making a sale at the price Pi  is qi , where  

1= q1 > ...> qZ > 0 . Goods that are not sold are carried as inventories to the next 

period. A unit stored can be used to reduce production next period and the value of a 

unit of inventories is therefore βλ , where 0 < β <1  reflects the cost of delay, storage 

cost and depreciation.  

Sellers will post the pricePi  on a strictly positive and finite number of units 

only if: 

(1)    qiPi + (1− qi )βλ = λ  

The arbitrage condition (1) is key. The left hand side of (1) is the expected revenues 

from putting the price tag Pi  on one unit. With probability qi  the seller will get the 

quoted price and with probability 1− qi  he will get the value of inventories. The right 

hand side is the unit production cost. The seller will put the price tag Pi  on 0 < x < ∞  

units, only if the two are equal. Otherwise, if qiPi + (1− qi )βλ > λ  he will produce and 

put the price tag on infinitely many units and if qiPi + (1− qi )βλ < λ  he will not put 

the price tag on any unit.  
 

                                                
4 There is no incentive in equilibrium to announce a price Pi < p < Pi+1  because the probability of 

making a sale at this price is the same as the probability of making a sale at the price Pi+1 . 
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Buyers 

Buyers arrive at the market place after sellers have already made their production 

decisions. Upon arrival they see all available offers and each buyer buys one unit at 

the cheapest available price. (Thus buyers’ reservation price is sufficiently high).  

The number of active buyers that arrive in the market place in a typical period 

( N ) is an iid  discrete random variable that may take Z  realizations: 

0 < N1 < ...< NZ . For notational convenience I use N0 = 0 . All realizations occur with 

equal probabilities: State s  occurs when  N = Ns  with probability π = 1
Z . The 

difference between two consecutive realizations is denoted by: Ni − Ni−1 = Δi > 0 .   

 Buyers arrive in a sequential manner. The first batch of Δ1  buyers buys in the 

first market at the price P1 . If s = 1  and no more buyers arrive trade is over for the 

period. If s >1  an additional batch of Δ2  buyers arrive and buys in the second market 

at the price P2 . Again, if s = 2  no more buyers arrive and trade is over for the period. 

Otherwise, if s > 2  a third batch arrives and buys in the third market at the price P3  

and so on.  

 It is useful to think of Z  hypothetical markets that open sequentially. When 

 
N = Ns , the first s  markets open and the goods allocated to these markets are sold. 

The goods allocated to the last Z − s  markets are not sold and are carried as 

inventories to the next period.  

 

Equilibrium 

Using xi  to denote the supply to hypothetical market i , I define equilibrium as 

follows. 

   

Equilibrium is a vector of prices (P1,...,PZ ) , a vector of probabilities (q1,...,qZ )  and a 

vector of supplies (x1,..., xZ )  such that (a) the probability that market i  will open and 

goods with price tag Pi  will be sold is:  qi = Prob( N ≥ Ns ) = (Z − i +1)π , (b) the 



Vanderbilt University Department of Economics Working Papers, VUECON-14-00011

        

6 

 

arbitrage condition (1) is satisfied and (c) the supply to market i  is equal to the 

potential demand: xi = Δi  for all i . 

 

Thus in equilibrium markets that open are cleared. Note that we may describe sellers 

in this model as “contingent price takers”. They assume that they can sell any amount 

at the price Pi  if market i  opens. Note also that production in each period is xii∑ − I

, where I  is the beginning of period inventories. In equilibrium production is strictly 

positive because some goods are sold in each period and therefore some production is 

required to keep the available supply at the level xii∑ .  

 

Empirical implications  

In state s , when exactly s  markets open, xi
i=1

s

∑  units are sold and xi
i=s+1

Z

∑  units are 

carried as inventories to the next period. The maximum amount sold over weeks is: 

H = xi
i=1

Z

∑ = Zx , where x  is the average supply per market. The minimum amount 

sold over weeks is: L = x1 . Using the maximum weekly amount sold as an estimate of 

H  and the lowest weekly amount sold as an estimate of L , I compute the ratio 

HLU = H
L  (HLU  stands for High-Low Units) that is proportional to Z :  

(2)  HLU = Zx
x1

= Zα  or Z = HLU
α  

where α = x
x1  is a constant equal to the ratio of the average supply per market to the 

first market’s supply. Note that α = 1  when the number of buyers is uniformly 

distributed, but may be different from one if the distribution is not uniform.   
 

 To compute the ratio of the highest to lowest price in a typical week, I use (1) 

to get:    

(3)  Pi = βλ + (1− β ) λ
qi
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Since the probability that all the Z  markets will open is qZ = π , in any given week 

the highest price is: 

(4) PH = PZ = βλ + (1− β ) λ
qZ

= βλ + (1− β )λ
π

 

Since the probability that the first market will open is 1, the lowest price in any given 

week is: 

(5)  PL = P1 = λ  

Dividing (4) by (5) leads to:  

(6)  HLP = P
H

PL = β + (1− β ) 1
π

 

Using (1α )HLU  as an estimate for Z = 1
π  leads to: HLP = β + (1− β )(1α )HLU  which 

is equivalent to:  

(7)  HLP −1= (1− β ) HLU
α

−1⎛
⎝⎜

⎞
⎠⎟  

Using ln(HLP)  as a proxy for HLP −1  and ln(HLU )− ln(α )  as a proxy for 
HLU
α

−1  leads to: 

(8)  ln(HLP) = −(1− β )ln(α )+ (1− β )ln(HLU )  

 

Cost shocks 

I now allow for cost shocks. I assume that at the time the seller makes the production 

decisions in week t , he knows the unit cost for this period, λt , and the distribution of 

the unit cost next period. The next period’s cost is a random variable,  
λt+1 , and its 

expected value is denoted by:  λt+1
e = E( λt+1) . Since a unit of inventories can be used to 

cut next period’s production, the value of inventories is the expected discounted cost 

in the next period, βλt+1
e . We can therefore modify the arbitrage condition (1) as 

follows.  

(9) qiPit + (1− qi )βλt+1
e = λt  
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Using  ψ t =
λt+1
e

λt
, we can write (9) as: 

(10) Pit = βiψ tλt + (1− βiψ t )
λt
qi

 

which leads to: 

(11) 
Pit
H

Pit
L = βiψ t + Zi (1− βiψ t )  

Taking the average of (11) over weeks and assuming that the average of ψ t  over 

weeks is approximately 1 leads to a relationship that is similar to (8).5 The required 

modification is that now we should compute HLP  as the average ratio of the highest 

to lowest price over weeks.  

 
2.1 The standard deviation measures  

 I use both the range measure and the standard deviation measure of dispersion. The 

relationship between the range measures of dispersion was derived under the 

assumption that the realizations of demand occur with the same probability (π )  but 

we allowed variation in the number of buyers across batches. Here I assume that the 

number of buyers is the same across batches and Δ s = x  for all s = 1,...,Z . As a result 

the fraction of stores that post the price Ps  is the same for all  and is given by 

π = x
Zx

= 1
Z

. The probability of making a sale at the price Ps  is: 

qs = 1−
s −1
Z

= 1− (s −1)π . Assuming that storage is not possible and β = 0 ,  (3) 

implies: 

(12)  Ps =
λ
qs

= λ
1− (s −1)π

= λZ
Z +1− s

 

Since λ  and  are constants, the variance of the log of price is: 

(13)  Var(lnP) =Var ln(Z +1− s)( ) =Var(ln s)  

 

                                                
5 The average ψ  is approximately 1 if the cost shocks are iid  and small. 

s

Z
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The number of units sold in state  is: Us = sx . Since  is a constant, the variance 

of the log of units is Var(ln s)  and is equal to (13). Thus in this example there is a 

perfect correlation between the standard deviation dispersion measures. 

 

 The theory up to now was rather abstract, but it is sufficient to describe the 

empirical findings. A reader who is mostly interested in the empirical findings can 

therefore jump to the implementation section. But some readers are not comfortable 

with this level of abstraction and would like to see a model that is more closely 

related to grocery stores. In an attempt to get a better fit between the model and the 

industry, I now consider two extensions. In section 2.2, I relax the price taking 

assumption and allow for the existence of chains each specializing in one of our 

hypothetical markets. In section 2.3, I distinguish between shoppers and non-

shoppers. The relationship between price dispersion and demand uncertainty survives 

these extensions.  

 

2.2 Chains with monopoly power  

 Grocery stores typically belong to chains. Here I assume that all stores that 

post the same price belong to the same chain and the chain has a monopoly power in 

one of our hypothetical markets. I use the last section in Eden (1990) and the example 

in Dana (1999) but here the monopoly power is limited to one hypothetical market.  

 As before, I assume that the number of active buyers  N  is an iid  random variable 

and that the number of buyers that arrives in batch i  is: Ni − Ni−1 = Δi . I assume 

further that the reservation prices of buyers that arrive in batch i  is distributed 

uniformly on the interval [0,ai ]  and at the price Pi ≤ ai , a fraction Pi a  of the buyers 

that arrive in batch i  will not buy the good.  

 I assume that ai ≥ ai−1  so that buyers who arrive late have on average higher 

reservation price. This assumption is not necessary for the main result but it captures 

s x
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some aspects of the distinction between shoppers and non-shoppers in Salop and 

Stiglitz (1977), Shilony (1977) and Varian (1980). Shoppers who spend more time 

shopping are more likely to arrive early and get the good at a relatively cheap price. 

These shoppers are well informed about prices and buy only if the available price is 

relatively cheap. An extreme example occurs at the beginning of the Christmas 

shopping season (black Friday) where bargain hunters often wait in line hours before 

the opening of the stores. A different interpretation of the distinction between 

shoppers and non-shoppers is in the next section.  

 The amount sold in hypothetical market i  (at the price Pi ≤ ai ) is: 

(14)  xi = Δi 1−
Pi
ai

⎛
⎝⎜

⎞
⎠⎟  

The inverse demand function in market i  is therefore: 

(15)  Pi = ai − bixi , 

where bi = ai
Δi > 0 . The chain chooses the supply to hypothetical market i  ( xi ) by 

solving the following problem: 
(16)  maxxi qi (ai − bixi )xi + (1− qi )βλxi − λxi  

Note that the unit cost is λ  regardless of whether the unit comes from production or 

from inventories. The solution to this problem is:  

(17)  xi =
qiai + (1− qi )βλ − λ

2qibi  

 

Substituting (17) in (15) leads to: 

(18)  Pi = (12) ai + βλ +
λ 1− β( )

qi

⎛
⎝⎜

⎞
⎠⎟  

Note that since ai ≥ ai−1  and qi < qi−1 , Pi > Pi−1 . 

 We can write the problem (16) as: 

(19) maxxi (ai − bixi )xi −
λ − (1− qi )βλ( )xi

qi
= (ai − bixi )xi −

λi
*xi
qi  
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The term (ai − bixi )xi  is total revenues.  The first order condition for this problem can 

therefore be written as marginal revenue = “unit cost”, where the unit cost term,   
λi
*

qi
= βλ + λ(1− β )

qi
 , is increasing in i  (because the probability of sale, qi  is 

decreasing in i ). We can therefore describe the solution to the problem (19) using the 

familiar diagram in Figure 1, where (xi
M ,Pi

M )  denote the monopoly’s solution for 

market i . For comparison I also have the competitive solution denoted by (xi
C ,Pi

C ) .  

 

 
Figure 1: Prices and quantities in market i  under monopoly and 

competition 

 

The lowest price is obtained by substituting q1 = 1 in (18). This leads to: 

(20) PLM = P1 = (12) a1 + λ( )  
Substituting qZ = π  in (18) leads to the highest price: 

(21)  PHM = PZ = (12) aZ + βλ +
λ 1− β( )

π
⎛
⎝⎜

⎞
⎠⎟
= (12) aZ + βλ + λ 1− β( )Z( )  

Dividing (21) by (20) leads to:  

Di = ai ! bi xi

MRi

Pi
C =

"i
*

qi

Pi
M

xi
M xi

C

Price

Quantity
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(22) HLPM = P
HM

PLM = PZ
P1

=
aZ + βλ + λ 1− β( )Z

a1 + λ
= aZ + βλ

a1 + λ
+
λ 1− β( )
a1 + λ

Z  

Substituting (2) in (22) and rearranging leads to: 

 (23)  HLPM −1= aZ − a1
a1 − λ

+ λ(1− β )
a1 − λ

HLUM

α
−1

⎛
⎝⎜

⎞
⎠⎟

 

Using the log approximation leads to: 

(24)  ln(HLPM ) = aZ − a1 − λ(1− β )ln(α )
a1 − λ

+ λ(1− β )
a1 − λ

ln(HLUM )   

Similar to (8) this is a linear relationship between price dispersion and unit dispersion.  

 Note that we can write (24) as:    

(24’)  ln(HLPM ) = 1
(a1 − λ) / λ

aZ − a1
λ

+ (1− β )ln HLUM

α
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

 

 Price dispersion therefore depends on the following three measures: 

(a1 − λ) / λ   is a measure of monopoly power,  

(aZ − a1) / λ  is a measure of discrimination power, 

HLUM /α   is a measure of demand uncertainty. 

Note that price dispersion is decreasing in our measure of monopoly power, 

increasing in our measure of discrimination power and in our measure of demand 

uncertainty. There may be a problem in distinguish empirically between monopoly 

power and discrimination power.6  

  

2.3 Shoppers and non-shoppers 

The assumption that buyers buy the good at the cheapest available price is of course 

not realistic. In an attempt to get the model closer to reality I assume now that some 

buyers (non-shoppers) buy at the most convenient location, say at the supermarket 

closest to home.  

                                                
6 In studies of price dispersion in the airline industry, Borenstein and Rose (1994) found that price 

dispersion is greater on city-pair routes that are served by a larger number of carriers. Gerardi and 
Shapiro (2009) argue for the opposite result. 
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 Although non-shoppers do not search across stores the quantity they buy 

depends on the price. This may be interpreted as search over time. If the price is low 

the non-shoppers buy a relatively large quantity and store part of it. If the price is 

high, they buy a relatively small amount and consume out of storage. This is 

consistent with the findings of Pesendorfer (2002) and Hendel and Nevo (2013) who 

argue that storage by buyers is important.7  

 As in section 2.1, I require here that all stores will make the same expected 

profits. This is achieved in equilibrium by varying the number of stores that supply to 

each market. This is different from the assumption used in section 2.2 where each of 

the hypothetical market was monopolized by a chain. This difference in assumption is 

not critical. We can impose a zero expected profit requirement in both cases. But the 

objective is to demonstrate that the relationship between price dispersion and demand 

uncertainty is robust.     

 As before, the total number of buyers that arrive is a random variable  N  that 

can take Z  possible realizations: N1 < N2 < ...< NZ . A fraction φ  of the buyers in 

each batch are non-shoppers and a fraction 1−φ  of the buyers are shoppers. The 

demand of each active buyer at the price P  is given by the decreasing function  

D(P) .  

 Shoppers see all price offers and buy at the cheapest available price. Non-

shoppers go to one store only and buy at the price posted by the store if the store is 

not stocked out. Otherwise, if the store is stocked out they go home empty handed. In 

                                                
7 A downward sloping demand assumption may also capture storage behavior by shoppers. To see how 

this may work, consider the case in which a shopper makes it to the first market. Realizing that he is 
lucky and may not make the first market in the next period, he buys some units for storage and future 
consumption. Shoppers who are not as lucky and arrive late, buy mostly for current consumption. As 
a result the demand function of each buyer will depend on the amount of storage he has as well as on 
some taste parameters. From the point of view of the sellers, there will be buyers of different types 
where each type is characterized by the probability of becoming active and by the demand function. I 
attempt such a model recently in Eden (2013). It is more complicated than the model used here but I 
think that the qualitative results about price dispersion are the same. 
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a more general model we should allow buyers to buy a close substitute in the case of a 

stock-out but this is not considered here.    

 The store chooses the stock-out state. It can choose to stock out only when 

demand is at its highest possible realization (state Z ). It can also choose to stock out 

at state s < Z  with a higher probability. A store that stock out sells its entire supply 

and therefore a high stock out probability is a benefit. To stock out with high 

probability the store must post a low price and the tradeoff is therefore between the 

stock out probability and the price. This is different from the tradeoff we had before 

(between the probability of making a sale and the price) because now the store will 

always sell part of its supply to non-shoppers.    

 As before there are Z  hypothetical markets and the prices in these markets 

are: P1 < P2,...,PZ−1 < PZ . A store in market i  posts the price Pi  and stocks out (sells its 

entire supply) if s ≥ i . The number of stores in market i  is ni . The total number of 

stores is: n . The number of stores is a variable that will be varied smoothly and will 

be treated as a continuous variable.   

The number of non-shoppers per store in state s  is φNs

n
and the amount sold by a 

store in market i  (that posts the price Pi ) to the non-shoppers is: 

(25)  φNs

n
D(Pi )   if s ≤ i  and zero otherwise.  

The amount sold to the shoppers is:  

(26)  (1−φ)Δi

ni
D(Pi )   if s ≥ i  and zero otherwise.  

Since a store in market i  plans to stock out in state i , it will produce 
φNi

n
+ (1−φ)Δi

ni

⎛
⎝⎜

⎞
⎠⎟
D(Pi )  units. As in section 2.2, I assume that storage is not possible 

(β = 0 ). The expected profits for a store that supplies to market i  is therefore: 

 (27)  Vi =Vi (Pi ) = PiD(Pi ) qi
(1−φ)Δi

ni
+ π s

φNs

ns≤i∑⎧
⎨
⎩

⎫
⎬
⎭
−λD(Pi )

φNi

n
+ (1−φ)Δi

ni

⎛
⎝⎜

⎞
⎠⎟
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There are m  stores that service only the non-shoppers and charge the price pM  that 

solves the following problem. 

(28)  V M = max p, j pD(p) π s
φNs

ns≤ j∑ −λD(p)
φN j

n
 

In equilibrium shoppers will always be able to buy at a price that is cheaper than pM . 

Thus,  

(29)  Pi−1 < Pi ≤ p
M   for all i . 

The maximum number of buyers serviced by a store in market i  is: 

Qi =
φNi

n
+ (1−φ)Δi

ni
. A store in market i  that chooses a price Pi−1 < P ≤ Pi  will not 

affect its stock out probability. I require that in equilibrium such a deviation will not 

increase expected profits. Thus,  

(30)  Vi (Pi ) ≥maxQ,P PD(P) qiQ + π smax Q,φNs

n
⎛
⎝⎜

⎞
⎠⎟s<i∑⎧

⎨
⎩

⎫
⎬
⎭
− λD(P)Q     

 s.t. Pi−1 < P ≤ Pi   

 

Equilibrium is a non negative vector (P1,...,PZ , p
M ;n1,...,nZ ,m;V ,VM )  that satisfies 

(29), (30) and   

(a) ni > 0  

(b) Vi =V  for all i = 1,...,Z  

(c) VM ≤V  with equality if m > 0  

(d) ni
i=1

Z

∑ = n −m  

 
An example 

To get a sense of how this model works, I assume a Unit demand case:  

(31)  D(P) = 1 if P ≤ a  and zero otherwise.  

 I now show that when a  is large there exists an equilibrium in which a large 

number of stores post the monopoly price and service only the non-shoppers and a 

small “large” number of stores service the shoppers.  



Vanderbilt University Department of Economics Working Papers, VUECON-14-00011

        

16 

 

 In the proposed equilibrium VM =V , pM = a  and since a  is large a store that 

specializes in the non-shoppers will produce to satisfy the highest realization of 

demand, φNZ

n
. In state s  the store will sell only φNs

n
 units and its expected profits 

are: 

(32)  V = −λ φNZ

n
+ a π s

φNs

ns∑ ≥ 0  

In (32) the first term is the cost of production and the second is the expected revenue.  

 A store in market Z  will sell its entire supply in the highest aggregate demand state, 

but it will sell to both shoppers and non-shoppers. In state s < Z  the store sells φNs

n
 

units to non-shoppers. In state Z  it sells φNZ

n
 to non-shoppers and (1−φ)ΔZ

nZ
 to 

shoppers. The expected profit of a store in market Z  is: 

(33)  PZ
qZ (1−φ)ΔZ

nZ
+ π s

φNs

ns∑⎛
⎝⎜

⎞
⎠⎟
− λ φNZ

n
+ (1−φ)ΔZ

nZ

⎛
⎝⎜

⎞
⎠⎟
=V  

The first terms in (33) is the expected revenue and the second is the cost.  

We choose (nZ ,PZ )  that satisfy (33) and PZ < a . Equating (33) with (32) leads to: 

(34)  (a − PZ ) π s
φNs

ns∑ = (qZPZ − λ)
(1−φ)ΔZ

nZ
 

The left hand side of (34) is the loss of profits from servicing the non-shoppers that a 

store in market Z  will suffer relative to a store that posts the monopoly price a . The 

right hand side is the gain from servicing the shoppers when demand is at its highest 

possible realization.  

 I choose a small nZ  and therefore the quantity per store that is demanded by the last 

batch of shoppers, (1−φ)ΔZ

nZ
, is large. It follows that qZPZ − λ  must be small. Thus,  

(35)  qZPZ ≈ λ  

I now proceed by induction, taking (Pi+1,ni+1)  as given and assuming qi+1Pi+1 ≈ λ . 

Since a store in market i  makes the same expected profits as a store in market i +1  

we get:  
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(36)  (qiPi − λ)
(1−φ)Δi

ni
− (qi+1Pi+1 − λ)

(1−φ)Δi+1

ni+1
=   

 (Pi+1 − Pi ) π s
φNs

ns<i+1∑ +π i+1Pi+1
φNi+1

n
− λ φΔi+1

n
 

The left hand side is the change in expected profits from servicing the shoppers. The 

right hand side is the change in expected profits from servicing the non-shoppers. 

Since (Pi+1 − Pi ) π s
φNs

ns<i+1∑ +π i+1Pi+1
φNi+1

n
− λ φΔi+1

n
+ (qi+1Pi+1 − λ)

(1−φ)Δi+1

ni+1
, is 

finite it follows that if we choose ni  that is small we will get:  

(37)  qiPi ≈ λ  

Thus, in the proposed equilibrium prices are close to the case in which all active 

buyers are shoppers as is typically assumed in UST models.  

 

 Sellers that service shoppers are large relative to sellers that specialize in non-

shoppers. In the theory the seller is defined by the price: a seller is in market i  if he 

posts the price Pi . One possible interpretation of the above example is that the large 

stores that service the shoppers are chains that post the same price.  

 The computation of the prices in the above example also illustrates that the 

equilibrium is not unique. We have more equations than unknown because we can 

choose both the number of sellers in each market and the price. I now turn to a 

prediction that seems more robust.  

 

The relationship between price dispersion and unit dispersion.  

 There is an equilibrium relationship between price (P) , expected capacity utilization 

(ECU )  and expected per unit profits (PUP) . To derive this relationship, let 

CAPi =
φNi

n
+ (1−φ)Δi

ni
 denote the capacity (amount offered for sale) of a store in 

market i , ECUi =
1

CAPi
qi
(1−φ)Δi

ni
+ π s

φNs

ns≤i∑⎛
⎝⎜

⎞
⎠⎟

 denote expected capacity 
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utilization and PUPi =
V

CAPi
 denote expected per unit profits. Then the requirement

Vi =V , leads to: 

(38)  Pi (ECUi ) = λ + PUPi  

Assuming that profits per unit are small we can use the approximation: P(ECU ) ≈ λ  

that leads to: 

(39)  PZ
P1

= 1
ECUZ

 

Assuming that π s = π  leads to: 

ECUZ =
π

CAPZ
(1−φ)ΔZ

nZ
+ φNs

ns≤i∑⎛
⎝⎜

⎞
⎠⎟

 

Substituting in (39) leads to:  

(40)  PZ
P1

=κZ , 

where κ  is a constant. This prediction is consistent with (6).  

 Thus the requirement that expected profits is the same across stores and the 

assumption of iid  shocks leads to a relationship between average capacity utilization 

and price and between price dispersion and demand uncertainty.8 
 

3. IMPLEMENTATION 

 

 The positive correlation between price dispersion and unit dispersion is the 

main prediction of the above versions of the Prescott model. Under certain 

assumptions the relationship is linear as in (8), (13), (24) and (40). I assume her that 

the relationship is linear and start by adding a classical measurement error to the 

                                                
8 Capacity utilization has been used to explain price dispersion in the airline industry. See Escobari and 

Li (2007), Escobari (2012) and Escobari and Lee (2013) and Cornia, Gerardi and Shapiro (CGS, 
2012). Escobari et al. focus on within flight correlation between price dispersion and capacity 
utilization: Flights that are relatively empty tend to have less price dispersion. CGS find a negative 
correlation between average capacity utilization and price dispersion: Routes with low average 
capacity utilization tend to have more price dispersion. In a previous version of this paper, I argue 
here that both observations are consistent with the UST model. 
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derived relationship between ln(HLP) and ln(HLU).  I then add variables suggested 

by other models: The average price, total revenues and the number of stores that sold 

the good.  The average price was used by Pratt et.al (1979) in an earlier study. 

Sorensen (2000) used the purchase frequency and the average wholesale price. Here I 

have data only from the sellers’ side and I therefore use aggregate revenues to capture 

the importance of the goods in the buyers’ budget (aggregate revenues = aggregate 

spending). The number of stores that offer the good may be a proxy for monopoly 

power and is analogous to the number of airlines in the route used by Gerardi and 

Shapiro (2009) when studying price dispersion in the airline industry. I also use 

category dummies and size variables to capture the difference in the cost of not 

selling (or the value of inventories) across products.  

I assume that the average (over weeks) of the log difference between the 

highest and the lowest price for good i , ln(HLPi ) , is described by the following 

equation.  

(41)  ln(HLPi ) = b0 + b1 ln(HLUi )+ b2 ln(Revi )+ b3 ln(AvPi )+ b4 (#Storesi )  

 + djiCDjij∑ + s jiSDjij∑ + ei  

where b  are parameters, ln(Rev)  is the log of total revenues (over stores and weeks), 

ln(AvP)  is the log of average price (averaged over stores and weeks), #Stores  is the 

number of stores that sold the product, CD  are category dummies (CDj = 1 if product 

i  belong to category j  and CDj = 0  otherwise), SD  are category specific 

normalized size measures and e  is an error term. The size variables will be described 

later. They are included in the regression as a proxy for shelf space and the cost of 

trade delays.  

 To check for robustness, I ran (41) after replacing the range measures by 

standard deviations measures of dispersion. 
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Unit surprise measures 

 The model assumes iid demand shocks. We should therefore take out a UPC 

specific seasonal element in aggregate demand. For example, the demand for cold 

drinks and hot dogs may be higher during the 4th of July week.   

To get a cleaner measure of demand uncertainty, I use Ui,t−L  to denote the 

aggregate number of units sold from good i  in week t − L  and ran the following  

regressions: 

(42)  ln(Uit ) = ai + bi52 ln(Ui,t−52 )+ ε it  

(42’) ln(Uit ) = ai + bi52 ln(Ui,t−52 )+ bi1 ln(Ui,t−1)+ bi2 ln(Ui,t−2 )+ bi3 ln(Ui,t−3)+ ε it  

Note that in (42) there is only one lag of 52 weeks designed to capture seasonality. In 

(42’) I added the most recent 3 lags. I then look at the difference between the highest 

and the lowest residuals from the regression and define HLRUi = ε i
H − ε i

L , where 

ε i
H = maxt{ε it}  is the highest value of the residual in (42) and ε i

L = mint{ε it}  is the 

lowest value of the residual. I use HLRU  (high-low residual unit) as a range measure 

of demand uncertainty. The residual standard deviation measure of uncertainty, 

SDRUi , is the standard deviation of ε i . 

 

Price surprises or just prices? 

Price surprises are the residuals in a regression of prices on information available to 

the buyer before he gets to the marketplace, like the identity of the store and the date. 

Should we attempt to explain the dispersion of price surprises, as in Lach (2002), or 

the dispersion of actual prices? The answer depends on the underlying model. To 

illustrate this point, let us consider an extreme case in which all prices are perfectly 

predicted by the identity of the store. In the Burdett-Judd (1983) model this is 

equivalent to the assumption that all buyers see all prices and this leads to a 

degenerate price distribution equal to the competitive price. In the UST model buyers 

see all prices and it does not matter whether they can predict prices ahead of their 
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arrival time. Therefore the UST model is a theory of price dispersion and it is not 

about the dispersion of price surprises.  

 

Price inertia and the services provided by the store 

Another reason for controlling for “store effects” is that different stores may provide 

different services. Kaplan and Menzio (2014) find that about 10% of price dispersion 

can be attributed to “store effect”. Unfortunately, in the UST model (and in the 

Burdett-Judd model) it is difficult to distinguish between a store that is indifferent 

among all prices in the equilibrium range but consistently chooses to be at the low 

price range to a store that is in the low price range because it provides low services. It 

is also hard to believe that the difference between the average price dispersion of milk 

and the average price dispersion of hot dogs occurs because there is more dispersion 

in the services provided by stores that sell hot-dogs. Stores that sell hot dogs also sell 

milk and it is unlikely that store effects drive the results. I therefore start with 

measures of price dispersion that do not control for store effect. I control for store 

effect later, in the robustness checks section.  
 

Sales  

The distinction between sale prices and regular prices has been a major issue in the 

literature on price rigidity. See for example, Eichenbaum, Jaimovich and Rebelo 

(2011), Guimaraes and Sheedy (2011) and Kehoe and Midrigan (2010). The 

distinction arises because the “menu cost” of a temporary price reduction seems less 

than the “menu cost” of a regular price change. As a result some researchers have 

chosen to remove sale prices and consider only regular prices. Here I include all 

prices (regular and sale) in the measure of price dispersion. One reason for this choice 

is that from the consumer’s point of view sale prices matters because a large amount 

of purchases are done in sale prices. More importantly, this choice is consistent with 

the UST model.  



Vanderbilt University Department of Economics Working Papers, VUECON-14-00011

        

22 

 

 In the UST model there are no menu costs. Since sellers are indifferent about 

prices in the equilibrium range they can adopt various strategies. They may adopt for 

example an (S,s) type strategy which looks like temporary price reductions. See Eden 

(1994) and Head et al. (2012) for further analysis.  

 

Increasing marginal cost, price changes and store effect 

When demand is iid  and the marginal cost is flat, the equilibrium price distribution 

does not change over time and it can be maintained without price changes. We can 

therefore have equilibrium with extreme price inertia in which each store stick to a 

single price that is consistent with (1). But in the data controlling for store effect 

eliminates only about 15% of the price dispersion.  

 One possible remedy is to assume that stores change their prices randomly 

without any reason. Another possibility is to assume correlated demand shocks. Here 

I assume increasing marginal cost. This is enough to generate changes in the 

equilibrium price distribution because changes in inventories cause changes in 

production and marginal cost.  

 I follow Bental and Eden (1993) and consider the case in which the cost of 

production is given by a strictly increasing and strictly convex function: C(y) . As 

before I use xs  to denote the aggregate supply to market s  (over all sellers that post 

the price Ps ). Let α (I )  denote the first market price as a function of the beginning of 

period inventories. The arbitrage condition (1) can now be written as: 

(43)  
qi+1
qi

Pi+1 + 1− qi+1
qi

⎛
⎝⎜

⎞
⎠⎟
βα I ' = xs

s=i+1

Z

∑⎛
⎝⎜

⎞
⎠⎟
= Pi  

This says that when market  opens sellers are indifferent between supplying to 

market  and supplying to market . If they supply to market , they get Pi  per 

unit. If they supply to market  they get Pi+1  if the market opens and the value of 

inventories otherwise. The probability that market  will open given that market 

i

i i +1 i

i +1

i +1
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 opened is: qi+1
qi

. The value of inventories in case market  does not open is 

βα (I ')  where I ' = xs
s=i+1

Z

∑  is the beginning of next period inventories if exactly i  

markets open in the current period. Production in the BE model is determined by 

equating the marginal cost to the first market price: 

 (44)  C '(y) = P1  

When each active buyer demands one unit and is willing to pay a high price for it, 

total supply xs
s=1

Z

∑  is constant and total production xs
s=1

Z

∑ − I  depends on the beginning 

of period inventories. This and (44) imply that prices depend on the beginning of 

period inventories: When inventories are high, production and prices are low. 

 

An Example 

To see why temporary price changes may be used to maintain equilibrium, I consider 

the following 2 states example. The number of active buyers is 100 or 200 with equal 

probabilities. Each buyer demands one unit of the good and is willing to pay a high 

price for it. There are 200 sellers, the cost of production for each seller is 

C(y) = (12)y2 , the marginal cost is C '(y) = y  and β = 1
2 . When demand is high 

everything is sold and we start the following period with I = 0 . When demand is low 

only 100 units are sold and we start the following period with I = 100 .  

 In periods with I = 0 , production is 1 unit per seller and P1(0) = 1 . In periods 

with I = 100  production is 0.5 units per seller and P1(100) = 0.5 . Using the arbitrage 

condition (43) we can find the price in the second market when I = 0 , by: 

(45)  P1(0) = 1= (12)P2 (0)+ (12)β(12) = (12)P2 (0)+ (14)β   

This leads to: P2 (0) = 1.75 . 

 When I = 100  the arbitrage condition is: 

(46)  P1(100) = 1
2 = (12)P2 (100)+ (14)β  

This leads to: P2 (100) = 0.75 . 

i i +1
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 In periods with no inventories 100 sellers supply to the first market (at the 

price of 1) and 100 sellers supply to the second market (at the price of 1.75). In 

periods with I = 100 , there are 100 sellers who hold inventories and with their 

production they have 150 units for sale. The sellers with no inventories have 50 units 

for sale. Some adjustment in posted prices is necessary to maintain equilibrium. 

 One possibility is that sellers adopt one of the following 3 price strategies: 

Low, High and Switch. The low price sellers sell in the first market. The high price 

sellers sell in the second market. The switchers sell in the second market when 

inventories are low and in the first market when inventories are high. Table 1 

describes this possibility over 3 periods. It is assume that demand was high in t = 0 , 

low in t = 1  and high in t = 2 . As a result inventories are zero at t = 1 , 100 at t = 2  

and zero at t = 3 .  

 In this example temporary price reductions occur whenever inventories are 

high. Price dispersion measures are lower in the high inventories period and therefore 

eliminating “sale prices” in t = 2  will increase the average measures of price 

dispersion and may introduce a difference between goods that use temporary price 

reduction strategies to goods that use other strategies to maintain equilibrium. This is 

a problem from a theoretical point of view because the theory says that price 

dispersion should not depend on the way in which the equilibrium price distribution is 

achieved.  
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Table 1*: “Sales” when inventories are high 
time 1	
   2	
   3	
  
Inventories 0	
   100	
   0	
  
1st mark. price 1	
   0.5	
   1	
  
2nd mark. price 1.75	
   0.75	
   1.75	
  
Price by seller type  
Low  (100) 1	
   0.5	
   1	
  
High (66.6) 1.75	
   0.75	
   1.75	
  
Switch (33.3) 1.75	
   0.5	
   1.75	
  
Supply per seller  
Low 1	
   0.5	
   1	
  
High 1	
   1.5	
   1	
  
Switch 1	
   1.5	
   1	
  
Supply to the 1st market 
Low 100	
   50	
   100	
  
High 0	
   0	
   0	
  
Switch 0	
   50	
   0	
  
Agg. supply 100	
   100	
   100	
  
Supply to the 2nd 
market 	
  
Low 0	
   0	
   0	
  
High 66.6	
   100	
   66.6	
  
Switch 33.3	
   0	
   33.3	
  
Agg. supply 100	
   100	
   100	
  
*This Table describes the changes in the distribution of prices and the changes in the prices of 
individual stores over 3 periods. The first row is the time index. The second is aggregate inventories. 
We start with no inventories at t = 1 . This is followed by a period with 100 units of inventories and a 
period with no inventories. The third row is the first market price. The fourth is the second market 
price. The price strategies follow. There are 100 low price sellers who post the low price. There are 
66.6 high price sellers who post the high price and there are 33.3 switchers who post the high price 
when inventories are low and the low price when inventories are high. Then we have the supply by 
individual sellers (production plus inventories). The high price sellers and switchers may have 
inventories while the low price sellers do not and therefore the supply per seller depends on the type. 
The rows that follow are supply to the first market by type. This is followed by supply to the second 
market by type.  

    

4. DATA 

 

I use a large weekly data set from Information Resources, Inc. (IRI). These 

scanner data contain weekly observations of the revenues from each good and the 

number of units sold. The data cover 31 categories in 50 different markets and contain 
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both grocery stores and drug stores from several different chains during the years 

2001-2007. A full utilization of this huge data set is beyond the scope of this paper. 

Here I look at the sample of grocery stores in Chicago during the years 2004 and 

2005. I identify a product with a Universal Product Code (UPC) and obtain prices by 

dividing revenues by the number of units sold.  

I exclude from the sample store-UPC combinations (cells) with zero revenues 

in some of the sample’s weeks, UPCs that were sold by less than 10 stores and 

categories with less than 10 UPCs. The first exclusion is applied to get a reliable 

measure of the number of stores that sold the good. The second is aimed at reliable 

measures of cross sectional price dispersion, and the last allows for within category 

comparison and economizes on the number of category dummies and size variables. 

The result of these exclusion are “semi balanced” samples in which the number of 

stores vary across UPCs but stores that are in the sample sold the product in all of the 

sample’s weeks. After implementing the exclusions, I get 1084 UPCs for the 2005 

sample and 665 UPCs for the 2004 sample. I also use the combined 04-05 sample 

with 104 weeks. This combined sample has only 324 UPCs because a store-UPC cell 

is included only if the cell’s revenues were positive in all weeks. 
 

4.1 The Week Starting on January 17, 2005 

I start with a description of the data for a randomly chosen week: The week 

starting on January 17, 2005. Looking at a single week provides information about the 

relationship between the search variables and price dispersion but not about the 

relationship between demand uncertainty and price dispersion. Nevertheless I start 

with a description of the within week correlations to get a sense of the data without 

the above exclusions.    

In the chosen week, 8602 UPCs were sold by more than one store. The 

average ratio (actual ratio - not the log difference) of the highest to lowest price over 

all UPCs is 1.36 and its standard deviation is 0.47. The highest ratio of HLP = 15  
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occurs in a UPC that is sold by 2 stores. For 94% of the UPCs the ratio HLP  is less 

than 2.  

 Scatter plot diagrams are sometimes used to get a visual description of the 

data, but these diagrams are not useful when there are many observations. Here I use 

shares in totals diagrams that are based on the Lorenz curve. Unlike the Lorenz curve 

I plot several variables in the same diagram. The following example illustrates.  

 

An example 

There are two groups of 6 individuals. The income distribution is the same in both 

groups and is described in the second column of Table 2. The age distribution is 

different. The age distribution of group 1 is in the third column of Table 2 (age 1) and 

the age distribution of group 2 is in the last column (age 2). In group 1 the correlation 

between income and age is -1. In group 2 the correlation between income and age is 

0.83.    

 Table 3 uses Table 2 to compute the accumulated shares in income and age. 

The poorest 17% makes about 5% of the income, the poorest 33% makes 14% of the 

income and so on. In group 1 the age of the poorest 17% is 29% of the total age 

(which is the same as total income in this example and is equal to 210). In group 2 the 

age of the poorest 17% is only 5% of the total age. Figure 2 plots the data in Table 3. 

The accumulated share of age curve is above the diagonal for group 1. For group 2 it 

is below the diagonal. It coincides with the Lorenz curve initially and then departs 

from it. We can see that the correlation is 1 within the poorest 14% (the first two 

observations) and is 1 within the top 5% (the last two observations) but this perfect 

correlation is spoiled by the middle two observations (the correlation between age and 
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income in the middle income group is -1). Figure 2 thus provides more information 

than the correlation coefficients.9  
 
Table 2*: An income by age example 
	
   Income	
   age	
  1	
   age	
  2	
  

1	
   10	
   60	
   10	
  
2	
   20	
   50	
   20	
  
3	
   30	
   40	
   40	
  
4	
   40	
   30	
   50	
  
5	
   50	
   20	
   30	
  
6	
   60	
   10	
   60	
  

* The first column is a serial number, the second is income, the third is the age in group 1 and the last 
is the age of group 2.  
 
Table 3*: The accumulated shares (example) 
Fraction	
  	
   acc.	
  Income	
   acc.	
  age	
  1	
   acc.	
  age	
  2	
  

0.17	
   0.05	
   0.29	
   0.05	
  
0.33	
   0.14	
   0.52	
   0.14	
  
0.5	
   0.29	
   0.71	
   0.33	
  
0.67	
   0.48	
   0.86	
   0.57	
  
0.83	
   0.71	
   0.95	
   0.71	
  

1	
   1	
   1	
   1	
  
*The first column is the fraction of the population, the second is the share of income that is made by 
the fraction in column 1 (thus for example a third of the population makes 14% of total income). The 
third column is the share in total age in group 1 (thus for example the poorest third accounts for 50% of 
the total age) and the last column is the share in total age of group 2. 

 

UPCs instead of people: 

 I now turn to the IRI data for the randomly chosen week. In Figure 3, the graph “acc. 

HLP” is analogous to a Lorenz curve where UPCs play the role of people. The UPCs 

are ordered by price dispersion from low to high. The graph denoted by “acc. HLP” is 

the sum: NHPLi
i=0

m

∑  where m  varies from zero (the UPC with the lowest ratio) to one 

                                                
9 Yitzhaki (2003) argues that Gini related measures of variability and correlations may be superior to 

standard measures when the distribution is not normal.  Here I use a Lorenz curve type graph as a 
substitute for scatter diagrams and use standard statistics. 
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(the UPC with the highest ratio) and NHLPi =
ln(HLPi )
ln(HLPj )j∑  is the normalized 

ln(HLP) . 

 The graph “acc. HLP” indicate a substantial dispersion in (the log of) HLP  

across UPCs. In Figure 3A, the share of the lowest 20% is zero and the share of the 

highest 20% is 50%. (This is analogous to the statement that the share of the poorest 

20% in national income is zero and the share of the top 20% is 50%).  

The graph “acc. #stores” describes the accumulated share in the total number 

of UPC-store cells and is analogous to the acc.age graph in Figure 2. The fact that it is 

on the right of the diagonal suggests a positive relationship between the number of 

stores and price dispersion. Indeed, the standard correlation between ln(HLP)  and the 

number of stores is 0.53. To get more information we may compare the slopes of the 

two curves. We see that the slope of the “acc. HLP” graph is initially zero and then 

increases gradually. The slope of the “acc. #stores” graph is also increasing gradually. 

This suggests a positive correlation within most segments of the UPC population. 

This is apparent when computing the following conditional averages. The average 

ratio of high to low price is 1.11 for UPCs sold by 2 stores, 1.18 for UPCs sold by less 

than 10 stores and 1.52 for UPCs sold by more than 10 stores.   

The “acc. Ln(Rev)” graph is the cumulative share in total revenues. This graph 

is also to the right of the diagonal suggesting a positive relationship between price 

dispersion and revenues. The share of UPCs with less than the median amount of 

price dispersion in total revenues is 40%. This is more than the share in the total 

number of stores (30%) but still the curve is below the diagonal. Also here the slope 

of the curve increases gradually as in the “acc. HLP” curve suggesting that the 

correlation occurs within most segments of the UPC population. The standard 

correlation between log HLP and log revenues is 0.46. 

Figure 3B describes the subsample of 4537 UPCs that were sold by more than 

10 stores during the week of January 17, 2005. Here 90% of the UPCs have a ratio of 
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high to low price below 2. The maximum ratio is 10 and is less than the maximum 

ratio of 15 in the larger sample. The “acc. HLP” graph shows that the fraction of 

UPCs with no price dispersion is small. The “acc. #stores” curve is to the right of the 

diagonal suggesting a positive correlation between HLP and the number of stores. The 

standard correlation between the number of stores and ln(HLP)  is 0.33 and is less 

than in the larger sample. Unlike Figure 3A here I did not plot the “acc.Ln(Rev)” 

graph because it was too close to the diagonal. But the correlation between ln(Rev) 

and ln(HLP)  is still positive and is equal to 0.25. Comparing the graphs in Figures 

3A and 3B suggest more variability of ln(HLP) in the larger sample. The difference in 

the standard deviation is however small. The standard deviation of ln(HLP)  is 0.26 in 

the large sample of 8602 UPCs and 0.25 in the smaller sample of 4537 UPCs. The 

Gini coefficient in the larger sample is 0.26 while it is 0.17 in the smaller sample. 

 

 4.2 Applying the exclusions and the construction of the main variables  

To construct measures of aggregate demand uncertainty, I use the 3 samples described 

above: The 2005 sample with 1084 UPCs, the 2004 sample with 665 UPCs and the 

combined 04-05 sample with 324 UPCs.  

 To economize on space I provide summary statistics in Table 4 for the largest 

2005 sample in detail and the averages across UPCs for the other two samples. The 

first column is the category name. The second is the number of UPCs in each 

category. There are for example, 56 UPCs in the beer category. The third is the 

average (maximum, minimum) number of stores per UPC. The average number of 

stores in the beer category is 21, the maximum number of stores is 35 and the 

minimum number of stores is 11. The next four columns provide the averages of the 

main variables.  

The columns ln(HLU) and SDU are unit dispersion measures used as proxies 

for aggregate demand uncertainty. With the risk of repetition I now describe the 
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construction of the main variables in detail. The variable HLUi  is constructed as 

follows. I use Uit  to denote the aggregate amount (over all stores) of UPC i  sold in 

week t , Hi = maxt{Uit}  to denote the maximum weekly amount sold during the year 

(or during the sample period when the combined sample of 2 years is used) and 

Li = mint{Uit}  to denote the minimum weekly amount sold during the year. 

HLUi = Hi / Li  is the ratio between the amount sold in the highest sale week and the 

lowest sale week. The fourth column in Table 4 is the average of the log of this 

variable, ln(HLU ) , over the UPCs in the category. For beer the average log 

difference is 1.01 implying an average ratio between the highest and the lowest week 

of HLU = 2.73.  

 To construct the variable SDU let SDUit  denote the standard deviation of 

ln(Uit )  in week t  and let SDUi  denotes the average over weeks. Column 5 is the 

average of SDUi  over the UPCs in the category. For beer the average is 0.25.  

 The columns ln(HLP) and SDP are price dispersion measures.  

The variable HLP  is constructed as follows. Let Pit
H (Pit

L ) denote the highest 

(lowest) price of UPC i  in week t . HLPit = Pit
H / Pit

L  is the ratio in week t  and 

ln(HLPi ) , is the average of the log of this ratio over 52 weeks. The average reported 

in column 6 is over all the UPCs in the category.  

The variable SDP  was constructed as follows. Let Pits  denote the price of 

UPC i  in week t  store s  and SDPit  denote the standard deviation of ln(Pits ) over 

stores. The variable SDPi  is the average of SDPit  over weeks. In column 7 we have 

the average of SDPi  over the UPCs in the category. For beer the average standard 

deviation is 0.06.  

 I also attempted to include proxies for the cost of not selling (1− βi ) that is the 

proportionality constant in (6). As was said above 1− β  represents the cost of 

delaying revenues, storage cost and depreciation. Ideally we would therefore like to 

have information on the shelf life of each UPC and the shelf space that it takes. It also 
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matters whether the good needs to be refrigerated or not. In the data there is only a 

size measure that may serve as a proxy for “shelf space”. But the size measures are 

not comparable across categories. They are in terms of a fraction of a “regular pack” 

and the size of a “regular pack” is sometimes in units of volume (for example, rolls 

for toilet paper) sometimes in terms of square feet (100 square feet is the regular pack 

for paper towel) and sometimes in units of weights (the regular pack of beer is 288 

oz). For this reason I constructed 18 “size dummy” variables. The “size dummy” for 

beer was constructed as follows. First I normalized the size of all the 56 UPCs in the 

beer category so that the largest size is 1. I then assigned the value of zero to UPCs 

that are not in the beer category and the normalized beer size to UPCs within the beer 

category. Similar treatment was applied to other categories. The last column in Table 

4 is the average normalized size. The maximum is 1 by construction. The minimum 

normalized size is in parentheses. For example, the average size in the beer category 

is 0.47 implying that on average the size of a UPC is about half the size of the largest 

UPC in the category.  

 The last 3 rows are averages across all UPCs. In the 2005 sample the average 

UPC is sold in 20 stores, has ln(HLU) of 1.46, SDU of 0.34, ln(HLP) of 0.35, SDP of 

0.11 and the average size is 0.49. As can be seen these statistics do not vary much 

across samples.  

I use HLU and SDU as proxies for demand uncertainty and HLP and SDP as 

proxies of price dispersion. As can be seen there is substantial variations in these 

measures across categories. The lowest HLU is for milk (ln[HLU] = 0.78) implying 

that for an average UPC in the milk category the aggregate (over stores) amount of 

milk sold in the highest sale week is 2.18 higher than the aggregate amount sold in the 

lowest sale week. The highest HLU is for hot dogs (ln[HLU] = 2.36) implying that for 

an average UPC in this category, the aggregate amount of hotdogs sold in the highest 

sale week is 10.6 times the aggregate amount sold in the lowest sale week. 
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Table 4*: Summary Statistics  
 #	
  

UPC	
  

#	
  stores	
  
Avg	
  

(max,min)	
  
ln(HLU)	
   SDU	
   ln(HLP)	
  

	
  
SDP	
  

Av.	
  Size	
  
(Min)	
  

paper	
  towels	
   19	
   20(31,11)	
   0.95	
   0.21	
   0.15	
   0.05	
   0.31(0.13)	
  

beer	
   56	
   21(35,11)	
  	
  	
  	
  	
   1.01	
   0.25	
   0.19	
   0.06	
   0.46(0.07)	
  	
  

facial	
  tissue	
   18	
   18(26,11)	
   1.54	
   0.38	
   0.24	
   0.08	
   0.29(0.1)	
  

frozen	
  
dinners/entrees	
  

75	
   16(28,11)	
   1.61	
   0.36	
   0.32	
   0.1	
  
0.62(0.41)	
  

milk	
   64	
   22(34,11)	
   0.78	
   0.16	
   0.32	
   0.1	
   0.50(0.13)	
  

mustard	
  &	
  
ketchup	
  

21	
   20(32,11)	
   1.59	
   0.36	
   0.33	
   0.1	
  
0.32(0.13)	
  

salty	
  snacks	
   120	
   22(35,11)	
   1.26	
   0.3	
   0.3	
   0.1	
   0.47(0.16)	
  

toilet	
  tissue	
   19	
   21(34,11)	
   1.51	
   0.35	
   0.32	
   0.1	
   0.32(0.04)	
  

frozen	
  pizza	
   53	
   18(29,11)	
   1.49	
   0.32	
   0.36	
   0.11	
   0.52(0.18)	
  

peanut	
  butter	
   24	
   21(31,14)	
   1.3	
   0.26	
   0.34	
   0.11	
   0.61(0.30)	
  
yogurt	
   152	
   23(35,11)	
   1.16	
   0.26	
   0.31	
   0.11	
   0.36(0.13)	
  
carbonated	
  
beverages	
  	
  

144	
  
	
  	
  	
  	
  
23(35,11)	
  

1.55	
   0.37	
   0.37	
   0.12	
  
0.38(0.04)	
  

mayonnaise	
   19	
   23(32,11)	
   1.29	
   0.3	
   0.39	
   0.12	
   0.63(0.25)	
  

soup	
   74	
   19(35,11)	
   2.06	
   0.49	
   0.39	
   0.12	
   0.51(0.40)	
  

spaghetti/Italian	
  
sauce	
  

32	
   16(29,11)	
   1.37	
   0.31	
   0.38	
   0.13	
  
0.55(0.29)	
  

cold	
  cereal	
   133	
   21(34,11)	
   2.03	
   0.49	
   0.45	
   0.15	
   0.59(0.21)	
  

margarine/butter	
   40	
   25(35,11)	
   1.22	
   0.27	
   0.49	
   0.15	
   0.37(0.17)	
  

hotdog	
   21	
   20(34,11)	
   2.36	
   0.56	
   0.43	
   0.16	
   0.96(0.75)	
  
average	
  2005	
   	
   20	
   1.46	
   0.34	
   0.35	
   0.11	
   0.49	
  
Average	
  2004	
  	
   	
   15	
   1.61	
   0.38	
   0.38	
   0.13	
   0.50	
  
Av.	
  04-­‐05	
   	
   15	
   1.62	
   0.35	
   0.37	
   0.13	
   0.45	
  
* The statistics about individual categories use the 2005 sample. The first column is the category 
name. The second is the number of UPCs in the category. The third is the average number of stores per 
UPC in the category (maximum and minimum in parentheses). The next two columns are measure of 
demand uncertainty and the following two columns are measures of price dispersion. The average 
(minimum) normalized size is in the last column. Categories are sorted by SDP. The last three rows are 
the averages across UPCs in the three samples used.  
  

Figure 4A is the cumulative frequency distribution of ln(HLP) in the 2005 

sample.  The maximum ln(HLP) is about 0.8 implying HLP=2.2. Recall that HLP is 

the average ratio of weeks and therefore the maximum HLP is much lower than the 

maximum in the randomly selected week.  About 70% of the UPCs have ln(HLP) less 

than 0.4 (HLP=1.5). Figure 4B describes share in totals where UPCs are ordered 
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(from low to high) by HLP. As can be seen the slopes of the “acc.HLU” curve are 

similar to the slopes of the “acc.HLP” curve. Consistent with this observation the 

correlation between ln(HLP) and ln(HLU) is 0.43. The slopes of the 

“acc.ln(Av.Price)” graph are not similar to the slopes of the “acc.HLP” graph and the 

correlation between the log of average price and ln(HLP) is -0.07. The correlation 

between ln(HLP) and the number of stores is 0.34 and the correlation between 

ln(HLP) and the log of revenues is 0.27. These correlations are similar to the 

correlations in the week of January 17.  
  

 The correlations between the main variables in the 3 samples are in Table 5.  

The correaltions between the price dispersion measures ln(HLP) and SDP and 

between the unit dispersion measures ln(HLU) and SDU are both very high (in the 

range 0.95-0.97). The correlation between the price dispersion measures and the unit 

dispersion measures (HLU&HLP, SDU&HLP, HLU&SDP, SDU&SDP) are in the 

range of 0.43-0.60.   
 
Table 5*: Correlation between the main variables 
2005	
   ln(HLU)	
   SDU	
   ln(HLP)	
   SDP	
  
ln(HLU)	
   1.000	
   	
   	
   	
  
SDU	
   0.957	
   1.000	
   	
   	
  
ln(HLP)	
   0.431	
   0.451	
   1.000	
   	
  
SDP	
   0.480	
   0.499	
   0.958	
   1.000	
  
# of UPCs 1084    
2004	
   ln(HLU)	
   SDU	
   ln(HLP)	
   SDP	
  
ln(HLU)	
   1.00	
   	
   	
   	
  
SDU	
   0.96	
   1.00	
   	
   	
  
ln(HLP)	
   0.56	
   0.59	
   1.00	
   	
  
SDP	
   0.57	
   0.60	
   0.97	
   1.00	
  
# of UPCs 665    
04-­‐05	
   ln(HLU)	
   SDU	
   ln(HLP)	
   SDP	
  
ln(HLU)	
   1.00	
   	
   	
   	
  
SDU	
   0.97	
   1.00	
   	
   	
  
ln(HLP)	
   0.47	
   0.51	
   1.00	
   	
  
SDP	
   0.50	
   0.53	
   0.97	
   1.00	
  
# of UPCs	
   324	
   	
   	
   	
  
* This Table contains 3 correlation matrices followed by the number of UPCs. The first matrix is for 
the 2005 sample with 1084 UPCs, the second is for the 2004 sample with 665 UPCs and the last is for 
the 04-05 sample with 324 UPCs. The variables are the log difference between the highest and lowest 
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weekly aggregate sales ln(HLU), the standard deviation of the log of aggregate sales (SDU), the 
average log difference between the highest and the lowest price ln(HLP) and the average cross 
sectional standard deviation of log prices (SDP). See the text for detailed definitions.   

 

4.3 Unit surprises 

I used the combined 04-05 sample with 324 UPCs to run (24)-(24’) and get 

the unit surprise measures HLRU  and SDRU . I then look at the difference between 

the highest and the lowest residuals from this regression and defineHLRUi = ε i
H − ε i

L

as the residual range measure of demand uncertainty. The residual standard deviation 

measure of uncertainty, SDRUi , is the standard deviation of ε i .  

 Figure 5A is a shares in totals graph when using the residuals from the 

regression (12). The two curves are almost on top of each other except for the 

segment in which the normalized ln(HLP) is between 0.3 to 0.6. The correlation 

between the two variables is 0.49. The correlation when looking at UPCs with 

dispersion below the 40th percentile is 0.55.  Figure 5B uses the residuals from the 

regression (24’). The results are almost identical to the results when using (24).  
  

 

5. ESTIMATIONS 

 

As described in the data section, I use two measures of dispersion: The range 

measure and the standard deviation measure. Here I report the results when using the 

range measures. The regressions that use the standard deviation measures are reported 

in the Appendix.   

I start with running price dispersion on unit dispersion for categories with 

more than 50 UPCs and for the samples as a whole. As can be seen from Table 6, 8 

out of the 9 coefficients of ln(HLU) are positive and 6 out of the 8 are significant. In 

the 2004 sample there are 4 such categories. 3 out of the 4 coefficients are significant 

and positive. In the 04-05 sample there are 3 categories all the coefficients are 



Vanderbilt University Department of Economics Working Papers, VUECON-14-00011

        

36 

 

positive and 2 are significant. The estimates do not change much when we replace 

ln(HLU) in the 04-05 sample with HLRU. When using all the observations in the 

samples, the coefficients of ln(HLU) are around 0.1.  
 
Table 6*: Running ln(HLP) on ln(HLU) for selected categories. 
2005 sample Intercept	
   ln(HLU)	
   #UPC	
   Adj	
   R2 	
  
beer	
   0.165***	
   0.023	
   56	
   0.005	
  
carbbev	
   0.308***	
   0.040**	
   144	
   0.049	
  
coldcer	
   0.190***	
   0.127***	
   133	
   0.321	
  
fzdinent	
   0.217***	
   0.063*	
   75	
   0.044	
  
fzpizza	
   0.247***	
   0.074**	
   53	
   0.141	
  
milk	
   0.343***	
   -­‐0.024	
   64	
   -­‐0.012	
  
saltsnck	
   0.059*	
   0.194***	
   120	
   0.454	
  
soup	
   0.311***	
   0.040*	
   74	
   0.059	
  
yogurt	
   0.283***	
   0.027	
   152	
   0.001	
  
All	
   0.209***	
   0.095***	
   1084	
   0.185	
  
2004 sample Intercept	
   ln(HLU)	
   #UPC	
   Adj	
   R2 	
  
carbbev	
   0.411***	
   -­‐0.005	
   86	
   -­‐0.011	
  
coldcer	
   0.151***	
   0.149***	
   93	
   0.561	
  
saltsnck	
   0.107***	
   0.138***	
   94	
   0.457	
  
yogurt	
   0.229***	
   0.068*	
   92	
   0.060	
  
All	
   0.207***	
   0.106***	
   665	
   0.318	
  
04-05 sample Intercept	
   ln(HLU)	
   #UPC	
   Adj	
   R2 	
  
carbbev	
   0.346***	
   0.022	
   58	
   0.031	
  
coldcer	
   0.154**	
   0.130***	
   53	
   0.490	
  
yogurt	
   0.287***	
   0.052**	
   65	
   0.091	
  
All	
   0.244***	
   0.080***	
   324	
   0.219	
  
04-05 sample Intercept	
   HLRU	
   #UPC	
   Adj	
   R2 	
  
carbbev	
   0.348***	
   0.030*	
   58	
   0.058	
  
coldcer	
   0.164***	
   0.147***	
   53	
   0.601	
  
yogurt	
   0.385***	
   0.002	
   65	
   -­‐0.016	
  
All	
   0.276***	
   0.088***	
   324	
   0.230	
  
* One star (*) denotes p-value of 5%, two stars (**) denote p-value of 1% and three stars (***) denote 
p-value of 0.1%. The first 10 rows are the results when using the 2005 sample. The following 5 rows 
are the results when using the 2004 sample and the last 4 rows are the results when using the 04-05 
sample.  
 
 

Table 7 uses the samples with all categories. It reports the results of running 

the price dispersion measure ln(HLP) on category dummies, “size dummies” and 

various combinations of the following main variables: The unit range dispersion 
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measure ln(HLU), revenues, the number of stores and the average price. Only the 

coefficients of the main variables are reported. 

The first 5 rows in the Table describe the regression results when using the 

1084 observations in the 2005 sample. The regression reported in Column 1 uses only 

the unit dispersion measures ln(HLU), intercept, category dummies and size variables. 

As can be seen the coefficient 0.082 is highly significant. This coefficient does not 

change much when we add other explanatory variables in columns 2-6 and it is in the 

range 0.078 - 0.094. The coefficient when running (10’) with intercept reported in 

Table 7 is 0.095 suggesting that the estimated elasticity is not sensitive to the addition 

of the other variables.  

The coefficient of the average price is also consistently significant and it is in 

the range of -0.089 to -0.55. The coefficients of revenues are positive but not always 

significant. The coefficients of the number of stores are positive and significant.  

 The next 5 rows describe the regression results when using the 665 

observations in the 2004 sample. Also here the coefficients of the unit dispersion 

measure are highly significant and stable. The range of the estimated elasticity is 

0.097-0.105 and is slightly higher than the range in the 2005 sample. The elasticity 

reported in Table 6 is 0.106 suggesting that adding the variables does not change the 

estimated elasticity by much.  

The coefficients of the average price in the 2004 sample are significantly 

negative and are in the range (-0.062 to -0.055). The coefficients of revenues and the 

number of stores are positive but not always significant.  

 The last five rows reports the regression results when using the combined  

04-05 sample with 104 weeks and 324 UPCs. The coefficients of the unit dispersion 

measure are in the range (0.078 - 0.089) that is similar to the range in the 2005 sample 

and slightly less than the range in the 2004 sample. The coefficients of the average 

price are in the range (-0.142 to -0.103) that is lower than the range in the previous 
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two samples. The coefficients of revenues and the number of stores are positive but 

not always significant.  

 On the whole, the estimated elasticity of the range dispersion measure with 

respect to the unit dispersion measure is close to 0.1 and is not sensitive to adding 

variables to the regression.  
 

Table 7*: The Main Explanatory Variables; Dependent variable = ln(HLP) 
2005 1 2 3 4 5 6 
ln(HLU) 0.082*** 

(0.007) 
0.082*** 
(0.007) 

 0.078*** 
(0.006) 

 0.094*** 
(0.007) 

ln(Revenues)   0.077*** 
(0.005) 

0.074*** 
(0.004) 

0.043*** 
(0.01) 

0.005 
(0.009) 

#Stores     0.004*** 
(0.001) 

0.009*** 
(0.000) 

ln(Av. Price)  -.059*** 
(0.013) 

-.089*** 
(0.012) 

-.089*** 
(0.012) 

-.072*** 
(0.013) 

-.055*** 
(0.012) 

Adj. R2  0.3306 0.3432 0.415 0.4851 0.4228 0.5171 
2004 1 2 3 4 5 6 
ln(HLU) 0.104*** 

(0.007) 
0.105*** 
(0.007) 

 0.097*** 
(0.007) 

 0.102*** 
(0.007) 

ln(Revenues)   0.052*** 
(0.007) 

0.036*** 
(0.006) 

0.049*** 
(0.011) 

0.008 
(0.010) 

#Stores     0.001 
(0.002) 

0.009*** 
(0.000) 

ln(Av. Price)  -.055*** 
(0.014) 

-.061*** 
(0.015) 

-.062*** 
(0.013) 

-.060*** 
(0.015) 

-.056*** 
(0.013) 

Adj. R2  0.4905 0.5028 0.3746 0.5312 0.3737 0.5393 
04-05 1 2 3 4 5 6 
ln(HLU) 0.089*** 

(0.009) 
0.083*** 
(0.009) 

 0.078*** 
(0.009) 

 0.083*** 
(0.009) 

ln(Revenues)   0.040*** 
(0.007) 

0.031*** 
(0.007) 

0.034** 
(0.013) 

0.007 
(0.012) 

#Stores     0.002 
(0.003) 

0.008* 
(0.003) 

ln(Av. Price)  -.111*** 
(0.021) 

-.142*** 
(0.023) 

-.119*** 
(0.021) 

-.139*** 
(0.024) 

-.103*** 
(0.022) 

Adj. R2  0.5351 0.5721 0.4874 0.594 0.4863 0.6015 
* This Table reports the results of 6 regressions in 3 different samples. The samples are 2005, 2004 
and the combined sample of 04-05. The first column is the name of the explanatory variables. The 6 
regressions include different combinations of the explanatory variables. Each column reports the 
coefficients of a different regression. Standard errors are in parentheses. The dependent variable in all 
6 regressions is the average log difference between the highest and the lowest price. All 6 regressions 
have category dummies (17 + intercept) and 18 size variables. One star (*) denotes p-value of 5%, two 
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stars (**) denote p-value of 1% and three stars (***) denote p-value of 0.1%. The main explanatory 
variable in regression 1 is the log difference between the aggregate number of units sold in the week of 
highest sales and the week of lowest sales (HLU). Regression 2 adds the average log of the price. 
Regression 3 replaces HLU with the log of total revenues. Regression 4 has both HLU and revenues. 
Regression 5 replaces HLU with the number of stores and regression 6 uses all the variables.  
 

 Table 8 reports the regression results when running (41) for each category 

with more than 50 UPCs. As in Table 6, there were 9 such categories in the 2005 

sample, 4 in the 2004 sample and 3 in the combined 04-05 sample. The first row in 

the Table reports the regression result when using the sample of 56 UPCs in the 2005 

beer category. The coefficient of ln(HLU) is positive for all the 9 categories in the 

2005 sample, all the 4 categories in the 2004 sample and for 2 out of the 3 categories 

in the combined sample. The coefficient of ln(HLU) is significant and positive in 12 

out of the 16 regressions and the single negative coefficient is not significant. On the 

whole, the category regressions in Table 8 provide strong support for a positive 

ln(HLU) coefficient, a somewhat weaker support for a negative average price 

coefficient and even weaker support for a positive revenues and number of stores 

coefficients. The results with respect to the size variables are mixed.  
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Table 8*: Separate regressions for selected categories; dependent variable = ln(HLP) 
2005  ln(HLU) ln(Rev) # stores ln(Av.P) Size #UPC Ad. R2  
beer 0.046* 0.025 -0.001 -.105*** 0.068 56 0.34 
carbbev 0.073*** -.076*** 0.015*** 0.025 0.060 144 0.29 
coldcer 0.121*** 0.097** 0.006 -.244*** 0.059 133 0.678 
fzdinent 0.056* 0.165*** -0.008 -0.009 -0.038 75 0.4116 
fzpizza 0.064** 0.037 0.003 -0.155* 0.044 53 0.3854 
milk 0.076* 0.040 0.013*** -0.134* 0.259 64 0.563 
saltsnck 0.186*** 0.004 0.006 -0.068 0.014 120 0.509 
soup 0.026 0.001 0.008 -0.001 0.328*** 74 0.2425 
yogurt 0.092*** 0.034 0.009*** 0.021 -0.035 152 0.647 
        
2004   ln(HLU) ln(Rev) # stores ln(Av.P) Size #UPC Ad. R2  
carbbev 0.048 -0.001 -0.002 -0.073 -0.030 86 0.074 
coldcer 0.102*** 0.158*** -0.003 -.258*** 0.142* 93 0.7857 
saltsnck 0.128*** -0.004 0.016* 0.008 0.006 94 0.5487 
yogurt 0.006 0.063*** -0.003* -.058*** -.145*** 92 0.8483 
        
04-05  ln(HLU) ln(Rev) # stores ln(Av.P) Size #UPC Ad. R2  
carbbev 0.069*** -0.058* 0.017* -0.034 0.094 58 0.2754 
coldcer 0.111*** 0.118** 0.009 -0.180* 0.027 53 0.7437 
yogurt -0.011 0.035*** 0.001 -.110*** 0.081 65 0.8142 
*This Table reports the results of a regression that was run for each category separately in 3 different 
samples. The selected categories have more than 50 UPCs. The first column is the coefficient of the 
unit dispersion measure HLU, and the following 5 columns are the coefficients of the other explanatory 
variables.    

 

6. ROBUSTNESS CHECKS 

 

 Stores may make mistakes in setting prices. These price-setting errors may 

affect price dispersion and the right hand side variables of the regression. The 

problem may not be severe because the dependent variable is the average price 

dispersion over weeks and in large samples price setting mistakes are zero on average. 

But here the average is over 52 (104 in the combined sample) weeks and there may 

still be an endogeneity problem. To address this issue I use the combined sample with 

104 weeks and compute the independent variables on the basis of the first 52 weeks 

and the dependent variable on the basis of the last 52 weeks. The results in Table 9 
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are similar to the results in Table 7 for the combined sample suggesting that 

endogeneity is not important.  

 

Table 9*: Dependent variable = ln(HLP.05) 
 1 2 3 4 5 6 
ln(HLU.04) 0.102***	
  

(0.011)	
  
0.095***	
  
(0.011)	
  

 0.088***	
  
(0.011)	
  

 0.091*** 
(0.011) 

ln(Rev. 04)   0.040***	
  
(0.009)	
  

0.027***	
  
(0.008)	
  

0.035*	
  
(0.014) 

0.011 
(0.013) 

#Stores     0.001	
  
(0.004)	
  

0.005 
(0.003) 

ln(Av. P. 04)  -­‐0.130***	
  
(0.023)	
  

-­‐0.161***	
  
(0.025)	
  

-­‐0.137***	
  
(0.023)	
  

-­‐0.158***	
  
(0.026) 

-.127*** 
(0.024) 

Adj. R2  0.5112 0.557 0.4795 0.5712 0.478 0.5738 
* This Table uses the combined 04-05 sample. The dependent variable is based on the last 52 weeks in 
the sample (in 2005) while the explanatory variables are based on the first 52 weeks (in 2004).    

 

Using the residual unit dispersion measure  

Table 10 replaces the unit dispersion measure in Table 9 with the residual range 

measure of demand uncertainty that is obtained from running the regressions in (12’). 

The coefficients of HLRU are very similar to the coefficients of HLU in Table 10 and 

are in the range of 0.103 to 0.114. The coefficients of the variables suggested by 

search theory are also in line with the previous estimates.  

 

Table 10*: Dependent variable = ln(HLP.05) 
HLRU 0.114*** 

(0.010) 
0.107*** 
(0.010) 

0.103*** 
(0.010) 

0.105*** 
(0.010) 

Ln (Rev. 04)   0.031*** 
(0.008) 

0.012 
(0.012) 

#Stores 
   0.006* 

(0.003) 
Ln (Av. P. 04)  -.121*** 

(0.022) 
-.128*** 
(0.022) 

-.117*** 
(0.022) 

Adj.  0.5631 0.6016 0.6207 0.6245 
* This Table reports the results of 4 regressions using the combined 04-05 sample. The dependent 
variable is the range price dispersion measure that is computed on the basis of the last 52 weeks of the 
sample. The explanatory variable HLRU is the residual unit dispersion measure obtained from (12’). 

R2
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The computation of Ln (Av. Price) and Ln (Revenues) are computed on the basis of the first 52 weeks 
in the sample. 

 

Specification search 

The specification (23) says that price dispersion is increasing in the ratio of the 

amount sold in the highest sale week to the amount sold in the lowest sale week. A 

more general specification may assume that price dispersion is increasing in the 

amount sold in highest sale week and decreasing in the amount sold in the lowest sale 

week. We can thus generalize (41) as follows.  

 

(47)   ln(HLPi ) = b0i + b1i
H ln(Hi )− b1i

L ln(Li )+ ...+   

 = b0i + b1i
H ln(HLUi )+ (b1i

H − b1i
L )ln(Li )+ ...+  

 

The specification (41) is a special case of (47) that assumes: b1i
H = b1i

L . Table 11 

provides the results when running (47). The coefficient of ln(Li )  is not significantly 

different from zero, thus supporting the specification (41).  
 

Table 11*: Dependent variable = ln(HLP) 
 ln(HLU) ln(L) ln(Rev) #Stores ln(Av.Price) Ad R2  
2005 .110*** .042 -.035 .008*** -.010 .5159 
2004 .085*** -.054 .06 .008*** -.109*** .5409 
04-05 .072*** -.032 .037 .008** -.134** .6011 
* These are the regression results when adding the variable ln(L) to the regression (11), where L is the 
amount sold in the lowest sale week. The first row is the regression results for the 2005 sample, the 
second row uses the 2004 sample and the third uses the combined 04-05 sample.   

  
Store effect 

As was illustrated by the example of Table 1, identical stores may choose different 

price strategies and therefore controlling for “store effect” may reduced the measure 

of price dispersion. In the extreme case in which shocks are iid  and stores do not 

change prices, controlling for “store effect” will reduce the measure of price 

dispersion to zero. On the other hand it is possible that stores change prices often but 
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provide different services.10 In this case if we do not control for “store effect” we will 

overestimate price dispersion. 

 In general, “store effect” captures price inertia and services. Ideally we would 

like to capture only the services part but this is not possible. We can however, 

estimate an upper bound on the services component. To do that, I used the 04-05 

sample with 324 UPCs and 104 weeks and ran 324 regressions of price logs on store 

dummies.   

(48)  ln(Pijt ) = ai + bij (store− dummy)+ eijt  

Here i  is a UPC index, j  is a store index and t indexes the week. Note that the “store 

effect” is UPC specific. The reason is that product placement is important. One store 

can consistently place UPC i  in a relatively visible location.  

 I then replace the log of prices by the residuals from (48). In detail: 

eit
H = max j (eijt )= the highest residual for UPC i  in week t 

eit
L = min(eijt )  = the lowest residual for UPC i  in week t 

The log difference of the price residuals is: ln(HLRPit ) = eit
H − eit

L . The variable   

ln(HLRPi )  is the average of ln(HLRPit )  over 104 weeks. The column ln(HLRP) 

reports the average of ln(HLRPi )  over all the UPCs in the category. The average log 

difference, reported in the last row of Table 12 is 0.31. This is 6 percentage points less 

than the average log difference when not controlling for a store effect reported in the 

last row of the column ln(HLP). Similarly, SDPRit  is the standard deviation of eijt  

over stores ( j)  in week t  and SDRPi  is the average of SDPRit  over weeks. The last 

column in Table 12, labeled “SDRP” is the average of SDPRi  over all the UPCs in 

the category. The average standard deviation over all UPCs is 0.11 (in the last row of 

                                                
10 The two possibilities are not easy to distinguish even in principle. The “quality” of the store may be 

judged by the variety of the product it offers and more generally, by the probability of a stock-out: At 
the same price, a buyer prefers a store that he can find everything that is on his shopping list. But 
according to our model, the probability of a stock-out is higher for a low price store. We should 
therefore think of a store quality as attributes like location, cleanliness, average length of the line at 
the exit and parking availability. 
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the last column). This is 2 percentage point less than the average standard deviation 

when not controlling for store effect.  

 The upper bound on the amount of price dispersion caused by difference in 

services is thus 16% (= 6/37) if we use the range measure and 15% (= 2/13) if we use 

the standard deviation measure. This is an upper bound because as I said before the 

reduction in the price dispersion measures due to removing the “store effect” may 

occur because of price inertia rather than difference in services.  

 Table 13 is a correlation matrix that repeats the correlations in Table 5 for the 

04-05 sample and adds the correlations with the new price dispersion measures that 

control for “store effects”.  As we can see the correlation between the “old” and the 

“new” measures is about 0.9. The correlation between the “new” measures ln(HLRP) 

and SDRP is 0.98 and is similar to the correlation between the “old” measures. What 

is striking is that the correlation between the unit dispersion measures and the “new” 

price dispersion measures is higher than the correlation between the unit dispersion 

measures and the “old” dispersion measures. For example, the correlation between 

SDU and SDP is 0.53 and this is less than the correlation between SDU and SDRP 

that is 0.62. This suggests that the “store effect” dummy captures some differences in 

services and not merely price inertia.  

 Table 14 reports the results of running ln(HLRP) on ln(HLU). Comparing 

with the bottom of Table 6, it reveals higher coefficients of ln(HLU). Table 15 is the 

results of running ln(HLRP) on ln(HLU) and other variables. Comparing these results 

to the bottom rows of Table 7 reveals that the coefficient of ln(HLU) is now higher 

and the coefficient of ln(avgPrice) is lower (higher in absolute value).  Table 16 is the 

results of running the standard deviation measure SDRP on SDU and other variables. 

Comparing these results with the bottom rows of Table A1 reveals that now the 

coefficient of SDU are higher and the coefficients of ln(avgPrice) are somewhat 

lower.  
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Table 12: Summary statistics for the 04-05 sample with and without fixed “store 
effect” 
	
   #UPC	
   ln(HLU)	
   SDU	
   ln(HLP)	
   SDP	
   ln(HLRP)	
   SDRP	
  
beer	
   20	
   1.27	
   0.27	
   0.18	
   0.06	
   0.13	
   0.04	
  
carbbev	
   58	
   1.80	
   0.39	
   0.39	
   0.13	
   0.34	
   0.12	
  
coldcer	
   53	
   2.31	
   0.51	
   0.45	
   0.17	
   0.40	
   0.14	
  
fzpizza	
   12	
   1.66	
   0.32	
   0.40	
   0.14	
   0.30	
   0.10	
  
margbutr	
   18	
   1.53	
   0.32	
   0.53	
   0.19	
   0.41	
   0.14	
  
milk	
   23	
   0.85	
   0.17	
   0.36	
   0.12	
   0.25	
   0.08	
  
peanbutr	
   11	
   1.44	
   0.28	
   0.35	
   0.12	
   0.24	
   0.08	
  
saltsnck	
   42	
   1.50	
   0.32	
   0.31	
   0.11	
   0.29	
   0.10	
  
soup	
   22	
   1.99	
   0.43	
   0.40	
   0.13	
   0.29	
   0.09	
  
yogurt	
   65	
   1.29	
   0.27	
   0.35	
   0.13	
   0.32	
   0.11	
  
Total	
   324	
   	
   	
   	
   	
   	
   	
  
average	
   	
   1.62	
   0.35	
   0.37	
   0.13	
   0.31	
   0.11	
  
* The first column is the category name. The second is the number of UPCs in the category. The next 
two columns are measure of demand uncertainty and the following two columns are measures of price 
dispersion that are comparable to the measures in Table 4 for the 05 sample. The last two columns are 
measures of price dispersion that control for a “store effect”. The last row is the average across all the 
324 UPCs.  
  
 
Table 13*: Correlations between unit dispersion measures, “old” price dispersion measures and “new” 
price dispersion measures 
	
   lnHLU	
   SDU	
   lnHLP	
   SDP	
   lnHLRP	
   SDRP	
  
lnHLU	
   1	
   	
   	
   	
   	
   	
  
SDU	
   0.97	
   1	
   	
   	
   	
   	
  
lnHLP	
   0.47	
   0.51	
   1	
   	
   	
   	
  
SDP	
   0.5	
   0.53	
   0.97	
   1	
   	
   	
  
lnHLRP	
   0.55	
   0.6	
   0.91	
   0.9	
   1	
   	
  
SDRP	
   0.58	
   0.62	
   0.87	
   0.9	
   0.98	
   1	
  
* This correlation matrix uses the 04-05 sample with 324 UPCs. The “new” price dispersion measures 
(lnHLRP and SDRP) use the residuals from the regression of price log on store dummies. The “old” 
price dispersion measures (lnHLP and SDP) use price logs and do not control for store effects. The unit 
dispersion measures (lnHLU and SDU) are based on aggregate amounts sold.  
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Table 14: Running ln(HLRP) on ln(HLU) 
l Intercept lnHLU #UPC Adj. R2  
carbbev 0.266*** 0.044** 58 0.144 
coldcer 0.087 0.134*** 53 0.472 
yogurt 0.242*** 0.060* 65 0.077 
All 0.161*** 0.095*** 324 0.306 

 

Table 15*: Running ln(HLRP) on ln(HLU) and other variables. 
 1 2 3 4 5 6 

lnHLU 
0.103*** 
(0.010) 

0.097*** 
(0.009)  

0.091*** 
(0.009)  

0.096*** 
(0.009) 

ln(Rev)   
0.046*** 
(0.009) 

0.035*** 
(0.008) 

0.040** 
(0.013) 

0.008 
(0.012) 

#Stores     
0.002 

(0.003) 
0.009** 
(0.003) 

ln(avgPrice)  
-0.133*** 

(0.022) 
-0.169*** 

(0.024) 
-0.142*** 

(0.021) 
-0.165*** 

(0.025) 
-0.123*** 

(0.022) 
Adj. R2  0.497 0.550 0.437 0.580 0.436 0.590 
* This is the same as Table 6 with a different dependent variable.  

Table 16*: Running SDRP on SDU and other variables.  
 1 2 3 4 5 6 

SDU 
0.179*** 
(0.012) 

0.171*** 
(0.012)  

0.165*** 
(0.012)  

0.169*** 
(0.012) 

ln(Rev)   
0.013*** 
(0.003) 

0.006* 
(0.002) 

0.017*** 
(0.005) 

0.001 
(0.004) 

#Stores     
-0.001 

(0.001) 
0.002 

(0.001) 

ln(avgPrice)  
-0.033*** 

(0.007) 
-0.048*** 

(0.008) 
-0.035*** 

(0.007) 
-0.050*** 

(0.009) 
-0.031*** 

(0.007) 
Adj. R2  0.619 0.646 0.440 0.652 0.440 0.654 
*This is the same as Table A1 with a different dependent variable.  
 
 

7.  QUANTITATIVE IMPORTANCE  

 

 We have seen that the coefficients of the measures of demand uncertainty are 

statistically significant and relatively stable across samples. To get a sense of the 

economic significance I ask what will be the average price dispersion in a 

hypothetical world in which there is no demand uncertainty and the aggregate amount 

sold per week is constant over time.  
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 Ideally we should focus on the dispersion of services adjusted prices or “true” 

prices defined by:  

(49)  Pijt
* =

Pijt
Sij

 

where Pijt
*  is the “true” price, Pijt  is the observed price and Sijt  is a measure of 

services provided by the store. Thus a price of 1 dollar in store 1 is equivalent to a 

price of 1.1 dollars in store 2 if store 2 provides 10% more services. I assume that the  

“true” price is the relevant price for both the buyer and the seller.11 

 The “true” price has a regular price component (Rij )  and a temporary element 

(Tijt ) : 

(50)  Pijt
* = RijTijt  

 The regular price reflects the choice between average capacity utilization and 

price. The temporary element may reflect changes that are required to achieve a UST 

equilibrium (this cannot be achieved if all stores stick to their regular price - see the 

example in Table 1). It may also reflect the desire to discriminate between shoppers 

and non-shoppers as in Varian (1980).  

 I therefore assume that the temporary element in the price has two 

components: one that is required to achieve UST equilibrium (uijt )  and one that 

reflects discrimination (dijt ) . I assume Tijt = uijidijt  and write (50) as:     

 (51) Pijt
* = Rijuijidijt  

 In an hypothetical world with no demand uncertainty the first two components 

in (51) are constants and we can write  

(52)  Pijt
*H = kidijt  

where ki  is a constant and the discrimination component dijt  varies over stores and 

time.  

                                                
11 Thus a buyer in the UST model will choose to buy at the cheapest available “true” price. The seller 

will first choose the amount of services provided by the store. This cannot be easily changed and may 
be treated as a constant in the short run. He then chooses the price taking into account the probability 
of making a sale that is determined by the “true” price. 
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The range measure 

Using (52) I write the ratio of the high to low hypothetical “true” prices as: 

(53)  HLP*Hit =
max j{Pijt

*H }
min j{Pijt

*H }
=
max j{dijt}
min j{dijt}

 

Using (51) I write the ratio of the high to low “true” price as:  

(54)  HLPit
* =
max j{Pijt

*}
min j{Pijt

*}
=
max j{Rijuijtdijt}
min j{Rijuijtdijt}

 

Dividing (53) by (54) leads to: 

(55)  
HLP*Hit

HLPit
* =

max j{dijt}
min j{dijt}

min j{Rijuijtdijt}
max j{Rijuijtdijt}

 

The ratio (55) is a measure of the importance of demand uncertainty: The lower this 

ratio is the more important is demand uncertainty in determining price dispersion. 

Unfortunately, we do not observe the “true” price and its components. But under 

certain conditions we can use the observed price and its components to estimate (55).  

 The “true” price is the price net of services. I define a gross price that includes 

services by Pijt
*Sij . The ratios of the gross prices that are analogous to (53) and (54) 

are:   

 (56) HLPHit =
max j{Pijt

*HSij}
min j{Pijt

*HSij}
=
max j{dijtSij}
min j{dijtSij}

;    HLPit =
max j{RijuijtdijtSij}
min j{RijuijtdijtSij}

 

And the “importance” measure analogous to (55) is: 

(57)  
HLPHi

HLPi
=
max j{dijtSij}
min j{dijtSij} i

min j{RijuijtdijtSij}
max j{RijuijtdijtSij}

 

The measure (57) is the same as the ideal measure (55) if Sij  is a constant that does 

not vary across stores. It is also the same as (55) if variation in Sij  are important and 

can be “factored out” in the following way.  
(58) max j{x jSj} = max j{x j}max j{Sj} ; min j{x jSj} = min j{x j}min j{Sj}   
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where x j  denotes other components of the store’s price.12 This says that when 

services dominates the store with the highest price has the highest level of services 

and the store with the lowest price has the lowest level of services.  

 The “factoring out” property (58) may also hold when we have a large number 

of stores. To illustrate, I consider the case in which the x j  and Sj  are independently 

distributed and each may take two possible realizations: high (H )and low (L)  with 

equal probability of occurrence. With 20 stores (the average number of stores in the 

2005 sample) the probability that the maximum of the product xS  occurs when both 

random variables realize the high realization is:  

Prob{max(xS = HH )} = 1− (12)20( )2 = 0.999998  

When the number of stores is 11 (the minimum number of stores in our samples) this 

probability drops to 0.998. When the number of stores is sufficiently large we can 

therefore use the following approximation.  

 (59) 
HLPHi

HLPi
≈
max j{dijt}max j{Sij}
min j{dijt}min j{Sij}

min j{Rijuijtdijt}min j{Sij}
max j{Rijuijtdijt}max j{Sij}

= HLP*Hi

HLPi
*  

 I also use the price net of store effect. This is not the “true” price because 

controlling for “store effect” eliminates variation in both services and the regular 

price, rather than just variations in services.  

 The ratio of prices net of store effect that is analogous to (53) and (54) is:   

(60)  HLRHi =
max j{dijt}
min j{dijt}

 ; HLRi =
max j{uijtdijt}
min j{uijtdijt}

 

And the ratio analogous to (55) is:  

(61)  HLRHit

HLRit
=
max j{dijt}
min j{dijt}

min j{uijtdijt}
max j{uijtdijt}

 

This will equal (55) only if there is no price inertia and Rij  is a constant that does not 

vary across stores or if we can “factor out” Rij  in a way similar to the “factoring out” 

of Sij  in (58).  

                                                
12 In general, max j{x jSj} ≤max j{x j}max j{Sj}  and min j{x jSj} ≥min j{x j}min j{Sj} . 
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The variance measure  

To simplify, I assume that the “true” price does not depend on the level of services. A 

store that provides good services can offer a good deal and have a low “true” price. I 

also assume that the three components of the “true” price are independently 

distributed. Thus the probability of a “sale” is the same for “high true regular price” 

store and for “low true regular price stores”. This simplifies the exposition but the 

main results hold if we allow for a positive correlation between the “true price” and 

services. 

 Writing (49) and (51) in log terms leads to:  

(62) ln(Pijt ) = ln(Sij )+ ln(Rij )+ ln(uijt )+ ln(dijt )  

(63)  ln(Pijt
* ) = ln(Rij )+ ln(uijt )+ ln(dijt )  

After removing “store effect” we are left with the temporary components of the price: 
(64)  eijt = ln(uijt )+ ln(dijt )  

 The elimination of demand uncertainty will eliminate UST type reasons for price 

dispersion: The variation in regular true price and in temporary true price due to non-

discrimination. We can therefore compute the variances of the hypothetical prices by 
substituting Var(lnRij ) =Var(lnuijt ) = 0  in (62)-(64). This leads to:  

(65)  Var(lnPijt
H ) =Var(lnSij )+Var(lndijt )  

(66)  Var(lnPijt
*H ) =Var(lneijt

H ) =Var(lndijt )    

 The ideal measure of the importance of demand uncertainty is: 

(67) 
Var(lnPijt

*H )
Var(lnPijt

* )
=
Var(lndijt )
Var(lnPijt

* )
 

 The measure that does not control for “store effect” is:  

(68) 
Var(lnPijt

H )
Var(lnPijt )

=
Var(lnSij )+Var(lndijt )
Var(lnSij )+Var(lnPijt

* )
 

This measure is the same as the ideal measure (67) when all stores provide the same 

services and Var(lnSij ) = 0 . Otherwise it is higher than the ideal measure.  
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 The measure that controls for “store effect” is: 

(69) 
Var(lneijt

H )
Var(lneijt )

=
Var(lndijt )

Var(lnuijt )+Var(lndijt )
 

This measure is the same as the ideal measure (67) if there is no price inertia and 
Var(lnRij ) = 0 . Otherwise, it is higher than the ideal measure. 

 Since both (68) and (69) are larger than the ideal measure, it follows that:  

 (70)  1−
SD(lnPijt

H )
SD(lnPijt )

<1−
SD(lnPijt

*H )
SD(lnPijt

* )
 and 1−

SD(eijt
H )

SD(eijt )
<1−

SD(lnPijt
*H )

SD(lnPijt
* )

 

The first inequality says that the percentage reduction in the standard deviation of the 

gross prices is less than the ideal measure of the percentage reduction. The second 

inequality says that the percentage reduction in the prices net of store effect is less 

than the ideal measure of the percentage reduction.  

 
 
Estimation 

I now attempt to estimate the effect of eliminating demand uncertainty for an 

“average” UPC (that is for a UPC with the average unit dispersion and the average 

price dispersion).  

 Table 17 focuses on the range measures. The category name is in the first 

column. The second column (C1) is the coefficient of ln(HLU) in the regression of 

ln(HLP) on ln(HLU) and other variables (taken from Table 7). This coefficient is 

0.094 for the 2005 sample, 0.102 for the 2004 sample and 0.083 for the combined  

04-05 sample. The third column is the average of the log of the high to low price ratio 

in the sample. These are 0.34, 0.38 and 0.37. The average ratios (anti-logs) are 1.4, 

1.46 and 1.45. The forth column ln(HLPH) is the hypothetical ratio of high to low 

price computed as: ln(HLPH) = ln(HLP) - C1*ln(HLU), where HLU is the average 

high-low ratio in the sample. These are 0.21, 0.21 and 0.24. The hypothetical anti-logs 

are 1.23, 1.23 and 1.27. The fifth and the sixth columns are the estimated percentage 

reduction in price dispersion that will follow the elimination of demand uncertainty. 
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The fifth column uses the logs while the sixth column uses the actual ratio (the anti-

logs). As we can see from the last column, the percentage reduction is between 41 and 

48 percent.   

 Table 18 focuses on the standard deviation measure of dispersion. The second 

column is the coefficient (C2) of SDU in a regression of SDP on SDU and other 

variables. The third column is the average SDP in the sample. The forth column is the 

hypothetical SDP calculated as: SDPH = SDP - C2*SDU, where SDU is the average 

in the sample. The last column is the estimated effect of demand uncertainty on price 

dispersion. As can be seen the elimination of demand uncertainty will reduce the 

standard deviation by 39-44 percent.  

 Tables 19 and 20 repeat the hypothetical experiment after controlling for 

“store effect”. In this case, the elimination of demand uncertainty will reduce price 

dispersion by 54 percent.  

 

Table 17*: The hypothetical range measure  

Sample	
   C1	
   	
   	
  
	
   	
  

05	
  
0.094	
  

(0.087,0.101)	
   0.34	
  
0.21	
  

(0.20,0.23)	
  
0.39	
  

(0.37,0.42)	
  
0.44	
  

(0.41,0.47)	
  

04	
  
0.102	
  

(0.095,0.109)	
   0.38	
  
0.21	
  

(0.20,0.23)	
  
0.43	
  

(0.40,0.46)	
  
0.48	
  

(0.45,0.51)	
  

04-­‐05	
  
0.083	
  

(0.074,0.092)	
   0.37	
  
0.24	
  

(0.22,0.25)	
  
0.36	
  

(0.32,0.40)	
  
0.41	
  

(0.37,0.45)	
  

*The first column is the sample used. The second is the coefficient of ln(HLU) taken from Table 7. In 
parenthesis are the lower and upper bounds of the estimated coefficients. Thus for example, in 2005 the 
estimated coefficient is 0.094 and the standard error is 0.007. The lower bound of the coefficient is 
0.094-0.007 = 0.087 and the upper bound is 0.094+0.007 = 0.101. The third column is the average 
lnHLP in the data. The fourth is the hypothetical lnHLP calculated as:  
Ln(HLPH)=ln(HLP) - C1*Ln(HLU), where Ln(HLU) is the average of the log HLU in the data. In 
parenthesis are the calculation when using the lower and upper bound of C1. The fifth and sixth 
columns is the percentage decline in price dispersion. The fifth is the ratio of the log difference 
(lnHLP-lnHLPH) to lnHLP and the last column is the ratio of the percentage difference HLP-HLPH to 
HLP-1. In parentheses are the computation when using the lower and upper bounds of C1. 

 

lnHLP lnHLPH
lnHLP ! lnHLPH

lnHLP
HLP ! HLPH
HLP !1
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Table 18*: The hypothetical standard deviation measure 

Sample	
   C2	
   	
   	
  
	
  

	
  05	
  
0.147	
  

(0.139,0.155)	
   0.11	
  
0.063	
  

(0.061,0.066)	
  
0.44	
  

(0.41,0.46)	
  

04	
  
0.152	
  

(0.143,161)	
   0.13	
  
0.077	
  

(0.073,0.080)	
  
0.43	
  

(0.40,0.46)	
  

04-­‐05	
  
0.145	
  

(0.133,0.157)	
   0.13	
  
0.079	
  

(0.075,0.083)	
  
0.39	
  

(0.36,42)	
  
* The second column is the coefficient of SDU taken from Table A1 (upper and lower bounds in 
parenthesis). The third is the average SDP in the data. The fourth is the hypothetical SDP calculated as: 
SDPH = SDP - C2*SDU. The last column is the ratio of the difference SDP-SDPH to SDP.  

 
Table 19*: The hypothetical range measure after controlling for “store effects” 

Sample	
   C1	
   ln(HLRP)	
   ln(HLRPH)	
  
	
   	
  

04-­‐05	
  	
  
0.096	
  
(0.087,0.105)	
   0.31	
  

0.15	
  
(0.14,0.17)	
  

0.5	
  
(0.45,0.55)	
  

0.54	
  
(0.49,0.59)	
  

* The Table reports the hypothetical experiment results after controlling for “store effect”. The 
coefficient of ln(HLU) is from Table 15 (lower and upper bounds in parenthesis), the ratio of the 
residual ln(HLRP) is 0.31 (Table 12), the hypothetical ratio is Ln(HLRPH) = ln(HLRP)-(C1)ln(HLU) 
= 0.15 and the percentage reduction in the dispersion measures due to the elimination of unit dispersion 
are 0.5 and 0.54. 
 
 
 
Table 20*: The hypothetical standard deviation measure after controlling for “store 
effects” 

Sample	
   C2	
   SDRP	
   SDRPH	
  
	
  

04-­‐05	
  	
  
0.169	
  

(0.157,0.181)	
   0.11	
  
0.051	
  

(0.047,0.055)	
  
0.54	
  

(0.50,0.58)	
  
 * The second column is the coefficient of SDU taken from Table 16. The third column is the standard 
deviation of the residuals taken from Table 12. The fourth column is the hypothetical standard 
deviation calculated as SDRPH = SDRP - (C2)SDU = 0.051 where SDU is from Table 12. The last 
column is the percentage reduction in the standard deviation that will follow the elimination of demand 
uncertainty.  
 

 Using the inequalities in (70) we may say that eliminating demand uncertainty 

will reduce the standard deviation measure of “true” price dispersion by more than 54 

percent. This is a big effect.   
 
 

SDP SDPH
SDP ! SDPH

SDP

lnHLRP ! lnHLRPH
lnHLRP

HLRP ! HLRPH
HLRP !1

SDRP ! SDRPH
SDRP
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8. CONCLUDING REMARKS 

 

Consistent with the theory, I find that price dispersion is increasing in 

measures of unit dispersion. To check for robustness, I include in the regressions three 

variables suggested by search and discrimination theories: The number of stores that 

sell the good, total revenues from selling the good and the average price of the good. 

The inclusion of the additional variables does not change the unit dispersion 

coefficient by much. This coefficient is about 0.1 when using the range measures of 

dispersion, and about 0.15 when using the standard deviation measures of dispersion. 

Out of the additional variables used, the average price is the only one with a stable 

and significant effect. As in Pratt et. al. (1979), higher average price reduces price 

dispersion. 

The effect of demand uncertainty on price dispersion has economic as well as 

statistical significance. Our estimates suggest that eliminating demand uncertainty 

will on average, reduce the cross sectional standard deviation of the price log by more 

than 50%.  
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Figure 2: A plot of the data in Table 3 (example) 
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A. The Sample of 8602 UPCs sold by more than 1 store. 

 
 

 
B. The sample of 4537 UPCs sold by more than 10 stores  

 
Figure 3: Cumulative shares for the week starting January 17, 2005. 

UPCs are ordered from low to high price dispersion (HLP) 
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A. The Cumulative Frequency Distribution of the log difference 
between the highest and the lowest price averaged over weeks 

(ln[HLP]). 
 

  
B. Cumulative Shares in totals. UPCs are ordered from low to high 

price dispersion (HLP) 
 

Figure 4: Price dispersion in the sample of 1084 UPCs sold by more than 10 stores in 
all the weeks of 2005  
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A. Using the residuals from (12) 

 
 

 
B. Using the residuals from (12’) 

 
Figure 5: Cumulative shares in totals. UPCs are ordered from low to high price 
dispersion in 2005 (HLP05). HLRU is the residual range measure of unit dispersion. 
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APPENDIX: USING THE STANDARD DEVIATION AS A MEASURE OF 

DISPERSION 

 

 This Appendix replaces the range dispersion measures (HLP,HLU ) in Tables 

7 - 10 with the standard deviation dispersion measures ( SDP,SDU ).  

 

Table A1*: The Main Explanatory Variables; Dependent variable = SDP 
2005 1 2 3 4 5 6 
SDU 0.136*** 

(0.009) 
0.136*** 
(0.009) 

 0.129*** 
(0.008) 

 0.147*** 
(0.008) 

ln(Revenues)   0.018*** 
(0.002) 

0.016*** 
(0.001) 

0.014*** 
(0.01) 

-0.002 
(0.003) 

#Stores     0.000 
(0.000) 

0.002*** 
(0.000) 

ln(Av. Price)  -.016*** 
(0.004) 

-.022*** 
(0.004) 

-.022*** 
(0.004) 

-.021*** 
(0.004) 

-.013*** 
(0.004) 

Adj. R2  0.4203 0.429 0.3751 0.4963 0.3754 0.5179 
       
2004 1 2 3 4 5 6 
SDU 0.159*** 

(0.009) 
0.160*** 
(0.009) 

 0.151*** 
(0.009) 

 0.152*** 
(0.009) 

ln(Revenues)   0.016*** 
(0.002) 

0.008*** 
(0.002) 

0.024*** 
(0.004) 

0.007* 
(0.003) 

#Stores     -0.002** 
(0.001) 

0.000 
(0.001) 

ln(Av. Price)  -.018*** 
(0.004) 

-.018*** 
(0.005) 

-.019*** 
(0.004) 

-.020*** 
(0.005) 

-.019*** 
(0.004) 

Adj. R2  0.57 0.5807 0.3964 0.5912 0.402 0.5907 
       
04-05 1 2 3 4 5 6 
SDU 0.154*** 

(0.012) 
0.147*** 
(0.011) 

 0.143*** 
(0.012) 

 0.145*** 
(0.012) 

ln(Revenues)   0.010*** 
(0.003) 

0.004 
(0.002) 

0.015*** 
(0.004) 

0.001 
(0.004) 

#Stores     -0.002 
(0.001) 

0.001 
(0.001) 

ln(Av. Price)  -.030*** 
(0.006) 

-.043*** 
(0.008) 

-.031*** 
(0.006) 

-.046*** 
(0.008) 

-.029*** 
(0.007) 

Adj. R2  0.6402 0.6631 0.5002 0.6654 0.5019 0.6651 
* See notes to Table 7. 
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Table A2*: Separate regressions for selected categories; dependent variable = SDP 
2005  SDU ln(Rev) # stores ln(Av. P) Size Adj. R2  
beer 0.061* 0.012 -0.001 -0.044*** 0.023 0.4571 
carbbev 0.075** -0.017* 0.003*** 0.012 -0.009 0.1205 
coldcer 0.152*** 0.029* 0.001 -0.083*** 0.020 0.6525 
fzdinent 0.135** 0.028 -0.002 0.007 -0.028 0.3403 
fzpizza 0.135** 0.004 0.001 -0.037 0.002 0.3608 
milk 0.124* 0.003 0.004*** -0.035 0.085 0.3851 
saltsnck 0.251*** 0.000 0.001 -0.003 -0.015 0.607 
soup 0.147*** -0.022 0.002 -0.012 0.092* 0.3697 
yogurt 0.084** 0.015 0.002*** 0.012* -0.044** 0.6344 
       
2004  SDU ln(Rev) # stores ln(Av. P) Size Adj. R2  
carbbev 0.044 0.011 -0.005 -0.013 -0.069 0.071 
coldcer 0.142*** 0.054*** -0.003 -0.096*** 0.039 0.8089 
saltsnck 0.168*** 0.008 0.002 -0.002 0.025 0.6056 
yogurt 0.016 0.025*** -0.003*** -0.021*** -0.056*** 0.8471 
       
04-05  SDU ln(Rev) # stores ln(Av. P) Size Adj. R2  
carbbev 0.094*** -0.017* 0.004 -0.004 0.003 0.2116 
coldcer 0.186*** 0.028* 0.002 -0.049* -0.004 0.8177 
yogurt -0.016 0.010*** -0.001* -0.041*** 0.028 0.8227 
* See notes to Table 8. 

 

Table A3: Dependent variable = SDP.05  
05y-04x 1 2 3 4 5 6 
SDU. 04 0.147*** 

(0.013) 
0.140*** 
(0.012) 

 0.137*** 
(0.013) 

 0.138*** 
(0.013) 

ln(Rev. 04)   0.009** 
(0.003) 

0.003 
(0.003) 

0.013** 
(0.005) 

0.002 
(0.004) 

#Stores     -0.002 
(0.001) 

0.000 
(0.001) 

ln(Av. P. 04)  -.035*** 
(0.007) 

-.046*** 
(0.008) 

-.035*** 
(0.007) 

-.048*** 
(0.009) 

-.035*** 
(0.007) 

Adj. R2  0.5839 0.6122 0.4654 0.6125 0.4665 0.6114 
* See notes to Table 9. 
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Table A4*: Dependent variable = SDP.05 
SDRU 0.170*** 

(0.013) 
0.162*** 
(0.009) 

0.159*** 
(0.013) 

0.161*** 
(0.013) 

Ln (Av. P. 04)  -.033*** 
(0.007) 

-.035*** 
(0.007) 

-.033*** 
(0.007) 

Ln(Rev. 04)   0.005* 
(0.002) 

0.003 
(0.004) 

#Stores 
   0.001 

(0.001) 
Adj. R2  0.6178 0.6441 0.6476 0.6471 
* See notes to Table 10. 
 
 

 


