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1. INTRODUCTION 

 

 Deviations from the law of one price are a challenge for the understanding of 

market-based economies. Among the explanation proposed are price discrimination, 

search frictions and sticky prices. Here I use scanner data on supermarket prices in 

Chicago to study the role of aggregate demand uncertainty.   

 I find that on average, more than 40% of the cross sectional standard deviation 

of log prices is due to demand uncertainty. This finding is consistent with Prescott 

(1975) type models that focus on demand uncertainty as the reason for price 

dispersion.  

 The original Prescott (1975) model assumed that prices are set in advance and 

cheaper goods are sold first. In Eden (1990) I relax the price rigidity assumption and 

describe a sequential trade process in which cheaper goods are sold first. In this 

model, that I call the Uncertain and Sequential Trade (UST) model, buyers arrive at 

the market place sequentially. Each buyer sees all available offers, buys at the 

cheapest available price and disappears. Sellers must make irreversible selling 

decisions before they know the realization of aggregate demand. In equilibrium they 

are indifferent between prices that are in the equilibrium range because the selling 

probability is lower for higher prices. Sellers in the model make time consistent plans 

and do not have an incentive to change prices during the trading process. Prices are 

thus completely flexible.1 

 Although prices are completely flexible, they may appear to be sticky. In Eden 

(1994), I argued that to maintain the equilibrium price distribution it is enough that 

only some sellers will change their prices. A seller who does not change his price may 

find that his real price has been eroded by inflation. But if the price remains in the 

equilibrium range, this seller is fully compensated by an increase in the probability of 

                                                
1 There are versions of the Prescott model that assume price rigidity. See for example, Dana (1998, 

1999, 2001) and Deneckere and Peck (2012).  
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making a sale. This type of reasoning holds also for the Burdett and Judd (1983) 

model used by Head et.al. (2012). In their model, a seller whose price has been eroded 

by inflation is compensated by an increase in the volume of sales. Head et.al go 

further and show that a model that delivers equilibrium price dispersion can account 

for many of the stylized fact about price changes. Since their results depend mainly on 

the assumption that sellers are indifferent among prices in the equilibrium price range 

they should also hold for the UST model.2  

 There are, however important differences between the predictions of the UST 

model and menu cost models regarding the behavior of the cross sectional price 

distribution. Menu cost models tend to imply a positive relationship between inflation 

and measures of cross sectional price dispersion. In Eden (2001) I examined high and 

moderate inflation periods in Israel and found no relationship between the cross 

sectional price dispersion and inflation. Ahlin and Shintani (2007) compared price 

dispersion in Mexico under two regimes. They found that price dispersion is lower in 

the high inflation regime but argue that this may be due to decrease establishment 

heterogeneity.   

 A related issue is the speed of adjustment of the cross sectional price 

distribution. Menu cost models and time dependent models imply a slow adjustment 

to shocks while equilibrium price dispersion models imply a fast adjustment. Baharad 

and Eden (2004) used a VAR impulse response analysis and find that a shock that 

leads to an increase in the average (across stores) rate of price change does not affect 

the standard deviation of the cross sectional price distribution. This supports the 

hypothesis that the adjustment of the cross sectional price distribution is fast.   

                                                
2 There are of course some unresolved puzzles about price changes. One is the finding that the 

probability of a price change declines with the time since the last price change. See, Campbell and 

Eden (2014). In menu cost models sellers adjust prices when the distance from the desired price is 

large. Since the distance from the desired price is likely to be small for prices that were recently 

changed, the finding of a declining hazard function is a challenge for menu costs models. It is less of a 

challenge for equilibrium price dispersion models that assume no costs for changing prices.  
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 As was said above, the UST model uses uncertainty about aggregate demand 

to generate equilibrium price dispersion.3 Here I use variations in the predictability of 

aggregate demand across goods to assess the importance of demand uncertainty in 

price dispersion.  

 An important by-product of the analysis is a theory of temporary sales. In a 

UST model that allows for storage, a good that is not sold is carried as inventories to 

the next period. Since in the model some units are sold and some are not, typically 

there is heterogeneity in the "age" of the units. Units that are closer to their expiration 

date are offered at a low price to maximize the probability of making a sale and 

minimize the probability that they will reach the expiration date before being sold. A 

store may therefore start at a relatively high "regular price" and then if it fails to make 

a sale switch to a low price until the level of inventories get back to "normal". This is 

related to Aguirregabiria (1999) who focused on fixed costs for changing prices and 

fixed delivery costs. It is also related to Kehoe and Midrigan (2015) who argue that 

the cost of temporary price changes is lower than the cost of regular price changes and 

therefore a store will use temporary sales to respond to temporary shocks.  

 I use the data set from Information Resources, Inc. (IRI) on supermarket 

prices. This data set is large and has a very narrow definition of goods (at the UPC-

week level). The narrowness of the good definition has been a problem in other 

studies of price dispersion. For example, Lach (2002) reviewed the list of products in 

                                                
3 There is no uncertainty about aggregate demand in search models of price dispersion and therefore 

getting price dispersion in search models is a challenge. Diamond (1971) was the first to point out the 

difficulty. In his model the equilibrium price distribution is degenerate and all firms post the monopoly 

price. Diamond assumed that buyers sample one firm at a time. Burdett and Judd (1983) allowed for 

sampling more than one selling offer per period and show that price dispersion will arise if the 

probability of sampling more than one seller is between zero and one. If however the probability of 

sampling more than one seller goes to one we will converge to a single price equilibrium in which all 

firms post the competitive price. If the probability of sampling more than one seller goes to zero we 

will converge to a single price equilibrium in which all firms post the monopoly price (as in the 

Diamond model). For other search models of price dispersion, see Reinganum (1979), Rob (1985) and 

Stahl (1989).  
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the Israeli CPI and found 31 products with precise labels. Out of these 31 products he 

chose 5 (refrigerator and 4 food items) that had also a weight measure.  

 Kaplan and Menzio (2015) use the Kilts-Nielsen data set that tracks the 

shopping for food behavior of approximately 50,000 households. They define a good 

by its bar code and the quarter that it was sold. Their study focuses on characterizing 

the typical price distribution and the characteristics of the households who get cheap 

deals.  

 The tradeoff between the narrowness of the good definition and the sample 

size is also present in studies of price dispersion in the airline industry. Escobari 

(2012) collected data on ticket prices for 81 flights (route-date combinations). Gerardi 

and Shapiro (2009) and Cornia, Gerardi and Shapiro (2012) use large publicly 

available data on airline tickets (the DB1B data set) but unlike Escobari’s data, a 

flight is a route-quarter combination. Here the data set is large and the definition of 

the good is as narrow as one can hope for.4  

 Section 2 is about the underlying theory. Section 3 discusses implementation 

issues. Section 4 describes the data. Section 5 is the estimation results. Robustness 

checks are in section 6 and the quantitative importance of demand uncertainty is in 

Section 7. Concluding remarks are in the last section.  

 

  

                                                
4 Unlike airline tickets, food prices are easy to interpret. Two airline tickets may have different prices 

because one has a refund option and the other does not. Similarly the price of a hotel room may be 

different because of differences in cancellation policy. The refund or cancellation policy is important 

when studying the role of aggregate demand uncertainty because the question of who pays for an 

“empty seat” or an “empty hotel room” is central to the investigation. Furthermore, the difference in 

cross sectional price dispersion across food items is not likely to emerge as a result of price 

discrimination because people who buy say milk also buy hotdogs. This is different from the case of 

the airline industry where it is often argued that buyers who purchase tickets close to the departure date 

are business travelers with relatively inelastic demand. As a result, in the airline industry it is difficult 

to distinguish between the demand uncertainty and the price discrimination models of price dispersion. 
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2. THEORY 

 

I start with a simplified version of Bental and Eden (BE, 1993) and derive a 

relationship between specific measures of price dispersion and specific measures of 

demand uncertainty.5  

 

Sellers  

The economy lasts forever. There are many goods and many sellers who can produce 

the goods at a constant unit cost.6 The unit cost of producing good j  is λ
j
. 

Production occurs at the beginning of each period before the beginning of trade. The 

seller knows the distribution of demand but at the time of production he does not 

know the realization.  

Sellers face a tradeoff between the probability of making a sale and the price: 

The lower the price, the higher is the probability of making a sale. In each period, 

sellers of good j  have to choose between Z
j
 price tags: P

1 j
< ...< P

Zj
. In what 

follows I drop the good index and consider a good with prices P
1
< ...< P

Z
.7 

The probability of making a sale at the price P
i
 is q

i
, where  

1= q
1
> ...> q

Z
> 0 . The seller takes these probabilities as given. Units that are not 

sold are carried as inventories to the next period. A unit stored can be used to reduce 

production next period and the value of a unit of inventories is βλ , where 0 < β <1 

reflects the cost of delay, storage cost and depreciation.  

Sellers will put the price tag P
i
 on !!0< x <∞  units only if: 

(1)    q
i
P
i
+ (1− q

i
)βλ = λ  

                                                
5 For exposition see Eden (2004, ch. 14). Chapter 14 is on my webpage:  

http://www.vanderbilt.edu/econ/faculty/Eden/documents/chapter-14.pdf  
6 The constant unit cost assumption simplifies the analysis relative to the BE model that assumes a 

strictly convex cost function. 
7 There is no incentive in equilibrium to announce a price P

i
< p < P

i+1
 because the probability of 

making a sale at this price is the same as the probability of making a sale at the price P
i+1

. 
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The arbitrage condition (1) is key. The left hand side of (1) is the expected revenues 

from a unit with a price tag P
i
. With probability q

i
 the seller will get the posted price 

and with probability 1− q
i
 he will get the value of inventories. The right hand side is 

the unit production cost. The seller will put the price tag P
i
 on 0 < x < ∞  units, only if 

the two are equal. Otherwise, if q
i
P
i
+ (1− q

i
)βλ > λ  he will choose !x =∞  and if 

q
i
P
i
+ (1− q

i
)βλ < λ  he will choose !!x =0 .  

 In what follows I assume !Z  hypothetical markets and use the following 

language. A seller who puts the price tag 
!
P
i
 on a unit, supplies the unit to market !i . 

The unit is sold if market !i  opens and is carried as inventories if market !i  does not 

open. Market !i  opens with probability 
!
q
i
. 

 

Buyers 

At the price !P  the individual buyer demands !!D(P)  units where !!D(P)  is a downward 

sloping demand curve that does not intersect the axis. Buyers arrive at the market 

place after sellers have already made their production decisions. Upon arrival they see 

all available offers and buy at the cheapest available price.8  

The number of active buyers that arrive in the market place in a typical period 

( !N ) is an iid  random variable that may take Z  realizations: 
!!
0<N

1
< ...<N

Z
. For 

notational convenience I use N
0
= 0 . All realizations occur with equal probabilities: 

State s  occurs when 
 
!N = N

s
 with probability π = 1

Z . The difference between two 

consecutive realizations is denoted by: N
i
− N

i−1
= Δ

i
> 0 .   

 Buyers arrive in a sequential manner. The first batch of Δ
1
 buyers buys in the 

first market at the price P
1
. If s = 1 , no more buyers arrive and trade is over for the 

period. If s >1 , an additional batch of Δ
2
 buyers arrives and buys in the second 

market at the price P
2
. Again, if s = 2  no more buyers arrive and trade is over for the 

                                                
8 Unlike Burdett et.al. (2001), here buyers observe both the price and availability.  We may think of 

trade as occurring on the internet where each store deletes its price offer when it is stocked out. 
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period. Otherwise, if s > 2  a third batch arrives and buys in the third market at the 

price P
3
 and so on.    

 

Equilibrium 

Using x
i
 to denote the supply to hypothetical market i , I define equilibrium as 

follows. 

   

Equilibrium is a vector of prices (P
1
,...,P

Z
) , a vector of probabilities (q

1
,...,q

Z
)  and a 

vector of supplies (x
1
,..., x

Z
)  such that (a) the probability that market i  will open and 

goods with price tag P
i
 will be sold is: 

!! 
q
i
=Prob( !N ≥N

i
)= (Z − i+1)π , (b) the 

arbitrage condition (1) is satisfied and (c) the supply to market i  is equal to the 

potential demand: 
!!
x
i
= Δ

i
D(P

i
)  for all i . 

 

 Note that the hypothetical markets open sequentially. When , the first 

 markets open and the goods allocated to these markets are sold. The goods 

allocated to the last  markets are not sold and are carried as inventories to the 

next period. In equilibrium markets that open are cleared. Sellers in this model are 

“contingent price takers”: They assume that they can sell any amount at the price P
i
 if 

market i  opens. Production in each period is x
i

i
∑ − I , where I  is the beginning of 

period inventories. In equilibrium production is strictly positive because some goods 

are sold in each period and therefore some production is required to keep the available 

supply at the level x
i

i
∑ .9  

 

  

                                                
9 The assumption of a downward sloping demand curve captures some aspect of storage behavior on 

the part of the buyers as in Pesendorfer (2002) and Hendel and Nevo (2013). A buyer who arrives 

early will face a low price and will buy a relatively large quantity. Part of it he will consume in the 

same week and the rest he will store and consume in weeks that he arrives late and face a relatively 

high price. In Eden (July 2013) I allow for heterogeneity among buyers. This case is relevant because 

the demand of the buyer depends on the amount of storage he has. 

 
!N = N

s

s

Z − s
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Empirical implications  

When , only one market opens and there is no price dispersion. Price dispersion 

occurs when ! !N  is not a degenerate random variable and !!Z >1 . This suggests a 

relationship between price dispersion and . Armed with this intuition, I now derive 

an approximate linear relationship between a measure of price dispersion and a 

measure of unit dispersion that I later estimate.  

 I start by showing that Z  is proportional to the ratio of the maximum aggregate sales 

to the minimum aggregate sales. In state s , when exactly s  markets open, x
i

i=1

s

∑  units 

are sold and x
i

i=s+1

Z

∑  units are carried as inventories to the next period. The maximum 

amount sold is: H = x
i

i=1

Z

∑ = Zx , where x  is the average supply per market. The 

minimum amount sold is: L = x
1
. Using the maximum weekly amount sold as an 

estimate of H  and the lowest weekly amount sold as an estimate of L , I compute the 

ratio HLU = H
L (= High-Low-Units):  

(2)  HLU =
Zx

x
1

= Zα  or Z =
HLU

α  

where α = x
x
1
 is a constant equal to the ratio of the average supply per market to the 

first market’s supply.  

 To derive the relationship between price dispersion and Z , I use (1) to get:    

(3)  Pi = βλ + (1− β )
λ

q
i

 

Since the probability that all the Z  markets will open is q
Z
= π , in any given week 

the highest price is: 

(4) P
H
= P

Z
= βλ + (1− β )

λ

q
Z

= βλ + (1− β )
λ

π
 

Since the probability that the first market will open is 1, the lowest price in any given 

week is: 

(5)  P
L
= P

1
= λ  

Z = 1

Z
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Dividing (4) by (5) leads to:  

(6)  HLP =
P
H

P
L
= β + (1− β )

1

π
= β + (1− β )Z  

where the last equality uses π = 1
Z  and HLP stands for High-Low-Price. Using (2) 

leads to: HLP = β + (1− β )(1α )HLU  which is equivalent to:  

(7)  HLP −1= (1− β )
HLU

α
−1⎛

⎝⎜
⎞
⎠⎟  

The left hand side of (7) is the percentage difference between the high and the low 

price. It is common to use the log difference as an approximation for the percentage 

difference. Using ln(HLP)  as a proxy for HLP −1  and ln(HLU )− ln(α )  as a proxy 

for 
HLU

α
−1  leads to:10 

 (8)  ln(HLP) = −(1− β )ln(α )+ (1− β )ln(HLU )  

This is a linear relationship between the range measure of price dispersion, ln(HLP) , 

and the range measure of unit dispersion, ln(HLU ) .   

 I extend this result in the appendices. In Appendix A, I allow for cost shocks 

and derive the relationship between the standard deviation measures of dispersion. In 

Appendix B, I show that the relationship between price dispersion and unit dispersion 

holds even when allowing for non-shoppers and monopoly power.  

  I now turn to another extension in an attempt to capture the phenomena of 

temporary sales.  

 

2.1 Temporary Sales and One-hoss-shay depreciation 

Temporary sales deserve special attention because they are in the center of the debate 

about price rigidity. Here I argue that they emerge rather naturally in a UST model 

that allows for storage.  

                                                
10 A Taylor approximation of ln(HLP) around average HLP also leads to a linear relationship between 

ln(HLP) and ln(HLU). 
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 The Bental-Eden model is a good starting point. In their model equilibrium 

prices and quantities are functions of the beginning of period inventories. When 

inventories are accumulated prices (in all hypothetical markets) go down and the 

quantities supplied (to all hypothetical markets) go up. This leads to a negative co-

movement between the average posted price and the quantity sold, a phenomenon that 

was documented by several authors including Warner and Barsky (1995), MacDonald 

(2000) and Chevelier, Kashyap and Rossi (2003). 

 Temporary sales are consistent with the Bental-Eden model but so are many 

other price-setting behaviors.11 To get sharper predictions and to keep the constant 

unit cost assumption, I replace the exponential decay in the Bental-Eden model with 

one-hoss-shay depreciation. 

 The one-hoss-shay depreciation is a natural assumption for supermarket items 

that have an expiration date. It implies that the value of inventories depends on the 

age of the unit: An "old" unit that is closer to its expiration date is worth less if it is 

not sold than a "young" unit because there is a higher chance that it will become 

worthless before being sold. Since relatively young units have a higher value when 

they are not sold, a store with a relatively large amount of young units will post a 

relatively high price. If the units do not sale it switches to a low price until it sells all 

or most of the "old units". It will then get newly produced units and switch again to 

the high price. Thus, one-hoss-shay depreciation can lead to temporary sales even 

when the marginal cost is constant.12 

                                                
11 Since in the Bental-Eden model shocks are !iid , the model cannot explain why prices are lower in 

weekends (Warner and Barsky) and in holidays. It is possible that in periods of high demand the 

distribution of the active number of buyers (! 
!N ) is less dispersed. For example if in holidays all 

potential buyers are active and 
! 

!N =N
Z

, there will be one market and sales will occur at a relatively 

low price. In general, it is enough that the minimum number of buyers 
!!
N
1

 is larger in weekends and 

holidays with no change in 
!
Δ
i
.    

12 As was said before, this is consistent with Aguirregabiria (1999) who used data on both inventories 

and prices and found that the markup is negatively related to the level of inventories. Anderson et.al 

(2013) argue that temporary sales do not respond to cost shocks and present institutional evidence that 
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 To illustrate, I assume that: (a) Each unit lives for two periods. If it is not sold 

in the first period it can still be sold in the second period but after that it becomes 

worthless. (b) All units within a store are of the same age.13 And (c) The number of 

buyers in period !t , 
! 
!N
t
, can take two possible realizations: !N  with probability 

!!1−q  

and !N +Δ  with probability !q .  

 At the beginning of period !t  the economy can be at two states. In state !I  (!I  

for inventories) the demand in the previous period was low (
!! 
!N
t−1

=N ) and the second 

market did not open. As a result inventories were carried from the previous period. In 

state !NI  (No !I ) demand was high (
!! 
!N
t−1

=N +Δ ) and there are no inventories. The 

price in the first market is !!P(1,I) in state !I  (with inventories) and !!P(1,NI)  in state 

!NI  (with no inventories). The quantity offered for sales in market 1 is !!x(1,I)  in state 

!I  and !!x(1,NI)  in state !NI . The price in the second market 
!!
(P

2
)  and the supply 

!!
(x

2
)  

do not depend on the level of inventories. The quantity sold in the first market is equal 

to the quantity offered for sale. The quantity sold in the second market is zero if 

demand is low and  if demand is high. Table A describes the total amount sold 

(over the two markets) as a function of last period's demand and this period's demand.  

 

Table A: Total amount sold in period !t  

 
! 
!N
t
=N +Δ  

! 
!N
t
=N  

!! 
!N
t−1

=N +Δ  
!!
x(1,NI)+ x

2
 !!x(1,NI)  

!! 
!N
t−1

=N  
!!
x(1,I)+ x

2
 !!x(1,I)  

 

 A formal treatment and the equilibrium definition are in Appendix C. The 

main idea is that older goods get a "priority" in the supply to the first market (and 

                                                                                                                                      
sales (accompanied by advertising and other demand generating activities) are complex contingent 

contracts that are determined substantially in advance. There is also some flexibility. For many 

promotions manufacturers allow for a "trade deal window" of several weeks where the seller can 

execute the promotion. The main finding that temporary sales do not respond to cost shocks is in line 

with our focus on demand shocks. The fact that a "trade deal window" is allowed is consistent with the 

hypothesis that temporary sales are used to react to the level of unwanted inventories.  
13 Alternatively, we can think of a model in which each unit has its own price tag and there can be 

many price tags within a store. 

!!
x
2
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younger units get a priority in the supply to the second market) because younger units 

have a "relative advantage" in bearing the risk of not being sold.  

 Given prices the allocation rule is as follows. If the number of old units that 

come from inventories is less than the demand in the first market then all old units are 

supplied to the first market. If the number of old units is greater than the demand in 

the first market then only old units are supplied to the first market. This allocation 

rule can be justified on efficiency grounds. Suppose for example, that a chain has two 

stores: Store O with old units and store Y with young units. Suppose further that store 

Y posts the first market low price and store O posts the second market high price. In 

this case if aggregate demand is low and store O does not sell, the units supplied by 

store O expire. Alternatively, if store O posts the first market price and store Y posts 

the second market price, the unsold units supplied by store Y do not expire and can be 

sold next period. Thus the chain's profits will be higher if the store with the young 

units supplies to the second market.  

 Figure 1 captures the main idea. In Figure 1A, the first market price does not 

depend on the level of inventories. When the second market does not open 
!!
I = ΔD(P

2
)  

units are carried as inventories and are sold in the next period's first market at the 

price !!P(1,I)= λ . The supply to the second market is of newly produced goods and the 

price in the second market is determined by:  

(9)  
!!
qP

2
+(1−q)βλ = λ    

The left hand side of (9) is the expected present value of per unit revenues. If the 

second market opens (with probability !q ) the seller gets 
!!
P
2
. Otherwise he will get in 

the next period the first market price, λ . The right hand side of (9) is the unit cost of 

production and therefore (9) insures zero profits. The solution to (9) is: 

(10)  

!!

P
2
=
λ 1−(1−q)β( )

q
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In both states newly produced units are supplied to the first market and therefore the 

price in the first market is . 

 In Figure 1B, the amount of inventories that will be carried when market 2 

does not open is large. When inventories are accumulated (in state !I ) only old units 

are supplied to the first market and therefore the price in this market can be below 

cost. Since newly produced units are supplied to the first market in state !NI , the first 

market price in this state is λ . The first market price in state !I  and the price in 

market 2 are determined by the following two equations: 

 (11)  
!!
qP

2
= P(1,I)  and 

!!
qP

2
+(1−q)βP(1,I)= λ  

The first equation says that the expected revenue of supplying an old unit to the 

second market is the same as the revenue from supplying it to the first market. The 

second equation is similar to equation (9). It says that the expected revenue from 

supplying a new unit to the second market is λ . The solution to the two equations in 

(11) is: 

(12)  

!!

P(1,I)=
λ

1+(1−q)β
< λ  and 

!!

P
2
=

λ

q 1+(1−q)β( )
 

Note that the first market price in state !I  is below cost as in the loss-leaders model of 

Lal and Matutes (1994). 

 In Figure 1C, all inventories are absorbed by market 1 and prices must satisfy:   

(13)  
!!
qP

2
≤ P(1,I)  and 

!!
qP

2
+(1−q)βP(1,I)= λ  

The inequality requires that an old unit will on average earn more in the first market. 

The solution to (13) is: 

(14)  

!!

λ

1+(1−q)β
≤ P(1,I)≤ λ  and 

!!

P
2
=
λ −(1−q)βP(1,I)

q
    

 The model described by Figure 1 may account for temporary sales. Some stores offer 

newly produced units at the high ("regular") price of market 2. Then if demand is low 

they accumulate inventories and offer the units for sale at the low price of market 1. 

The model is extended in Appendix C to the case in which  can take many possible 

λ

! 
!N
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realizations. It is shown there that also in this case of one-hoss-shay depreciation we 

get a positive relationship between HLP and HLU.   

 
 

 

A. In state !I , 
!!
I = x

2
 "old units" and !!x(1,I)− I  newly produced units are supplied to the first market. 

The supply to the first market does not depend on the amount of inventories in this case.  

 

ND(P)

x(1,I)=x(1,NI)I=x2

P2

P(1,I)=P(1,NI)=λ

ΔD(P)
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B. In state !I , !!x(1,I)  "old units" are supplied to the first market and !!Ι − x(1,I)  "old units" are 

supplied to the second market. No new units are supplied to the first market. 

 

 

C. In state Ι , the supply to the first market is equal to the beginning of period level of inventories. 
 

Figure 1: Possible Equilibria 
 

ND(P)

I=x2

P2

ΔD(P)

x(1,I)x(1,NI)

P(1,I)

P(1,NI)=λ

ND(P)

P2

ΔD(P)

x(1,I)x(1,NI)

P(1,I)

P(1,NI)=λ
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 Note that in cases B and C there is a negative correlation between the average 

posted price and the quantity sold.14 This correlation arises because the "temporary 

sale price" is lower than the cost of production and at this price the quantity purchased 

by first-market buyers is large.  

 

The frequency of temporary sales 

Goods with perfectly predicted demand will be traded in a single standard Walrasian 

market at the price λ . For these goods, sellers will sell everything they produce at the 

market-clearing price, "unwanted inventories" will not be accumulated and temporary 

sales that are aimed at reducing inventories will not occur. As was argued in the 

previous section this is not the case for goods that face uncertain demand. Thus, 

differences in demand uncertainty can lead to differences in the frequency of 

temporary sale. 

 I now show this possibility for two cases. I start with the equilibrium in Figure 

1A where all the "old units" are supplied to the first market and are on a "temporary 

sale". The number of units that are on "temporary sale" in state !I  is 
!!
x
2

 and the 

fraction of units that are on sale in state !I  is: 
!!
x
2
/(x

1
+ x

2
) , where here 

!!
x
1
= x(1,I) . 

Since state !I  occurs with probability 
!!1−q , the average sale frequency is: 

!!
SF = (1−q)x

2
/(x

1
+ x

2
). The measure of unit dispersion !HLU  is: 

!!
HLU = (x

1
+ x

2
)/ x

1
. This leads to:  

(15)  

!!

1

SF
=
x
1
+ x

2

(1−q)x
2

=
1

1−q
+

1

1−q

x
1

x
2

=
1

1−q
+

1

(1−q)(HLU −1)
 

Variations in 
!!
x
2
/ x

1
 across goods can arise as a result of differences in the parameters 

!N  and Δ . When variations across goods are the result of variations in 
!!
x
2
/ x

1
 and not  

!q , there is a perfect correlation between !!1/SF  and !!1/(HLU −1)  and a positive 

correlation between !SF  and !HLU .   

                                                
14 The average posted price is over units not stores. If the number of stores in each market does not 

change over time it should hold also when the average is over stores. 
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 I now turn to the case in which the number of buyers is uniformly distributed 

and each buyer has a demand for one unit. I assume that units supplied out of 

inventories are on temporary sale and ! !N  can take !Z  possible realizations where 

!
N
s
= s  is a typical realizations. Thus, 

!!
Δ
i
= x

i
=1 , !α =1  and 

!! 
Prob( !N = s)=π = 1

Z
. 

When !s  markets open, !Z − s  units are not sold and are carried as inventories to the 

next period where they are on temporary sale. The fraction of items on temporary sale 

when !s  markets were open in the previous period is:   

!!

FS
s
=
Z − s

Z
=1−

s

Z
 

The expected value of the fraction of items on temporary sale: 

(15') 

!!

FS =π FS
s

s=1

Z

∑ =1−π
s

Z
s=1

Z

∑ =1−
1

Z
2

s

s=1

Z

∑ =1−
1

Z
2

Z(Z +1)

2 !!

=
1

2
−
1

2Z
=
1

2
−

1

2HLU
 

The last equality uses (2) and !α =1 . Also in this example, !FS  is increasing in !HLU .  

 

3. IMPLEMENTATION 

 

I start with the relationship (8) between measures of price dispersion and measures of 

unit dispersion. This linear relationship depends on β  that is a key parameter for 

determining the value of inventories. Since β  depends on storage cost and the rate of 

depreciation, it may vary across categories. I therefore include category dummies and 

size variables that may be correlated with storage cost. I add classical measurement 

error to (8) and run: 

(16)  
!!
ln(HLP

i
)= b

0
+b

1
ln(HLU

i
)+ d

ji
CD

jij∑ + s
ji
SD

jij∑ +e
i
 

where 
!!
b
1

is the parameter of interest,  are category dummies (
!!
CD

j
=1 , if product 

 belong to category  and  otherwise),  are category specific 

normalized size measures and  is an error term. The size variables will be described 

later. They are included in the regression as a proxy for shelf space and the cost of 

trade delays. 

CD

i j CD j = 0 SD

e



        

19 

 

 I also use a linear approximation to (A5) in Appendix A and run: 

(17)  
!!
SDP

i
= b

0
+b

1
SDU

i
+ d

ji
CD

jij∑ + s
ji
SD

jij∑ +e
i
 

To check robustness, I add variables suggested by other models: The average price, 

total revenues and the number of stores that sold the good.  The average price was 

used by Pratt et.al (1979) in an earlier study. Sorensen (2000) used the purchase 

frequency and the average wholesale price. Here I have data only from the sellers’ 

side and I therefore use aggregate revenues to capture the importance of the goods in 

the buyers’ budget (aggregate revenues = aggregate spending). The number of stores 

that offer the good may be a proxy for monopoly power and is analogous to the 

number of airlines in the route used by Gerardi and Shapiro (2009) when studying 

price dispersion in the airline industry.  

Adding the above variables to (16) and (17) leads to:  

(16')  ln(HLP
i
) = b

0
+ b

1
ln(HLU

i
)+ b

2
ln(Rev

i
)+ b

3
ln(AvP

i
)+ b

4
(#Stores

i
)  

 
!
+ d

ji
CD

jij∑ + s
ji
SD

jij∑ +e
i
 

(17') 
!!
SDP

i
= b

0
+b

1
SDU

i
+b

2
ln(Rev

i
)+b

3
ln(AvP

i
)+b

4
(#stores)   

 
!
+ d

ji
CD

jij∑ + s
ji
SD

jij∑ +e
i
 

where ln(Rev)  is the log of total revenues (over stores and weeks), ln(AvP)  is the log 

of average price (averaged over stores and weeks) and #Stores  is the number of 

stores that sold the product.  

 To test the relationship between the average frequency of temporary sales and 

unit dispersion suggested by (15) and (15'), I run (16) and (17) after replacing the 

dependent variable with the average sale frequency.  
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4. DATA 

 

I use the Information Resources, Inc. (IRI) data set that contains weekly 

observations of the revenues from each good and the number of units sold. I identify a 

product with a Universal Product Code (UPC) and obtain prices by dividing revenues 

by the number of units sold. There are 31 categories in 50 different markets and there 

are both grocery stores and drug stores from several different chains during the years 

2001-2011. A full utilization of this huge data set is beyond the scope of this paper. 

Here I look at the sample of grocery stores in Chicago during the years 2004 and 

2005.15 

I exclude from the sample store-UPC combinations (cells) with zero revenues 

in some of the sample’s weeks, UPCs that were sold by less than 11 stores and 

categories with less than 10 UPCs. The first exclusion is employed because zero-

revenue observations may occur when the item is not on the shelf rather than being on 

the shelf and not being sold. The second is aimed at reliable measures of cross 

sectional price dispersion, and the last allows for within category comparison and 

economizes on the number of category dummies and size variables. After applying 

these exclusions I get “semi balanced” samples in which the number of stores vary 

across UPCs but the number and the identity of stores within a UPC cell do not vary 

over weeks. After implementing the exclusions, I get 1084 UPCs for the 2005 sample 

and 665 UPCs for the 2004 sample. I also use a sample of both years with 104 weeks. 

This 04-05 sample has only 324 UPCs because a store-UPC cell is included only if 

the cell’s revenues were positive in all the 104 weeks.  

 The requirement that the product will be sold continuously by more than 11 

stores leads to a sample of fairly popular brands. The focus on fairly popular items is 

                                                
15 Initially, I thought of using 2 years of the Chicago market as a pilot study and then add years and 

cities. But the results turned out to be robust to the choice of specification and sample and the paper 

got too long. It therefore seems that adding years and cities should be done in a different paper. 
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likely to reduce the problem of close substitutes that have different UPCs.16 In 

addition, the exclusion of items sold by less than 11 stores significantly reduce the 

number of items with very high price dispersion that may arise as a result of 

measurement errors.17   

The summary statistics for the 3 samples are in Table 1. These are by category 

for the largest 2005 sample and the averages across UPCs for the other two samples. 

The column after the category name is the number of UPCs. There are for example, 

56 UPCs in the beer category. The third column is the average (maximum, minimum) 

number of stores per UPC. The average number of stores in the beer category is 21, 

the maximum number of stores is 35 and the minimum number of stores is 11. The 

next four columns provide the averages of the main variables.  

The columns ln(HLU) and SDU are unit dispersion measures used as proxies 

for aggregate demand uncertainty. With the risk of repetition I now describe the 

construction of the main variables in detail. The variable HLU
i
 is constructed as 

follows. U
it

 is the aggregate amount (over all stores) of UPC i  sold in week t , 

H
i
= max

t
{U

it
}  is the maximum weekly amount sold during the year (or during the 

sample period when the 04-05 sample of 2 years is used) and L
i
= min

t
{U

it
}  is the 

minimum weekly amount sold during the year. HLU
i
= H

i
/ L

i  is the ratio between 

the amount sold in the highest sale week and the lowest sale week. The fourth column 

in Table 1 is the average of the log of this variable, ln(HLU ) , over the UPCs in the 

category. For beer the average log difference is 1.01 implying that on average the 

                                                
16 The focus on popular items is not unique to this paper. As was mentioned in the introduction, 

Sorenson (2000) has collected data on 152 top selling drugs. Lach (2002) excluded products that 

were sold by a small number of stores. Kaplan and Menzio (2015) exclude UPCs with less than 25 

reported transactions during a quarter in a given market. 
17 To get a sense of the effect of the sample exclusion on the result I study, in Eden (October 2013), 

one week in detail. Indeed there is a difference between the sample of 8602 UPCs that were sold by 

more than 1 store during that week and the sample of 4537 UPCs that were sold by more than 10 

stores. Relative to the larger sample, price dispersion in the smaller sample is lower. The highest 

price dispersion was found in an item that was sold by 2 stores and for this item the ratio of the 

highest to lowest price was 15. 
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quantity sold in the highest sale week was almost 3 times the quantity sold in the 

lowest sale week (the average ratio is HLU = 2.73). 

The variable 
!
SDU

i
 is the standard deviation of 

!!
ln(U

it
)  over weeks. (Over 52 

weeks in the yearly samples and 104 weeks in the 04-05 sample). Column 5 is the 

average of SDU
i
 over the UPCs in the category. For beer the average is 0.25.  

 The columns ln(HLP) and SDP are price dispersion measures.  

The variable HLP  is constructed as follows. 
!
P
its

 is the price of UPC  in week  

store . 
!!
P
it

H
=max

s
{P

its
}  is the highest price of UPC i  in week t  and 

!!
P
it

L
=min

s
{P

its
}  

is the lowest price. HLP
it
= P

it

H
/ P

it

L  is the ratio in week t  and 

ln(HLP
i
) = (152) ln(HLP

it

t=1

52

∑ ) , is the average of the log of this ratio over 52 weeks 

(over 104 weeks in the 04-05 sample). The average reported in column 6 is over all 

the UPCs in the category. For beer it is 0.19.  

 The variable SDP  was constructed as follows. SDP
it

 is the standard deviation of 

ln(P
its
) over stores. The variable SDP

i
= (152) SDP

it

t=1

52

∑  is the average of SDP
it

 over 

weeks. In column 7 we have the average of SDP
i
 over the UPCs in the category. For 

beer the average standard deviation is 0.06.  

 There are substantial variations in the measures of dispersion across 

categories. The lowest ln(HLU) is for milk (ln[HLU] = 0.78) implying that for an 

average UPC in the category the aggregate (over stores) amount sold in the highest 

sale week is 2.18 times the aggregate amount sold in the lowest sale week. The 

highest ln(HLU) is for hot dogs (ln[HLU] = 2.36) implying that for an average UPC 

in this category, the aggregate amount sold in the highest sale week is 10.6 times the 

aggregate amount sold in the lowest sale week. The lowest ln(HLP) is for paper 

towels (ln[HLP] = 0.15) implying that for an average UPC in this category the highest 

price in an average week is 16% higher than the lowest price. The highest ln(HLP) is 

i t

s
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for margarine (ln[HLP] = 0.49) implying that for an average UPC in this category the 

highest price in an average week is 63% higher than the lowest price.18  

 I also attempted to include proxies for the value of a product that was not sold.  

 Ideally we would like to have information on the shelf life of each UPC and the 

storage space that it takes. In the data there is only a size measure that may serve as a 

proxy for “shelf space”. But the size measures are not comparable across categories. 

They are in terms of a fraction of a “regular pack” and the size of a “regular pack” is 

sometimes in units of volume (for example, rolls for toilet paper), sometimes in terms 

of square feet (100 square feet is the regular pack for paper towel) and sometimes in 

units of weights (the regular pack of beer is 288 oz). For this reason I constructed 18 

“size dummy” variables. The “size dummy” for beer was constructed as follows. First 

I normalized the size of all the 56 UPCs in the beer category so that the largest size is 

1. I then assigned the value of zero to UPCs that are not in the beer category and the 

normalized beer size to UPCs within the beer category. Similar treatment was applied 

to other categories. The column before the last in Table 1 is the average normalized 

size. The maximum is 1 by construction. The minimum normalized size is in 

parentheses. For example, the average size in the beer category is 0.46 implying that 

on average the size of a UPC is about half the size of the largest UPC in the category.  

 The last column in Table 1 is the frequency of temporary sales. I assume that a 

sale occurs when a drop in the price of at least 10% is followed by a price that is equal 

to or above the pre-sale price within 4 weeks. Similar definitions were used by 

Nakamura and Steinsson (2008) and by Coibion et al. (2015).19 The frequency of sale 

                                                
18 For the week studied in Eden (October, 2013), about 70% of the UPCs have ln(HLP) less than 0.4 

(HLP less than 1.5). 
19 I also tried 3 alternative measures of sales. One alternative required that the price returns to exactly 

the pre-sale price within 4 weeks (as opposed to a price that is above or equal to the pre-sale price). 

The other 2 definitions required that the sale period will be less than 2 weeks as opposed to less than 

4 weeks. The correlation of the 4 measuers of the frequency of sale and the dispersion measures are 

similar and I therefore report here the results for one measure only. There is also a sale tag in the IRI 

data. The IRI sale definition requires only 5% price reduction and therefore it labels more prices as 

"sale prices". The frequency of sale according to the IRI definition is 35% that is almost twice the 
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is defined by the percentage of the UPC-store-week cells that are labeled as sales out 

of the total number of UPC-store-week cells. There is a large variation in the 

frequency of sale across categories. The lowest frequency of sale is for beer (4%) and 

the highest is for hotdogs (32%).  

 The last 3 rows are averages across all UPCs. In the 2005 sample the average 

UPC is sold in 20 stores, has ln(HLU) of 1.46, SDU of 0.34, ln(HLP) of 0.35, SDP of 

0.11 and the average size is 0.49. The frequency of sale for the entire 2005 sample is 

20%. These averages do not vary much across samples.  

   

  

                                                                                                                                      
frequency that I get. The correlation between the frequency of sale according to the IRI definition 

and the frequency of sale according to my definition is 0.8. 
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Table 1*: Summary Statistics  

 # 

UPC 

# stores 
 

ln(HLU) SDU ln(HLP) 
 

SDP 

Size  Freq. 

Sale  

paper towels 19 20(31,11) 0.95 0.21 0.15 0.05 0.31(0.13) 9% 

beer 56 21(35,11)     1.01 0.25 0.19 0.06 0.46(0.07)  4 

facial tissue 18 18(26,11) 1.54 0.38 0.24 0.08 0.29(0.1) 17 

frozen 

dinners/entrees 
75 16(28,11) 1.61 0.36 0.32 0.1 

0.62(0.41) 26 

milk 64 22(34,11) 0.78 0.16 0.32 0.1 0.50(0.13) 9 

mustard & 

ketchup 
21 20(32,11) 1.59 0.36 0.33 0.1 

0.32(0.13) 10 

salty snacks 120 22(35,11) 1.26 0.3 0.3 0.1 0.47(0.16) 21 

toilet tissue 19 21(34,11) 1.51 0.35 0.32 0.1 0.32(0.04) 24 

frozen pizza 53 18(29,11) 1.49 0.32 0.36 0.11 0.52(0.18) 15 

peanut butter 24 21(31,14) 1.3 0.26 0.34 0.11 0.61(0.30) 15 

yogurt 152 23(35,11) 1.16 0.26 0.31 0.11 0.36(0.13) 26 

carbonated 

beverages  
144 

    

23(35,11) 
1.55 0.37 0.37 0.12 

0.38(0.04) 

26 

mayonnaise 19 23(32,11) 1.29 0.3 0.39 0.12 0.63(0.25) 14 

soup 74 19(35,11) 2.06 0.49 0.39 0.12 0.51(0.40) 13 

spaghetti/Italian 

sauce 
32 16(29,11) 1.37 0.31 0.38 0.13 

0.55(0.29) 18 

cold cereal 133 21(34,11) 2.03 0.49 0.45 0.15 0.59(0.21) 19 

margarine/butter 40 25(35,11) 1.22 0.27 0.49 0.15 0.37(0.17) 27 

hotdog 21 20(34,11) 2.36 0.56 0.43 0.16 0.96(0.75) 32 

  Total  Av.  Av.  Av.  Av.  Av.  Av.  Av. 

2005 665 20 1.46 0.34 0.35 0.11 0.49 20 

2004  1084 15 1.61 0.38 0.38 0.13 0.50 20 

04‐05 324 15 1.62 0.35 0.37 0.13 0.45 21 

* The statistics about individual categories use the 2005 sample. The first column is the category 

name. The second is the number of UPCs in the category. The third is the average number of stores per 

UPC in the category (maximum and minimum in parentheses). The next two columns are measures of 

demand uncertainty and the following two columns are measures of price dispersion. The last two 

columns are the average (minimum) normalized size and the frequency of temporary sales. The last 

three rows are averages for the three samples (2005, 2004 and 2004-05). 
  

 

 The correlations between the main variables in the 3 samples are in Table 2.  

The correaltions between the price dispersion measures (ln[HLP]&SDP) and between 

the unit dispersion measures (ln[HLU]&SDU) are both very high (in the range 0.95-

0.97). The correlation between the price dispersion measures and the unit dispersion 

measures (HLU&HLP, SDU&HLP, HLU&SDP, SDU&SDP) are in the 0.43-0.60 

range. The correlation between the unit and price dispersion measures and the 

frequency of temporary sale measure is in the range 0.36-0.56.  
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Table 2*: Correlation between the main variables  

2004 lnHLU SDU lnHLP SDP Freq. Sale 

lnHLU 1.00     

SDU 0.96 1.00    

lnHLP 0.56 0.59 1.00   

SDP 0.57 0.60 0.97 1.00  

Freq. Sale 0.44 0.50 0.51 0.53 1.00 

# of UPCs = 665  

2005 lnHLU SDU lnHLP SDP Freq. Sale 

lnHLU 1.00     

SDU 0.96 1.00    

lnHLP 0.43 0.45 1.00   

SDP 0.48 0.50 0.96 1.00  

Freq. Sale 0.42 0.43 0.46 0.50 1.00 

# of UPCs = 1084  

04-05 lnHLU SDU lnHLP SDP Freq.Sale 

lnHLU 1.00     

SDU 0.97 1.00    

lnHLP 0.47 0.51 1.00   

SDP 0.50 0.53 0.97 1.00  

Freq.Sale 0.36 0.39 0.54 0.56 1.00 

# of UPCs = 324  

* This Table contains 3 correlation matrices followed by the number of UPCs. The first matrix is for 

the 2004 sample with 665 UPCs, the second is for the 2005 sample with 1084 UPCs and the last is for 

the 04-05 sample with 324 UPCs. The variables are the log difference between the highest and lowest 

weekly aggregate sales ln(HLU), the standard deviation of the log of aggregate sales (SDU), the 

average log difference between the highest and the lowest price ln(HLP), the average cross sectional 

standard deviation of log prices (SDP) and the frequency of temporary sales. See the text for detailed 

definitions.  
 

 

5. ESTIMATION 

 

As described in the data section, I use two measures of dispersion: The range 

measure and the standard deviation measure. Here I report the results when using the 

range measures. The regressions that use the standard deviation measures are reported 

in Appendix D.  

I start with running price dispersion on unit dispersion for categories with 

more than 50 UPCs and for the samples as a whole. Thus, I run (16) for each category 
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separately without the category and size dummies. As can be seen from Table 3, 8 out 

of the 9 coefficients of ln(HLU) in the 2005 sample are positive and 6 out of the 8 are 

significant. In the 2004 sample, 3 out of the 4 coefficients are significant and positive. 

In the 04-05 sample, all 3 coefficients are positive and 2 are significant. The last row 

for each year is the regression that uses all observations (without dummies). The 

coefficients when using all variables is highly significant and in the range of 0.088-

0.106. 

I also ran the regressions in Table 3 with the following additional explanatory 

variables: ln(revenues), the number of stores, ln(average price) and the size variable. 

To economize on space these regressions are not reported here but similar regressions 

that use the standard deviations measures of dispersion are in Table D2 in Appendix 

D. In the regressions that are not reported here, the coefficient of ln(HLU) is positive 

for all the 9 categories in the 2005 sample, all the 4 categories in the 2004 sample and 

for 2 out of the 3 categories in the 04-05 sample. The coefficient of ln(HLU) is 

significant and positive in 12 out of the 16 regressions and the single negative 

coefficient is not significant. On the whole, the category regressions, provide strong 

support for a positive ln(HLU) coefficient, a somewhat weaker support for a negative 

average price coefficient and even weaker support for a positive revenues and number 

of stores coefficients. The results with respect to the size variables are mixed.  
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Table 3*: Running ln(HLP) on ln(HLU) for selected categories. 

2005 sample Intercept  ln(HLU)  #UPC  Adj  R
2
 

beer  0.165***  0.023  56  0.005 

carbbev  0.308***  0.040**  144  0.049 

coldcer  0.190***  0.127***  133  0.321 

fzdinent  0.217***  0.063*  75  0.044 

fzpizza  0.247***  0.074**  53  0.141 

milk  0.343***  ‐0.024  64  ‐0.012 

saltsnck  0.059*  0.194***  120  0.454 

soup  0.311***  0.040*  74  0.059 

yogurt  0.283***  0.027  152  0.001 

All  0.209***  0.095***  1084  0.185 

2004 sample Intercept  ln(HLU)  #UPC  Adj  R
2
 

carbbev  0.411***  ‐0.005  86  ‐0.011 

coldcer  0.151***  0.149***  93  0.561 

saltsnck  0.107***  0.138***  94  0.457 

yogurt  0.229***  0.068*  92  0.060 

All  0.207***  0.106***  665  0.318 

04-05 sample Intercept  HLRU  #UPC  Adj  R
2
 

carbbev  0.348***  0.030*  58  0.058 

coldcer  0.164***  0.147***  53  0.601 

yogurt  0.385***  0.002  65  ‐0.016 

All  0.276***  0.088***  324  0.230 

* One star (*) denotes p-value of 5%, two stars (**) denote p-value of 1% and three stars (***) denote 

p-value of 0.1%. The first 10 rows are the results when using the 2005 sample. The following 5 rows 

are the results when using the 2004 sample and the last 4 rows are the results when using the 04-05 

sample.  

 

Table 4 uses all observations. It reports the results of running the price 

dispersion measure ln(HLP) on category dummies, “size dummies” and various 

combinations of the following main variables: The unit range dispersion measure 

ln(HLU), revenues, the number of stores and the average price. Only the coefficients 

of the main variables are reported. The first column reports the results of running (16) 

and the following columns are the results when adding the variables in (16').  

The first 5 rows in the Table describe the regression results when using the 

1084 observations in the 2005 sample. The regression reported in Column 1 uses only 

the unit dispersion measures ln(HLU), intercept, category dummies and size variables. 

The reported coefficient 0.082 is highly significant. This coefficient is somewhat 
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lower than the coefficient I get when running this regression without the category 

dummies and the size variables (0.095 - reported in the row labeled "all" in Table 3). 

The coefficient of ln(HLU) does not change much when we add other explanatory 

variables in columns 2-6 and it is in the range 0.078 - 0.094. 

The coefficient of the average price is negative and significant. It is in the 

range of -0.089 to -0.55. The coefficients of revenues are positive but not always 

significant. The coefficients of the number of stores are positive and significant.  

 The next 5 rows describe the regression results when using the 665 

observations in the 2004 sample. Also here the coefficients of the unit dispersion 

measure are highly significant and stable. The range of the estimated elasticity is 

0.097-0.105 and is slightly higher than the range in the 2005 sample.  

The coefficients of the average price in the 2004 sample are significant and are 

in the range -0.062 to -0.055. The coefficients of revenues and the number of stores 

are positive but not always significant.  

 The last five rows report the regression results when using the 04-05 sample 

with 104 weeks and 324 UPCs. The coefficients of the unit dispersion measure are in 

the range (0.078 - 0.089) that is similar to the range in the 2005 sample and slightly 

less than the range in the 2004 sample. The coefficients of the average price are in the 

range (-0.142 to -0.103) that is lower than the range in the previous two samples. The 

coefficients of revenues and the number of stores are positive but not always 

significant.  

 On the whole, the estimated elasticity of the price dispersion measure with 

respect to the unit dispersion measure is close to 0.1 and is not sensitive to adding 

variables to the regression.  
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Table 4*: The Main Explanatory Variables; Dependent variable = ln(HLP)  

2005 1 2 3 4 5 6 

ln(HLU) 0.082*** 

(0.007) 

0.082*** 

(0.007) 

 0.078*** 

(0.006) 

 0.094*** 

(0.007) 

ln(Revenues)   0.077*** 

(0.005) 

0.074*** 

(0.004) 

0.043*** 

(0.01) 

0.005 

(0.009) 

#Stores     0.004*** 

(0.001) 

0.009*** 

(0.000) 

ln(Av. Price)  -.059*** 

(0.013) 

-.089*** 

(0.012) 

-.089*** 

(0.012) 

-.072*** 

(0.013) 

-.055*** 

(0.012) 

Adj.  0.3306 0.3432 0.415 0.4851 0.4228 0.5171 

2004 1 2 3 4 5 6 

ln(HLU) 0.104*** 

(0.007) 

0.105*** 

(0.007) 

 0.097*** 

(0.007) 

 0.102*** 

(0.007) 

ln(Revenues)   0.052*** 

(0.007) 

0.036*** 

(0.006) 

0.049*** 

(0.011) 

0.008 

(0.010) 

#Stores     0.001 

(0.002) 

0.009*** 

(0.000) 

ln(Av. Price)  -.055*** 

(0.014) 

-.061*** 

(0.015) 

-.062*** 

(0.013) 

-.060*** 

(0.015) 

-.056*** 

(0.013) 

Adj.  0.4905 0.5028 0.3746 0.5312 0.3737 0.5393 

04-05 1 2 3 4 5 6 

ln(HLU) 0.089*** 

(0.009) 

0.083*** 

(0.009) 

 0.078*** 

(0.009) 

 0.083*** 

(0.009) 

ln(Revenues)   0.040*** 

(0.007) 

0.031*** 

(0.007) 

0.034** 

(0.013) 

0.007 

(0.012) 

#Stores     0.002 

(0.003) 

0.008* 

(0.003) 

ln(Av. Price)  -.111*** 

(0.021) 

-.142*** 

(0.023) 

-.119*** 

(0.021) 

-.139*** 

(0.024) 

-.103*** 

(0.022) 

Adj.  0.5351 0.5721 0.4874 0.594 0.4863 0.6015 

* This Table reports the results of 6 regressions in 3 different samples. The 6 regressions include 

different combinations of the explanatory variables in (16'). The samples are 2005, 2004 and 04-05. 

The first column is the name of the explanatory variables. Each column reports the coefficients of a 

different regression. Standard errors are in parentheses. The dependent variable in all 6 regressions is 

the average (over weeks) log difference between the highest and the lowest price. All 6 regressions 

have category dummies (17 + intercept) and 18 size variables. One star (*) denotes p-value of 5%, two 

stars (**) denote p-value of 1% and three stars (***) denote p-value of 0.1%. The main explanatory 

variable in regression 1 is the log difference between the aggregate number of units sold in the week of 

highest sales and the week of lowest sales (HLU). Regression 2 adds the average log of the price. 

Regression 3 replaces HLU with the log of total revenues. Regression 4 has both HLU and revenues. 

Regression 5 replaces HLU with the number of stores and regression 6 uses all the explanatory 

variables.  
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 As a robustness check I ran the regressions in Table 4 after eliminating 

"temporary sale" observations. The results in Table 5 show that the coefficients of the 

ln(HLU) variable are smaller than in Table 4 but are still highly significant. These 

coefficients are relatively stable across specifications but not across samples.  

 

Table 5: Dependent variable = ln(HLP); the samples of regular prices. 

2005 1 2 3 4 5 6 

ln(HLU) 0.022*** 0.025***   0.027***   0.022*** 

   (0.005)  (0.004)    (0.004)    (0.004) 

ln(Revenues)     0.060*** 0.061*** ‐0.01 ‐0.003 

       (0.004)  (0.004)  (0.008)  (0.008) 

#Stores         0.009*** 0.008*** 

           (0.001)  (0.001) 

ln(Av. Price)   ‐0.080*** ‐0.096*** ‐0.103*** ‐0.065*** ‐0.073*** 

     (0.011)  (0.011)  (0.010)  (0.010)  (0.010) 

Adj. !!R
2
  0.205  0.241  0.352  0.378  0.411  0.428 

2004  1  2  3  4  5  6 
ln(HLU)  0.038***  0.040***     0.041***     0.039*** 

    (0.005)   (0.005)      (0.005)      (0.005) 

ln(Revenues)        0.025***  0.028***  ‐0.004  0.007 

          (0.006)   (0.006)   (0.009)   (0.009) 

#Stores              0.008***  0.006*** 

                (0.002)   (0.002) 

ln(Av. Price)     ‐0.067***  ‐0.065***  ‐0.072***  ‐0.061***  ‐0.069*** 

       (0.013)   (0.013)   (0.012)   (0.013)   (0.012) 

Adj. !!R
2

 0.356 0.383 0.344 0.406 0.36 0.414 

04-05 1 2 3 4 5 6 

ln(HLU) 0.042*** 0.038***   0.037***   0.036*** 

   (0.006)  (0.006)    (0.006)    (0.006) 

ln(Revenues)     0.017** 0.016** ‐0.006 ‐0.002 

       (0.007)  (0.006)  (0.010)  (0.009) 

#Stores         0.007*** 0.006*** 

           (0.002)  (0.002) 

ln(Av. Price)   ‐0.087*** ‐0.111*** ‐0.094*** ‐0.093*** ‐0.080*** 

     (0.017)  (0.018)  (0.018)  (0.019)  (0.018) 

Adj. !!R
2

 0.493 0.53 0.474 0.538 0.488 0.547 

*This Table is comparable to Table 4. The only difference is that observations that were labeled as 

"temporary sales" were removed.  
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Frequency of temporary sales 

Equations (15) and (15') suggest that goods with more demand uncertainty will also 

have higher frequency of temporary sales. To test this hypothesis, I replaced the 

dependent variable in (16) and (17) by the frequency of sale measure. Consistent with 

the theory, the coefficients of the lnHLU measure of price dispersion are strongly 

significant and positive. These coefficients are stable over specifications but not over 

samples. When all the variables are in the regressions the coefficient of ln(Revenue) 

is not significant for the 2004 and 2005 samples and barely significant for the 2004-

05 sample. This does not support the loss-leader model in Lal and Matutes (1994).20  

 

  

                                                
20 Chevalier, Kashyap and Rossi (2003) argue that the loss-leader model implies more temporary sales 

for more popular items.  
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Table 6*: Dependent variable = Frequency of temporary sales 

2004 sample  1 2  3  4  5  6  

lnHLU 0.073*** 0.073***   0.067***   0.071*** 

   (0.006)  (0.006)    (0.006)    (0.006) 

lnrev     0.038*** 0.027*** 0.033*** 0.004 

       (0.005)  (0.005)  (0.009)  (0.008) 

NumofStores         0.001 0.006*** 

           (0.002)  (0.002) 

lnavgprice   0.005 0.0003 ‐0.0005 0.001 0.004 

     (0.011)  (0.012)  (0.011)  (0.012)  (0.011) 

Adjusted R2 0.485 0.484 0.398 0.509 0.398 0.517 

2005 sample  1 2  3  4  5  6  

lnHLU 0.079*** 0.079***   0.078***   0.083*** 

   (0.005)  (0.005)    (0.005)    (0.005) 

lnrev     0.023*** 0.020*** 0.031*** ‐0.002 

       (0.004)  (0.003)  (0.008)  (0.008) 

NumofStores         ‐0.001 0.003*** 

           (0.001)  (0.001) 

lnavgprice   0.007 ‐0.002 ‐0.002 ‐0.006 0.01 

     (0.009)  (0.010)  (0.009)  (0.011)  (0.010) 

Adjusted R2 0.505 0.505 0.416 0.521 0.416 0.525 

0405 sample  1 2  3  4  5  6  

lnHLU 0.055*** 0.051***   0.045***   0.048*** 

   (0.009)  (0.008)    (0.008)    (0.008) 

lnrev     0.041*** 0.036*** 0.035*** 0.020* 

       (0.007)  (0.007)  (0.011)  (0.011) 

NumofStores         0.002 0.005* 

           (0.003)  (0.003) 

lnavgprice   ‐0.084*** ‐0.107*** ‐0.094*** ‐0.104*** ‐0.083*** 

     (0.020)  (0.020)  (0.019)  (0.021)  (0.020) 

Adjusted R2 0.499 0.524 0.519 0.562 0.518 0.566 
* The explanatory variables are the same as in Table 4 but the dependent variable is different. It is the 

average frequency of temporary sale within the UPC.   

 

 An alternative model assumes that temporary sales are the result of 

discrimination practices. See, Varian (1980), Guimaraes and Sheedy (2011) and 

Chevalier and Kashyap (2011). When stores use mixed strategy to determine the time 

of temporary sales as in Varian (1980), it is possible that some items will be on sale 

more often than others. In this case, the items that are on sale more often will also 

have more variability in the amount sold. This suggests that temporary sales cause 

both price dispersion and demand uncertainty. To investigate this possibility I include 
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the frequency of sale (FreqSale) variable as an explanatory variable in the regression. 

The results in Table 4a show a significant coefficient for this variable as predicted by 

the discrimination hypothesis. The coefficient of the unit dispersion variable (lnHLU) 

is still highly significant. This finding is also consistent with the UST model. From 

the point of view of the UST model in section 2.1, temporary sales are an endogenous 

response to demand uncertainty and the total effect of unit dispersion on price 

dispersion (the direct effect and the indirect effect through the frequency of sales 

variable) is the same as in Table 4.  

 

Table 4a: Dependent Variable = ln(HLP) 

 lnHLU lnrev #Stores lnavgprice FreqSale Adj. R2 

2004 0.066*** 0.006 0.004** ‐0.058*** 0.505*** 0.622 

 (0.007) (0.009) (0.002) (0.012) (0.043)  

2005 0.059*** 0.006 0.007*** ‐0.059*** 0.428*** 0.575 

 (0.007) (0.009) (0.001) (0.011) (0.036)  

2004‐05 0.057*** ‐0.003 0.005* ‐0.059*** 0.530*** 0.700 

 (0.008) (0.010) (0.003) (0.019) (0.053)  
* This Table adds the frequency of sales variable to the list of explanatory variables in Table 4.   

 

 To further investigate the mixed strategy hypothesis and to address possible 

endogeneity problems I use the 04-05 sample with 104 weeks and compute the 

independent variables on the basis of the first 52 weeks and the dependent variable on 

the basis of the last 52 weeks. The coefficient of ln(HLU) in Table 7 are similar to the 

coefficients in Table 4 and 6 and support the view that demand uncertainty is UPC 

specific rather than the outcome of a mixed strategy.21 

 

                                                
21 I also ran a 2SLS regression using ln(HLU) that is based on the first 52 weeks as an instrument for 

ln(HLU) that is based on the last 52 weeks. The results did not change the coefficients of the unit 

dispersion measure by much suggesting that endogeneity is not a problem. 
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Table 7*: Dependent variables from 2005, explanatory variables from 2004 
Dependent variable = ln(HLP) from 2005; explanatory variables from 2004 

ln(HLU.04) 0.102*** 

(0.011) 
0.095*** 

(0.011) 
0.088*** 

(0.011) 
 0.091*** 

(0.011) 
0.063*** 

(0.011) 

ln(Rev. 04)   0.027*** 

(0.008) 
0.035* 

(0.014) 

0.011 

(0.013) 
‐0.002 

(0.012) 

#Stores    0.001 

(0.004) 
0.005 

(0.003) 
0.004 

(0.003) 

ln(AvP. 04)  ‐0.130*** 

(0.023) 
‐0.137*** 

(0.023) 
‐.158*** 

(0.026) 

-.127*** 

(0.024) 
‐0.077*** 

(0.023) 

FreqSale.04         0.463*** 

(0.062) 

Adj. R
2
 0.5112 0.557 0.5712 0.478 0.5738 0.639 

Dependent variable = frequency of sale from 2005, explanatory variables from 2004 

ln(HLU.04) 0.070*** 

(0.010) 
0.068*** 

(0.010)   
0.061*** 

(0.010)   
0.064*** 

(0.010) 

ln(Rev. 04) 
    

0.037*** 

(0.008) 
0.029*** 

(0.007) 
0.025** 

(0.012) 
0.007 

(0.012) 

#Stores 
        

0.004 

(0.003) 
0.007** 

(0.003) 

ln(AvP. 04) 
  

‐0.052** 

(0.021) 
‐0.08*** 

(0.022) 
‐0.059*** 

(0.021) 
‐0.07*** 

(0.022) 
‐0.046** 

(0.021) 

Adj. R
2
 0.551 0.558 0.527 0.578 0.528 0.585 

* This Table uses the 04-05 sample. The dependent variable is computed from the last 52 weeks in the 

sample (in 2005) while the explanatory variables are computed from the first 52 weeks (in 2004). 

 

 

 

Week effect and Unit surprise measures 

Seasonality may be a problem because the model assumes !iid  demand shocks. To 

address this problem, I used the 04-05 sample with 104 weeks and ran the units in the 

year 2005 on the same week units in the year 2004 and other lags. I then used the 

residuals from these regressions instead of the original variables.  

 I used U
it−L

 to denote the aggregate number of units sold from good  in 

week  and ran the following regressions22: 

(18)  ln(U
it
) = a

i
+ b

i52 ln(Uit−52 )+ ε it  

(18’) ln(U
it
) = a

i
+ b

i52 ln(Uit−52 )+ bi1 ln(Uit−1)+ bi2 ln(Uit−2 )+ bi3 ln(Uit−3)+ ε it  

                                                
22 I measure price dispersion by the average (over weeks) cross sectional dispersion. Therefore, 

running prices on a weekly dummy will change all the prices in the week by a (week specific) 

constant and will not change the results. I measure unit dispersion by the dispersion of the aggregate 

amount sold over weeks. Therefore, running units on a UPC specific weekly dummy is not possible. 

i

t − L
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Note that in (18) there is only one lag of 52 weeks designed to capture seasonality. In 

(18’) I added the most recent 3 lags. The week effect is UPC specific because each 

good has its own seasonality pattern.  

 After running the above regressions, I look at the difference between the 

highest and the lowest residuals from the regression and define HLRU
i
= ε

i

H
− ε

i

L , 

where ε
i

H
= max

t
{ε

it
}  is the highest value of the residual in (18) and ε

i

L
= min

t
{ε

it
}  

is the lowest value of the residual. I use  (high-low residual unit) as a range 

measure of demand uncertainty. The residual standard deviation measure of 

uncertainty, SDRU
i
, is the standard deviation of ε

i
.23 

Table 8 replaces the unit dispersion measure in Table 7 with the residual range 

measure of demand uncertainty. When ln(HLP) is the dependent variable, the 

coefficients of HLRU are similar to the coefficients of HLU in Table 4 and are in the 

range of 0.08 to 0.114. The coefficients of the unit surprise measure when the 

frequency of temporary sales is the dependent variable are higher than in Table 6 and 

are now close to 0.08.  

 

                                                
23 When using (18') the average HLRU is 1.25 which is 33% less than the average ln(HLU) reported in 

Table 1 (for the sample 04-05 the average reported in Table 1 is 1.62). The average SDRU is 0.27 

and is also 33% less than the average of SDU reported in Table 1 (0.35). Thus, seasonality and recent 

sales contribute about a third to our measures of unit dispersion.  

HLRU
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Table 8*: Allowing for a week effect in the range measure of demand uncertainty  

Dependent variable = ln(HLP.05) 

HLRU 0.114*** 

(0.010) 

0.103*** 

(0.010) 

0.105*** 

(0.010) 

0.082*** 

(0.010) 

Ln (Rev.04)  0.031*** 

(0.008) 

0.012 

(0.012) 

‐0.001 

(0.011) 

#Stores 
  0.006* 

(0.003) 

0.005* 

(0.003) 

Ln (Av. P.04)  -.128*** 

(0.022) 

-.117*** 

(0.022) 

‐0.073*** 

(0.021) 

FreqSale.04    0.415*** 

(0.059) 

Adj.  0.5631 0.6207 0.6245 0.677 

Dependent variable = frequency of sale.05  

HLRU 0.079*** 

(0.009) 

0.077*** 

(0.009) 

0.073*** 

(0.009) 

0.076*** 

(0.009) 

Ln (Rev.04) 
     

0.031*** 

(0.007) 

0.008 

(0.011) 

#Stores 
        

0.008*** 

(0.003) 

Ln (Av. P.04) 
  

‐0.045** 

(0.020) 

‐0.053*** 

(0.020) 

‐0.039* 

(0.020) 

Adj.  0.582  0.588  0.612  0.62 

* This Table uses the 04-05 sample. The dependent variables are based on the last 52 weeks of the 

sample. The explanatory variable HLRU is the residual unit dispersion measure obtained from (18’). 

Ln (Av. Price) and Ln (Revenues) are computed on the basis of the first 52 weeks in the sample. 

 

Store effect 

Different stores may provide different services. Unfortunately, in the UST model (and 

in other equilibrium price dispersion models) it is difficult to distinguish between a 

store that is indifferent among all prices in the equilibrium range but consistently 

chooses to be at the low price range to a store that is in the low price range because it 

provides low services.24 A "store dummy" may therefore capture differences in 

services and differences in the average choice among prices that promise the same 

expected profits or price inertia.  

                                                
24 It is not easy to distinguish between the two possibilities even in principle. The “quality” of the store 

may be judged by the variety of the product it offers and more generally, by the probability of a 

stock-out: At the same price, a buyer prefers a store that he can find everything that is on his 

shopping list. But according to our model, the probability of a stock-out is higher for a low price 

store. We should therefore think of a store quality as attributes like location, cleanliness, average 

length of the line at the exit and parking availability. 

R
2

R
2
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 To estimate an upper bound on the differences in services, I used the 04-05 

sample with 324 UPCs and 104 weeks and ran 324 regressions of price logs on store 

dummies.   

(19)  ln(Pijt ) = ai + bij (store− dummy)+ eijt  

Here i  is a UPC index, j  is a store index and t indexes the week. Similar to the 

"week effect", the “store effect” is UPC specific. The reason is in product placement: 

A store can consistently place one UPC in a relatively visible location and another 

UPC in a place that is not easy to find.25  

 I replace the log of prices by the residuals from (19). Using notation that are 

similar to the “week effect” notation we have: 

e
it

H
= max

j
(e

ijt
)= the highest residual for UPC i  in week t 

!!
e
it

L
=min

j
(e

ijt
)= the lowest residual for UPC i  in week t 

The log difference of the price residuals is: ln(HLRP
it
) = e

it

H
− e

it

L . The variable   

ln(HLRP
i
)  is the average of ln(HLRP

it
)  over 104 weeks. Table 9 provides summary 

statistics. The column ln(HLRP) is the average of ln(HLRP
i
)  over all the UPCs in the 

category. The average log difference, reported in the last row of Table 9 is 0.31. This 

is 6 percentage points less than the average log difference when not controlling for a 

store effect reported in the last row of the column ln(HLP). The last column in Table 

9, labeled “SDRP” is the average of SDPR
i
 over all the UPCs in the category. The 

average standard deviation over all UPCs is 0.11 (in the last row of the last column). 

This is 2 percentage points less than the average standard deviation when not 

controlling for store effect (SDP).  

                                                
25 Kaplan and Menzio (2015) find that about 10% of price dispersion are attributed to "store effect". 

They distinguish between “store effect” and “store specific good effect”. The first is a measure of the 

average price of the basket of goods sold by the store relative to the average price of the same basket 

in other stores. The second is the average price of the specific good relative to the average price of 

other products sold by the store.  
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 The upper bound on the amount of price dispersion caused by difference in 

services is thus 16% (= 6/37) if we use the range measure and 15% (= 2/13) if we use 

the standard deviation measure.  

 Table 10 is a correlation matrix that repeats the correlations in Table 2 for the 

04-05 sample and adds the correlations with the new price dispersion measures that 

control for “store effects”. The correlation between the “old” measure ln(HLP) and 

the “new” measure ln(HLRP) is about 0.9. The correlation between the “new” 

measures ln(HLRP) and SDRP is 0.98 and is similar to the correlation between the 

“old” measures. What is striking is that the correlation between the unit dispersion 

measures and the “new” price dispersion measures is higher than the correlation 

between the unit dispersion measures and the “old” dispersion measures. For 

example, the correlation between SDU and SDP is 0.53 and this is less than the 

correlation between SDU and SDRP that is 0.62. This suggests that the “store effect” 

dummy captures some differences in services and not merely price inertia.  

 Table 11 is comparable to the last rows in Table 3. It reports the results of 

running ln(HLRP) on ln(HLU). The coefficients of ln(HLU) are now higher than 

before. Table 12 is comparable to the last rows in Table 4. The coefficients of 

ln(HLU) are now larger and the coefficient of ln(avgPrice) are smaller (higher in 

absolute value).  
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Table 9: Summary statistics for the 04-05 sample with and without fixed “store 

effect” 

  #UPC  ln(HLU)  SDU  ln(HLP)  SDP  ln(HLRP)  SDRP 

beer  20  1.27  0.27  0.18  0.06  0.13  0.04 

carbbev  58  1.80  0.39  0.39  0.13  0.34  0.12 

coldcer  53  2.31  0.51  0.45  0.17  0.40  0.14 

fzpizza  12  1.66  0.32  0.40  0.14  0.30  0.10 

margbutr  18  1.53  0.32  0.53  0.19  0.41  0.14 

milk  23  0.85  0.17  0.36  0.12  0.25  0.08 

peanbutr  11  1.44  0.28  0.35  0.12  0.24  0.08 

saltsnck  42  1.50  0.32  0.31  0.11  0.29  0.10 

soup  22  1.99  0.43  0.40  0.13  0.29  0.09 

yogurt  65  1.29  0.27  0.35  0.13  0.32  0.11 

Total  324             

average    1.62  0.35  0.37  0.13  0.31  0.11 

* The first column is the category name. The second is the number of UPCs in the category. The next 

two columns are measure of demand uncertainty and the following two columns are measures of price 

dispersion that are comparable to the measures in Table 1 for the 04-05 sample. The last two columns 

are measures of price dispersion that control for a “store effect”. The last row is the average across all 

the 324 UPCs.   

 

Table 10*: Correlations between unit dispersion measures, “old” price dispersion measures and “new” 

price dispersion measures 

  lnHLU  SDU  lnHLP  SDP  lnHLRP  SDRP 

lnHLU  1           

SDU  0.97  1         

lnHLP  0.47  0.51  1       

SDP  0.5  0.53  0.97  1     

lnHLRP  0.55  0.6  0.91  0.9  1   

SDRP  0.58  0.62  0.87  0.9  0.98  1 

* This correlation matrix uses the 04-05 sample with 324 UPCs. The “new” price dispersion measures 

(lnHLRP and SDRP) use the residuals from the regression of price log on store dummies. The “old” 

price dispersion measures (lnHLP and SDP) use price logs and do not control for store effects. The unit 

dispersion measures (lnHLU and SDU) are based on aggregate amounts sold.  

 

 

Table 11*: Running ln(HLRP) on ln(HLU) 

l Intercept lnHLU #UPC Adj. R
2

 

carbbev 0.266*** 0.044** 58 0.144 

coldcer 0.087 0.134*** 53 0.472 

yogurt 0.242*** 0.060* 65 0.077 

All 0.161*** 0.095*** 324 0.306 

* Comparable to the last rows in Table 3. 
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Table 12*: Running ln(HLRP) on ln(HLU) and other variables. 

 1 2 3 4 5 6 

lnHLU 
0.103*** 
(0.010) 

0.097*** 
(0.009)  

0.091*** 
(0.009)  

0.096*** 
(0.009) 

ln(Rev)   
0.046*** 
(0.009) 

0.035*** 
(0.008) 

0.040** 
(0.013) 

0.008 
(0.012) 

#Stores     
0.002 

(0.003) 
0.009** 
(0.003) 

ln(avgPrice)  
-0.133*** 

(0.022) 
-0.169*** 

(0.024) 
-0.142*** 

(0.021) 
-0.165*** 

(0.025) 
-0.123*** 

(0.022) 

Adj. R
2

 0.497 0.550 0.437 0.580 0.436 0.590 

* Comparable to the last rows in Table 4.   

  

 

7.  QUANTITATIVE IMPORTANCE  

 

 The coefficients of the measures of demand uncertainty are statistically 

significant and relatively stable across specifications and samples. To get a sense of 

their economic significance I ask what will be the average price dispersion in a 

hypothetical world in which there is no demand uncertainty and the aggregate amount 

sold per week is perfectly predictable. Here I assume that the services provided are 

the same across stores. In Appendix E, I consider the case in which services varies 

across stores.  

 I estimate the effect of eliminating demand uncertainty for an “average” UPC: 

A UPC with the average unit dispersion and the average price dispersion measures.  

 Table 13 focuses on the range measures. The name of the sample used is in the 

first column. The second column (C1) is the coefficient of ln(HLU) in the regression 

of ln(HLP) on ln(HLU) and other variables (taken from Table 4).26 This coefficient is 

0.094 for the 2005 sample, 0.102 for the 2004 sample and 0.083 for the 04-05 sample. 

The third column is the average of the log of the high to low price ratio, lnHLP, in the 

sample (in the last rows of Table 1). These are 0.35, 0.38 and 0.37. (The average 

ratios HLP are 1.4, 1.46 and 1.45). The forth column ln(HLPH) is the hypothetical log 

                                                
26 The total (direct and indirect) effect of demand uncertainty on price dispersion is the coefficient of 

lnHLU in the regressions in Table 4 that exclude the frequency of sales variables.  
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difference computed as: ln(HLPH) = ln(HLP) - C1*ln(HLU), where HLU is the 

average in the sample (in the last rows of Table 1). For example, in 2005 the average 

ln(HLU) is 1.46 and the hypothetical log difference is: 0.35-0.094*1.46 = 0.21. The 

hypothetical log differences are 0.21, 0.21 and 0.24. (The hypothetical ratios, HLPH, 

are 1.23, 1.23 and 1.27). The fifth and the sixth columns are the estimated percentage 

reduction in price dispersion that will follow the elimination of demand uncertainty. 

The fifth column uses the logs while the sixth column uses the actual ratio (the anti-

logs). As we can see from the last column, the percentage reduction is between 41 and 

48 percent.  

 The calculations in Table 13 assume that temporary sales are endogenous and 

will not exist in a hypothetical world in which there is no demand uncertainty. An 

alternative assumption is that temporary sales are used as a discrimination device and 

eliminating demand uncertainty will not affect the frequency of temporary sales. To 

calculate the importance of demand uncertainty under the alternative assumption, I 

used for C1 the coefficient of ln(HLU) from Table 4a in which the frequency of sale 

is in the list of explanatory variables. These coefficients are 0.059 for the 2005 

sample, 0.066 for the 2004 sample and 0.057 for the 2004-05 sample. The estimated 

percentage reduction in price dispersion that will follow the elimination of demand 

uncertainty under the alternative hypothesis is in the range of 0.28 to 0.32. Thus, even 

when temporary sales are not related to demand uncertainty, the effect of removing 

demand uncertainty on price dispersion is not small.  

 Table 14 focuses on the standard deviation measure of dispersion. The second 

column is the coefficient (C2) of SDU in a regression of SDP on SDU and other 

variables. The third column is the average SDP in the sample. The forth column is the 

hypothetical SDP calculated as: SDPH = SDP - C2*SDU, where SDU is the average 

in the sample. The last column is the estimated effect of demand uncertainty on price 
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dispersion. The elimination of demand uncertainty will reduce the standard deviation 

by 39-44 percent.  

 Tables 15 and 16 repeat the hypothetical experiment after controlling for 

“store effect”. In this case, eliminating demand uncertainty will reduce price 

dispersion by 54 percent.  

 

Table 13*: The hypothetical range measure  

Sample  C1     
   

2005 

0.094 

(0.087,0.101)  0.35 

0.21 

(0.20,0.23) 

0.39 

(0.37,0.42) 

0.44 

(0.41,0.47) 

2004 

0.102 

(0.095,0.109)  0.38 

0.21 

(0.20,0.23) 

0.43 

(0.40,0.46) 

0.48 

(0.45,0.51) 

04‐05 

0.083 

(0.074,0.092)  0.37 

0.24 

(0.22,0.25) 

0.36 

(0.32,0.40) 

0.41 

(0.37,0.45) 

*The first column is the sample used. The second is the coefficient of ln(HLU) taken from Table 4. In 

parenthesis are the lower and upper bounds of the estimated coefficients. Thus for example, in 2005 the 

estimated coefficient is 0.094 and the standard error is 0.007. The lower bound of the coefficient is 

0.094-0.007 = 0.087 and the upper bound is 0.094+0.007 = 0.101. The third column is the average 

lnHLP in the data. The fourth is the hypothetical lnHLP calculated as:  

Ln(HLPH)=ln(HLP) - C1*Ln(HLU), where Ln(HLU) is the average of the log HLU in the data. In 

parenthesis are the calculation when using the lower and upper bound of C1. The fifth and sixth 

columns is the percentage decline in price dispersion. The fifth is the ratio of the log difference 

(lnHLP-lnHLPH) to lnHLP and the last column is the ratio of the percentage difference HLP-HLPH to 

HLP-1. In parentheses are the computation when using the lower and upper bounds of C1. 

 

Table 14*: The hypothetical standard deviation measure 

Sample  C2     
 

 2005 

0.147 

(0.139,0.155)  0.11 

0.063 

(0.061,0.066) 

0.44 

(0.41,0.46) 

2004 

0.152 

(0.143,161)  0.13 

0.077 

(0.073,0.080) 

0.43 

(0.40,0.46) 

04‐05 

0.145 

(0.133,0.157)  0.13 

0.079 

(0.075,0.083) 

0.39 

(0.36,42) 

* The second column is the coefficient of SDU taken from Table D1 (upper and lower bounds in 

parenthesis). The third is the average SDP in the data. The fourth is the hypothetical SDP calculated as: 

SDPH = SDP - C2*SDU. The last column is the ratio of the difference SDP-SDPH to SDP.  
 

  

lnHLP lnHLPH

lnHLP − lnHLPH

lnHLP

HLP − HLPH

HLP −1

SDP SDPH

SDP − SDPH

SDP
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Table 15*: Hypothetical range measure after controlling for “store effects” 

Sample  C1  ln(HLRP)  ln(HLRPH) 

lnHLRP − lnHLRPH

lnHLRP
 
HLRP − HLRPH

HLRP −1
 

04‐05  

0.096 

(0.087,0.105)  0.31 

0.15 

(0.14,0.17) 

0.5 

(0.45,0.55) 

0.54 

(0.49,0.59) 

* The Table reports the hypothetical experiment results after controlling for “store effect”. The 

coefficient of ln(HLU) is from Table 12 (lower and upper bounds in parenthesis), the ratio of the 

residual ln(HLRP) is 0.31 (Table 10), the hypothetical ratio is Ln(HLRPH) = ln(HLRP)-(C1)ln(HLU) 

= 0.31-(0.096)(1.62)= 0.15 and the percentage reduction in the dispersion measures due to the 

elimination of unit dispersion are 0.5 and 0.54. 

 

 

Table 16*: Hypothetical st. deviation measure after controlling for “store effects” 

Sample  C2  SDRP  SDRPH 

SDRP − SDRPH

SDRP
 

04‐05  

0.169 

(0.157,0.181)  0.11 

0.051 

(0.047,0.055) 

0.54 

(0.50,0.58) 

 * The second column is the coefficient of SDU taken from Table D7 in Appendix D. The third column 

is the standard deviation of the residuals taken from Table 10. The fourth column is the hypothetical 

standard deviation calculated as SDRPH = SDRP - (C2)SDU = 0.051 where SDU = 0.35 is from Table 

10. The last column is the percentage reduction in the standard deviation that will follow the 

elimination of demand uncertainty.  

 

 Using the results in Appendix E that allows for differences in services across 

stores, the above estimates are lower bounds. We may thus say that eliminating 

demand uncertainty will reduce the standard deviation measure of “true” price 

dispersion by more than 54 percent. This is a big effect.   

 Table 17 calculates the hypothetical frequencies of temporary sales. Using the 

2005 sample, the average frequency of sale is: FS = 0.20. Average ln(HLU) = 1.46. 

The coefficient of ln(HLU) when running FS on lnHLU and other variables is 0.08 

(Table 6). In a hypothetical world with no demand uncertainty, the frequency of sales 

will be: FSH = FS - 0.08* ln(HLU) = 0.2 - 0.08*1.46 = 0.083 

This suggest that the elimination of demand uncertainty will reduce the frequency of 

sales by more than half: (FS-FSH)/FS = (0.2 - 0.083)/0.2 = 0.59. For the 2004 sample  

FSH is 0.087 and for the 2004-05 sample it is 0.13. The last column is the estimated 

effect of demand uncertainty on the frequency of sales. The elimination of demand 

uncertainty will reduce the frequency of sales by 38-59 percent.   
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 Table 18 uses the standard deviation measure of unit dispersion to repeat the 

calculations in Table 17. The average SDU for the 2005 sample is 0.34. The 

coefficient of SDU when running the frequency of sales on SDU and other variables 

is 0.38 (Table D4 in Appendix D). The hypothetical frequency of sale is:  

FSH = FS - 0.38*0.35 = 0.07. For the 2004 sample it is 0.08 and for the 2004-05 

sample it is 0.13. The quantitative effect is large. The elimination of demand 

uncertainty will reduce the frequency of sales by 40 to 65 percent.  

 

Table 17*: Hypothetical Frequencies of Temporary Sales (range measure) 

Sample FS 

Average lnHLU 
Coef of 

ln(HLU) FSH 
!

FS −FSH

FS
 

2005 0.2 1.46 0.08 0.083 0.59 

2004 0.2 1.61 0.07 0.087 0.57 

04‐05 0.21 1.62 0.05 0.13 0.38 
* The first column is the sample. The second is the frequency of temporary sales. The third is the 

average ln(HLU) in the sample. The fourth is the coefficient of ln(HLU) from Table 6. The fifth 

column is the hypothetical frequency of sales computed as: FSH = FS - (coef)(Average lnHLU). The 

last column is the percentage reduction in the frequency of sales. 

 

 

Table 18*: Hypothetical Frequencies of Temporary Sales (st. deviation measure) 

Sample FS 

Average SDU 

Coef of SDU FSH !

FS −FSH

FS
 

2005 0.2 0.34 0.38 0.07 0.65 

2004 0.2 0.38 0.32 0.08 0.61 

04‐05 0.21 0.35 0.24 0.13 0.40 
*This Table uses the standard deviation measure of unit dispersion to repeat the calculations in Table 

17. The coefficient of SDU is from Table D4 in Appendix D. The hypothetical frequency is:   

FSH = FS - (coef)(Average SDU). 

 

 

8. CONCLUDING REMARKS 

  

 In the UST model and other versions of the Prescott (1975) model, price 

dispersion arises as a result of uncertainty about aggregate demand and temporary 

sales emerge rather naturally when items have expiration dates ("one-hoss-shay" 

depreciation). We may observe that newly produced units are offered at a relatively 
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high "regular" price. When demand is low, inventories are accumulated and the store 

posts a relatively low "sale" price until inventories are back to normal.  

 An item with perfectly predictable demand will be sold in a standard (single) 

Walrasian market in which sellers always sell their entire supply at the market-

clearing price. An item with unpredictable demand will be sold at many prices and  

"unwanted" inventories will accumulate whenever demand is not at its highest 

possible realizations. These inventories trigger temporary sales. This suggests that 

items with less predictable demand will have more price dispersion and more 

temporary sales. I have verified this conjecture for two special cases.  

 Following the model, I assume that the distribution of demand varies 

exogenously across UPCs. Under this assumption, and consistent with the theory, I 

find that price dispersion is increasing in measures of unit dispersion. To check for 

robustness, I include in the regressions three variables suggested by search and 

discrimination theories: The number of stores that sell the good, total revenues from 

selling the good and the average price of the good. The inclusion of the additional 

variables does not change the unit dispersion coefficient by much. Out of the 

additional variables used, the average price is the only one with a stable and 

significant effect. As in Pratt et. al. (1979), items with higher average price have less 

price dispersion.  

 The effect of unit dispersion on the frequency of temporary sales is also highly 

significant. Also here the inclusion of the additional variables does not change the 

coefficient of the unit dispersion by much. Out of the additional variables the number 

of stores that sell the good has a significant positive effect.  

 The effect of unit dispersion measures on price dispersion and the frequency 

of sales has economic significance in addition to the statistical significance. Our 

estimates suggest that eliminating demand uncertainty will on average, reduce the 
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cross sectional standard deviation of the price log and the frequency of temporary 

sales by more than 40%.  

 There are alternative explanations for the findings in this paper. One possible 

explanation assumes that temporary sales are not related to demand uncertainty.27 It is 

possible, for example, that temporary sales are discrimination devices that are used 

more in some goods and less in other goods. Following this theory, I ran price 

dispersion on unit dispersion and the frequency of temporary sales. The introduction 

of the frequency of sales variable reduces the size of the unit dispersion coefficient 

but the coefficient is still highly significant and quantitatively important: Eliminating 

demand uncertainty will reduce the range measure of price dispersion by about 30% 

even when temporary sales do not depend on demand uncertainty.28 

   

                                                
27 Some may also argue that causation may be in the opposite direction: differences in price dispersion 

cause differences in unit dispersions. It seems that this reaction fails to distinguish between variations 

over weeks and variations over stores within a week. For example, it is reasonable to assume that 

there are large fluctuations in the cost of supplying fresh fruits and vegetables over weeks and these 

cost shocks lead to large variations in the average weekly price and the quantity sold. I do not have 

items like fresh fruits and vegetables in the data. More importantly, I measure price dispersion over 

stores in an average week while this explanation refers to the dispersion of the average price over 

weeks. 
28 Since this calculation assumes no differences in services, the estimated effect may be a lower bound. 

See Appendix E. 
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APPENDIX A: COST SHOCKS AND THE STANDARD DEVIATION 

MEASURES 

 

In this Appendix I derive the relationship between the range measures of dispersion 

when there are cost shocks and between the standard deviation measures of 

dispersion.   

Cost shocks 

I assume that at the time the seller makes the production decisions in week , he 

knows the unit cost for this period, , and the distribution of the unit cost next 

period. The next period’s cost is a random variable, , and its expected value is 

denoted by: . Since a unit of inventories can be used to cut next period’s 

production, the value of inventories is the expected discounted cost in the next period, 

. We can therefore modify the arbitrage condition (1) as follows.  

(A1)  

Using  , we can write (A1) as: 

(A2) 

!!
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Taking the average of (A3) over weeks leads to a relationship that is similar to (8). 

Consistent with this reasoning, I estimate !HLP  by the average ratio of the highest to 

lowest price over weeks.  
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The standard deviation measures  

To derive a relationship between the standard deviation measures of dispersion, I 

assume that each buyer demands one unit and the number of buyers is uniformly 

distributed so that  for all . The fraction of stores that post the price 

 is the same for all  and is given by . The probability of making a 

sale at the price  is: . Substituting in (3) and rearranging 

leads to: 

(A4)   

Under the assumption that for the same good λ , β  and !Z  do not change over weeks, 

we get:  

(A5)   

 
!!
=

1

12
(Z −1)2 = 1

12
(HLU −1)2  

The number of units sold in state !s  is: !sx . Since  is a constant, the variance of the 

log of units is  and is equal to (A5). Thus in this example there is a 

correlation between the standard deviation dispersion measures. The correlation is 

perfect when storage is not possible and .   

Δ
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APPENDIX B: A UST MODEL WITH NON-SHOPPERS 

 

 Salop and Stiglitz (1977), Shilony (1977) and Varian (1980) introduced the 

important distinction between shoppers and non-shoppers. In the standard UST model 

all buyers are shoppers. Here I outline a UST model that allows for the distinction 

between shoppers and non-shoppers under the assumption of no storage possibilities  

(β = 0 ). 

 Buyers arrive in batches. In batch  there are  shoppers and  non-

shoppers. They all see posted prices but non-shoppers may not choose the cheapest 

available offer because the location of the cheapest store may not be convenient.  

 A non-shopper buys in the store of his choice !!D(P)  units at the store’s price 

 if the store is not stocked out. If the store is stocked-out he goes home empty 

handed. (He may consume out of storage or buy a close substitute, but this is not 

modeled here). I assume that the fraction of the non-shoppers that go to market  

(choose a store with the price ) is  where . 

 Shoppers see availability in addition to posted prices. They go to the cheapest 

store out of all the stores that are not stocked-out. In a more realistic model getting the 

best possible deal requires some search: The shoppers will typically visit more than 

one store while non-shoppers visit a single store.  

 The store chooses the stock-out state. It can choose to stock out only when 

demand is at its highest possible realization (state ). It can also choose to stock out 

at state  with a higher probability. A store that stock out sells its entire supply 

and therefore a high stock out probability is a benefit. To stock out with high 

probability the store must post a low price and the tradeoff is therefore between the 

stock out probability and the price. This is different from the tradeoff we had before 

(between the probability of making a sale and the price) because now the store will 

always sell part of its supply to non-shoppers.  

i φΔ
i

(1−φ)Δ
i

P

i

P
i

γ
i

γ
i

i
∑ = 1

Z
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 I assume one store per market. The store in market !i  stocks-out when !s > i . 

The amount it sells (at the price P
i
) to the non-shoppers is: 

(B1)  γ
i
(1−φ)N

s
D(P

i
)   if s < i  and γ

i
(1−φ)N

i
D(P

i
)  if s ≥ i  

The amount it sells to shoppers is:  

(B2)  φΔ
i
D(P

i
)   if s ≥ i  and zero otherwise.  

Since the store in market i  is stocked out in state i , the supply to market i  is:  

(B3)  
!!
CAP

i
= φΔ

i
+γ

i
(1−φ)N

i
( )D(P

i
)  

The expected profits in market i  is: 

(B4) Vi = PiD(Pi ) qi φΔi + γ i (1−φ)Ni( )+ γ i (1−φ) π sNss<i∑{ }− λ(CAPi )  

 

Equilibrium is a non-negative vector (P
1
,...,P

Z
;V
1
,...,V

Z
,V )  that satisfies V

i
=V  for all 

i  and P
1
< ...< P

Z
.   

 

 Note that the standard UST model is a special case of this equilibrium in 

which 
!
φ =1 , 

!!
CAP

i
= Δ

i
D(P

i
)  and 

!!
V
i
= (q

i
P
i
−λ)Δ

i
D(P

i
)=0 . In this case 

!
q
i
P
i
= λ and the 

expected revenue is the same across markets.  

 As in the standard UST model if there is no aggregate demand uncertainty there is no 

price dispersion. To get the linear relationship (7) I assume that each buyer has a high 

reservation price and demand one unit. I assume further that the number of buyers is 

uniformly distributed and 
!
Δ
i
= Δ  for all !i . Under these assumptions: !L= Δ , !H = ZΔ  

and 
!

HLU =
H

L
= Z , which is a special case of (2) that leads to (7).  
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APPENDIX C: A MODEL OF TEMPORARY SALES  

I start with a formal treatment of the case in which demand can take two possible 

realizations as in Figure 1. Here, state 1 is the state in which there are inventories and 

state 2 is the no inventories state. The superscript is used for the state and the 

subscript for the market. Thus for example, 
!!
P
1

1
 is the first market price in state 1 and 

!!
P
1

2
 is the first market price in state 2.  

 

Equilibrium is a vector 

 

of non-negative magnitudes that satisfies: 

(C1) , ,  

(C2) ,  

(C3) ,  

(C4)  

(C5)  with equality if  

(C6)  with equality if  

(C7)  

(C8)  

(C9)  

(C10)  

 

Equations (C1)-(C3) are definitional. Equation (C1) says that the amount supplied to 

the second market and its price, do not depend on the state. Equation (C2) says that 

the supply to each of the two markets in state 1 is the sum of old units and newly 

produced units. Equation (C3) is the level of the beginning of period inventories. 

When demand in the previous period was low the entire supply to the second market 

was carried as inventories and the beginning of period inventories is . When 
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the demand in the previous period was high everything was sold and the beginning of 

period inventories is zero.  

 Condition (C4) says that "old units" are supplied to the first market first. They 

are supplied to the second market only if the level of inventories is larger than the 

demand in the first market. Condition (C5) says that the price in the first market must 

equal the cost of production when there are no inventories but maybe below cost 

when the level of inventories is high. I require  and therefore supplying goods 

out of storage to the first market ( ) is optimal. When goods are supplied to 

both markets and , the price in the first market must equal the expected price 

in the second market  because otherwise it is optimal to move "old units" 

from the second to the first market. Condition (C6) requires that the price in the first 

market is less than  and is equal to  when new units are supplied to this market.  

Equation (C7) assumes that some newly produced goods are supplied to the second 

market and that the value of newly produced goods that are not sold is , where  

is a discount factor . The left hand side of (C7) is the expected revenues 

from supplying a newly produced unit to the second market. With probability  the 

second market opens and the seller gets . With probability  the second market 

does not open and the unit will be sold in the next period's first market at the price 

. The right hand side of (C7) is the cost of production and therefore (B6) says that the 

expected discounted revenue must equal the cost of production.  

 

Extension to the case in which demand can take many possible realizations 

 

I now consider the case in which ! !N  has !Z  possible realizations. The equilibrium 

magnitudes depend on the beginning of period inventories !I . I assume that in 

equilibrium there is a positive level of production and old units are allocated to lower 

index markets first. Therefore some young units are supplied to the last market. I 

expect that this assumption can be derived as a result in a more complete treatment.  

!!
P
1

1
≥qP

2

!!
x
1

1,old
>0

!!
x
2

1,old
>0

!!
(P

1

1
= qP

2
)

λ λ

!!
βP

1

1 β

!(0< β <1)

!q

!!
P
2 !!1−q

!!
P
1

1
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I define equilibrium as follows.  

 

Equilibrium is a vector of functions 

!!
P
1
(I),...,P

Z
(I);x

1
(I),...,x

Z
(I),x

1

old(I),...,x
Z

old(I);x
1

young(I),...,x
Z

young(I)( )  

that satisfies the following conditions: 

(C11) 
!!
x
i
(I)= x

i

old(I)+ x
i

young(I)  

(C12) 
!!

x
i

old(I)
i

∑ = I  

(C13) 
!!
x
i

old(I)=min x
i
(I),I − x

s

old(I)
s≤i∑{ }  

(C14) 
!!
q
i
P
i
(I)≤q

i−1
P
i−1
(I)   with equality if 

!!
x
i

old(I)>0  and 
!!
x
i−1

old(I)>0  

(C15) 
!!
q
i
P
i
(I)+β π

ss<i∑ P
1

x
j
(I)

j>s∑( )≤ λ    with equality if 
!!
x
i

young(I)>0  

(C 16) 
!!
q
i
P
i
(I)= P

1
(I)  if 

!!
x
i

young(I)=0  

(C17) 
!!
x
i
(I)= Δ

i
D P

i
(I)( )  

for all !I  and !i .  

 

 Condition (C11) says that total supply to each market is the sum of the supply 

of old units and newly produced units. Condition (C12) says that the supply of old 

units across markets must equal the beginning of period level of inventories. 

Condition (C13) says that inventories are allocated to lower index markets in a 

sequential manner. They are allocated to the first market, first. Then if there is no 

sufficient demand in the first market to absorb all inventories, the remaining old units 

are allocated to the second market and so on. Condition (C14) ensures that old units 

are allocated according to (C13). It says that the expected price must decline with the 

index of the market. Otherwise, if 
!!
q
i
P
i
(I)>q

i−1
P
i−1
(I) , the seller may allocate all the 

old units to the higher index market. The left hand side of (B15) is the expected 

revenue per unit. If market !i  opens and the good is sold, the seller gets 
!!
P
i
(I) . 

Otherwise, if the good is not sold the seller gets the price in the next period's first 

market. Condition (B15) says that expected revenue per unit must be less than λ . 
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Otherwise, if 
!!
P
i
(I)> λ , an infinitely large amount of newly produced goods will be 

supplied to this market. When newly produced goods are supplied to this market the 

expected revenue per unit must equal λ . Condition (C16) requires the clearing of 

markets that open.   

Let  

!!
I
*
=N

1
D(λ)  

denote the maximum amount of inventories that the first market can absorb at the 

price λ . If !!I < I
*
 then newly produced goods must be supplied to the first market and  

!!
P
1
= λ . Otherwise, if !!I ≥ I

*
, 
!!
P
1
< λ  and no young units are supplied to the first 

market.  

Assume that  

!!

Δ
Z
D

λ
q
Z

⎛

⎝⎜
⎞

⎠⎟
> I

*  

Since 

!

P
Z
<
λ

q
Z

, this assumption insures that either !!I =0  or !!I > I
*
. 

 

Claim C1: There exists equilibrium with  

 (C18) 

!!

P
i
=

λ

q
i
1+(1−q

Z
)β( )

  

(C19) 
!!
P
1
(0)= λ   

 

Proof: Substituting 
!!
q
1
=1  in (C18) leads to: 

(C20)  

!!

P
1
(I >0)=

λ

1+(1−q
Z
)β

= q
i
P
i
  

Therefore (C18) solves:  

(C21) 
!!
q
i
P
i
+(1−q

i
)βP

1
(I >0)= λ  

And both (C15) and (C16) are satisfied. � 
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As in the text, I assume that 
!!

π
s
=π =

1

Z
. Under this assumption:  

(C22)  

!!

HLP =
P
Z

min P
1
(I){ }

=
1

q
Z

=
1

π
= Z  

The quantity sold is highest when all markets open and is equal to !Zx , where !x  is the 

average amount sold per market when the beginning of period's inventories is strictly 

positive. The quantity sold is lowest when there are no inventories and only the first 

market opens. In this case it is equal to !!I
*
. It follows that  

(C23) 
!!

HLU =
Zx

I
*

 

There is thus a positive relationship between !HLP  and !HLU .  

 

 

APPENDIX D: REGRESSIONS WITH THE STANDARD DEVIATION 

MEASURES  

 

 This Appendix replaces the range dispersion measures (HLP,HLU ) in Tables 

4 - 7 with the standard deviation dispersion measures ( SDP,SDU ).  
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Table D1*: The Main Explanatory Variables; Dependent variable = SDP 

2005 1 2 3 4 5 6 

SDU 0.136*** 

(0.009) 

0.136*** 

(0.009) 

0.129*** 

(0.008) 

 0.147*** 

(0.008) 

0.097*** 

(0.009) 

ln(Revenues)   0.016*** 

(0.001) 

0.014*** 

(0.01) 

-0.002 

(0.003) 

‐0.001 

(0.003) 

#Stores    0.000 

(0.000) 

0.002*** 

(0.000) 

0.002*** 

(0.000) 

ln(Av. Price)  -.016*** 

(0.004) 

-.022*** 

(0.004) 

-.021*** 

(0.004) 

-.013*** 

(0.004) 

‐0.015*** 

(0.004) 

FreqSale      0.132*** 

(0.012) 

Adj. R
2
 0.4203 0.429 0.4963 0.3754 0.5179 0.571 

       

2004 1 2 3 4 5 6 

SDU 0.159*** 

(0.009) 

0.160*** 

(0.009) 

0.151*** 

(0.009) 

 0.152*** 

(0.009) 

0.104*** 

(0.010) 

ln(Revenues)   0.008*** 

(0.002) 

0.024*** 

(0.004) 

0.007* 

(0.003) 

0.007** 

(0.003) 

#Stores    -0.002** 

(0.001) 

0.000 

(0.001) 

‐0.001 

(0.001) 

ln(Av. Price)  -.018*** 

(0.004) 

-.019*** 

(0.004) 

-.020*** 

(0.005) 

-.019*** 

(0.004) 

‐0.019*** 

(0.004) 

FreqSale      0.149*** 

(0.015) 

Adj. R
2
 0.57 0.5807 0.5912 0.402 0.5907 0.645 

       

04-05 1 2 3 4 5 6 

SDU 0.154*** 

(0.012) 

0.147*** 

(0.011) 

0.143*** 

(0.012) 

 0.145*** 

(0.012) 

0.104*** 

(0.011) 

ln(Revenues)   0.004 

(0.002) 

0.015*** 

(0.004) 

0.001 

(0.004) 

‐0.001 

(0.003) 

#Stores    -0.002 

(0.001) 

0.001 

(0.001) 

‐0.0002 

(0.001) 

ln(Av. Price)  -.030*** 

(0.006) 

-.031*** 

(0.006) 

-.046*** 

(0.008) 

-.029*** 

(0.007) 

‐0.017*** 

(0.006) 

FreqSale      0.166*** 

(0.017) 

Adj. R
2
 0.6402 0.6631 0.6654 0.5019 0.6651 0.744 

* See notes to Table 4. 
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Table D2*: Separate regressions for selected categories; dependent variable = SDP 

2005  SDU ln(Rev) # stores ln(Av. P) Size Adj. R
2
 

beer 0.061* 0.012 -0.001 -0.044*** 0.023 0.4571 

carbbev 0.075** -0.017* 0.003*** 0.012 -0.009 0.1205 

coldcer 0.152*** 0.029* 0.001 -0.083*** 0.020 0.6525 

fzdinent 0.135** 0.028 -0.002 0.007 -0.028 0.3403 

fzpizza 0.135** 0.004 0.001 -0.037 0.002 0.3608 

milk 0.124* 0.003 0.004*** -0.035 0.085 0.3851 

saltsnck 0.251*** 0.000 0.001 -0.003 -0.015 0.607 

soup 0.147*** -0.022 0.002 -0.012 0.092* 0.3697 

yogurt 0.084** 0.015 0.002*** 0.012* -0.044** 0.6344 

       

2004  SDU ln(Rev) # stores ln(Av. P) Size Adj. R
2
 

carbbev 0.044 0.011 -0.005 -0.013 -0.069 0.071 

coldcer 0.142*** 0.054*** -0.003 -0.096*** 0.039 0.8089 

saltsnck 0.168*** 0.008 0.002 -0.002 0.025 0.6056 

yogurt 0.016 0.025*** -0.003*** -0.021*** -0.056*** 0.8471 

       

04-05  SDU ln(Rev) # stores ln(Av. P) Size Adj. R
2
 

carbbev 0.094*** -0.017* 0.004 -0.004 0.003 0.2116 

coldcer 0.186*** 0.028* 0.002 -0.049* -0.004 0.8177 

yogurt -0.016 0.010*** -0.001* -0.041*** 0.028 0.8227 
* This Table was not reported in the text for the range measures. See the discussion that follows Table 

3.  
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Table D3*: Dependent variable = SDP, only regular prices  

2004 sample             

SDlnUnit 0.088*** 0.091***   0.092***   0.092*** 

   (0.010)  (0.010)    (0.010)    (0.010) 

lnrev     0.006*** 0.007*** 0.002 0.006** 

       (0.002)  (0.002)  (0.003)  (0.003) 

NumofStores         0.001 0.0001 

           (0.001)  (0.001) 

lnavgprice   ‐0.023*** ‐0.022*** ‐0.025*** ‐0.022*** ‐0.025*** 

     (0.004)  (0.005)  (0.004)  (0.005)  (0.004) 

Constant 0.063*** 0.044*** 0.03 ‐0.025 0.050** ‐0.022 

   (0.007)  (0.008)  (0.022)  (0.021)  (0.025)  (0.025) 

Adjusted R2 0.377 0.403 0.335 0.414 0.336 0.413 

2005 sample             

SDlnUnit 0.034*** 0.041***   0.046***   0.040*** 

   (0.007)  (0.007)    (0.006)    (0.006) 

lnrev     0.012*** 0.013*** ‐0.006** ‐0.003 

       (0.001)  (0.001)  (0.003)  (0.003) 

NumofStores         0.002*** 0.002*** 

           (0.000)  (0.000) 

lnavgprice   ‐0.026*** ‐0.027*** ‐0.031*** ‐0.020*** ‐0.024*** 

     (0.004)  (0.003)  (0.003)  (0.004)  (0.004) 

Constant 0.079*** 0.055*** ‐0.047*** ‐0.080*** 0.079*** 0.036 

   (0.006)  (0.006)  (0.015)  (0.015)  (0.021)  (0.022) 

Adjusted R2 0.21 0.248 0.276 0.31 0.316 0.342 

0405 sample             

SDlnUnit 0.104*** 0.097***   0.097***   0.097*** 

   (0.012)  (0.012)    (0.012)    (0.012) 

lnrev     0.002 0.001 ‐0.002 ‐0.003 

       (0.002)  (0.002)  (0.004)  (0.003) 

NumofStores         0.001 0.001 

           (0.001)  (0.001) 

lnavgprice   ‐0.032*** ‐0.038*** ‐0.032*** ‐0.035*** ‐0.029*** 

     (0.006)  (0.007)  (0.006)  (0.007)  (0.006) 

Constant 0.048*** 0.029*** 0.059** 0.024 0.078*** 0.042 

   (0.008)  (0.008)  (0.026)  (0.024)  (0.030)  (0.028) 

Adjusted R2 0.523 0.562 0.464 0.561 0.465 0.562 
* Comparable to Tables 6 and C1. Observations labeled as "sale" were deleted.   
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Table D4*: Dependent variable = Frequency of sales  

2004 sample             

SDlnUnit 0.327*** 0.327***   0.302***   0.320*** 

   (0.021)  (0.021)    (0.022)    (0.022) 

lnrev     0.038*** 0.022*** 0.033*** ‐0.003 

       (0.005)  (0.005)  (0.009)  (0.008) 

NumofStores         0.001 0.007*** 

           (0.002)  (0.002) 

lnavgprice   0.001 0.0003 ‐0.003 0.001 0.002 

     (0.011)  (0.012)  (0.011)  (0.012)  (0.011) 

Adjusted R2 0.525 0.524 0.398 0.539 0.398 0.549 

2005 sample             

SDlnUnit 0.357*** 0.357***   0.349***   0.377*** 

   (0.020)  (0.020)    (0.020)    (0.021) 

lnrev     0.023*** 0.018*** 0.031*** ‐0.01 

       (0.004)  (0.003)  (0.008)  (0.007) 

NumofStores         ‐0.001 0.004*** 

           (0.001)  (0.001) 

lnavgprice   0.006 ‐0.002 ‐0.001 ‐0.006 0.013 

     (0.009)  (0.010)  (0.009)  (0.011)  (0.009) 

Adjusted R2 0.534 0.534 0.416 0.546 0.416 0.553 

0405 sample             

SDlnUnit 0.279*** 0.261***   0.227***   0.244*** 

   (0.035)  (0.035)    (0.034)    (0.035) 

lnrev     0.041*** 0.031*** 0.035*** 0.013 

       (0.007)  (0.007)  (0.011)  (0.011) 

NumofStores         0.002 0.006** 

           (0.003)  (0.003) 

lnavgprice   ‐0.080*** ‐0.107*** ‐0.089*** ‐0.104*** ‐0.076*** 

     (0.020)  (0.020)  (0.019)  (0.021)  (0.020) 

Adjusted R2 0.528 0.551 0.519 0.579 0.518 0.584 
*Comparable to Table 7.  
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Table D5: Dependent variables from 2005, explanatory variables from 2004 

Dependent variable = SDP.05 

SDU. 04 0.147*** 

(0.013) 

0.140*** 

(0.012) 

0.137*** 

(0.013) 

 0.138*** 

(0.013) 

0.103*** 

(0.013) 

ln(Rev. 04)   0.003 

(0.003) 

0.013** 

(0.005) 

0.002 

(0.004) 

‐0.001 

(0.004) 

#Stores    -0.002 

(0.001) 

0.000 

(0.001) 

‐0.0002 

(0.001) 

ln(Av. P. 04)  -.035*** 

(0.007) 

-.035*** 

(0.007) 

-.048*** 

(0.009) 

-.035*** 

(0.007) 

‐0.021*** 

(0.007) 

FreqSale.04      0.134*** 

(0.021) 

Adj. R
2
 0.5839 0.6122 0.6125 0.4665 0.6114 0.659 

Dependent variable = freqsale.05  

SDU. 04 0.284*** 

(0.036) 

0.274*** 

(0.036)    

0.247*** 

(0.036)    

0.263*** 

(0.036) 

ln(Rev. 04) 
     

0.037*** 

(0.008) 

0.027*** 

(0.007) 

0.025** 

(0.012) 

0.003 

(0.012) 

#Stores 
           

0.004 

(0.003) 

0.008*** 

(0.003) 

ln(Av. P. 04) 
  

‐0.050** 

(0.021) 

‐0.076*** 

(0.022) 

‐0.057*** 

(0.020) 

‐0.068*** 

(0.022) 

‐0.042** 

(0.021) 

Adj. R
2
 0.566  0.573  0.527  0.59  0.528  0.598 

* Comparable to Table 8. 
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Table D6*: Allowing for week effect 

Dependent variable = SDP.05 

SDRU 0.177*** 

(0.014) 
0.170*** 

(0.013) 
0.168*** 

(0.013) 
0.135*** 

(0.013) 

Ln (Av. P. 04) 
  

‐0.036*** 

(0.007) 
‐0.036*** 

(0.007) 
‐0.021*** 

(0.007) 

Ln(Rev. 04) 
    

0.003 

(0.004) 
‐0.001 

(0.004) 

#Stores 
0.099*** 

(0.006) 
0.073*** 

(0.008) 
0.036 

(0.031) 
0.0001 

(0.001) 

FreqSale.04      

0.130*** 

(0.019) 

Adj. R
2
 0.615 0.646 0.647 0.694 

Dependent variable = freqsale.05  

SDRU 0.353*** 

(0.039) 

0.344*** 

(0.038) 

0.322*** 

(0.038) 

0.341*** 

(0.038) 

Ln (Av. P. 04) 
  

‐0.052** 

(0.020) 

‐0.058*** 

(0.020) 

‐0.043** 

(0.020) 

Ln(Rev. 04) 
     

0.029*** 

(0.007) 

0.003 

(0.011) 

#Stores 
        

0.008*** 

(0.003) 

Adj. R
2
 0.589  0.597  0.617  0.627 

* Comparable to Table 9. 

 

 

Table D7*: Running SDRP on SDU and other variables.  

 1 2 3 4 5 6 

SDU 
0.179*** 
(0.012) 

0.171*** 
(0.012)  

0.165*** 
(0.012)  

0.169*** 
(0.012) 

ln(Rev)   
0.013*** 
(0.003) 

0.006* 
(0.002) 

0.017*** 
(0.005) 

0.001 
(0.004) 

#Stores     
-0.001 

(0.001) 
0.002 

(0.001) 

ln(avgPrice)  
-0.033*** 

(0.007) 
-0.048*** 

(0.008) 
-0.035*** 

(0.007) 
-0.050*** 

(0.009) 
-0.031*** 

(0.007) 

Adj.  0.619 0.646 0.440 0.652 0.440 0.654 

*Comparable to the last rows in Table D1. 
 

  

R
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APPENDIX E: QUANTITATIVE IMPORTANCE WHEN STORES PROVIDE 

DIFFERENT SERVICES 

 

Ideally we should focus on the dispersion of services adjusted prices or “true” prices 

defined by:  

(E1)  Pijt
*
=
Pijt

Sij
 

where Pijt
*  is the “true” price, Pijt  is the observed price and Sij is a measure of services 

provided by the store. Thus a price of 1 dollar in store 1 is equivalent to a price of 1.1 

dollars in store 2 if store 2 provides 10% more services. I assume that the  “true” price 

is the relevant price for both the buyer and the seller.29 

 The “true” price has a regular price component (Rij )  and a temporary element 

(T
ijt
) : 

(E2)  P
ijt

*
= R

ij
T
ijt  

 The regular price reflects the choice between average capacity utilization and 

price. The temporary element may reflect changes that are required to achieve a UST 

equilibrium. It may also reflect the desire to discriminate between shoppers and non-

shoppers as in Varian (1980).  

 I therefore assume that the temporary element in the price has two 

components: one that is required to achieve UST equilibrium (uijt )  and one that 

reflects discrimination (dijt ) . I assume Tijt = uijtdijt  and write (E2) as:     

 (E3) Pijt
*
= Rijuijtdijt  

 In an hypothetical world with no demand uncertainty the first two components 

in (E3) are constants and we can write  

(E4)  Pijt
*H

= kidijt  

                                                
29 Thus a buyer in the UST model will choose to buy at the cheapest available “true” price. The seller 

will first choose the amount of services provided by the store. This cannot be easily changed and may 

be treated as a constant in the short run. He then chooses the price taking into account the probability 

of making a sale that is determined by the “true” price. 
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where k
i
 is a constant and the discrimination component dijt  varies over stores and 

time.  

 

The range measure 

Using (E4) I write the ratio of the high to low hypothetical “true” prices as: 

(E5)  HLP
*
H it =

max j{Pijt
*H
}

min j{Pijt
*H
}
=
max j{dijt}

min j{dijt}
 

Using (E3) I write the ratio of the high to low “true” price as:  

(E6)  HLP
*

it =
max j{Pijt

*
}

min j{Pijt
*
}
==
max j{Rijuijtdijt}

min j{Rijuijtdijt}
 

Dividing (E5) by (E6) leads to: 

(E7)  
HLP

*
H it

HLPit
*

=
max j{dijt}

min j{dijt}

min j{Rijuijtdijt}

max j{Rijuijtdijt}
 

The ratio (E7) is a measure of the importance of demand uncertainty: The lower this 

ratio is the more important is demand uncertainty in determining price dispersion. 

Unfortunately, we do not observe the “true” price and its components. But under 

certain conditions we can use the observed price and its components to estimate (E7).  

 The “true” price is the price net of services. I define a gross price that includes 

services by Pijt
*
Sij . The ratios of the gross prices that are analogous to (E5) and (E6) 

are:   

 (E8) HLPH it =
max j{Pijt

*H
Sij}

min j{Pijt
*H
Sij}

=
max j{dijtSij}

min j{dijtSij}
;  HLPit =

max j{RijuijtdijtSij}

min j{RijuijtdijtSij}
 

And the “importance” measure analogous to (E7) is: 

(E9)  
HLPH it

HLPit
=
max j{dijtSij}

min j{dijtSij}

min j{RijuijtdijtSij}

max j{RijuijtdijtSij}
 

The measure (E9) is the same as the ideal measure (E7) if Sij is a constant that does 

not vary across stores. It is also the same as (E7) if variation it can be “factored out” 

in the following way.  

(E10) max j{x jS j} = max j{x j}max j{S j} ; min j{x jS j} = min j{x j}min j{S j}   
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where x j  denotes other components of the store’s price. This says that when services 

dominates the store with the highest price has the highest level of services and the 

store with the lowest price has the lowest level of services.  

 The “factoring out” property (E10) is likely to hold when we have a large 

number of stores. To illustrate, I consider the case in which x j  and S j  are 

independently distributed. Let x
H

 denote the highest realization of x  and S
H

 denote 

the highest realization of S . For a given store the probability that the product will not 

hit the maximum possible is:  

prob xS < x
H
S
H( ) = 1− Prob(x = x

H
)( ) Prob(S = SH )( )  

The probability that no store out of n  stores will hit the maximum possible product is:  

prob xS < x
H
S
H( )⎡

⎣
⎤
⎦
n

. The probability that the maximum product is the highest 

possible is therefore: Prob{max j (x jS j ) = x
H
S
H
} = 1− prob xS < x

H
S
H( )⎡

⎣
⎤
⎦
n

 

that is increasing in n .   

 When the number of stores is sufficiently large we can therefore use the 

following approximation.  

 (E11) 
HLPH it

HLPit
=
max j{dijt}max j{Sij}

min j{dijt}min j{Sij}

min j{Rijuijtdijt}min j{Sij}

max j{Rijuijtdijt}max j{Sij}
=
HLP

*
H it

HLPit
*

 

 I also use the price net of store effect. This is not the “true” price because 

controlling for “store effect” eliminates variation in both services and the regular 

price, rather than just variations in services.  

 The ratio of prices net of store effect that is analogous to (D5) and (D9) is:   

(E12)  HLRH it =
max j{dijt}

min j{dijt}
 ; HLRit =

max j{uijtdijt}

min j{uijtdijt}
 

And the ratio analogous to (E7) is:  

(E13)  
HLRH it

HLRit
=
max j{dijt}

min j{dijt}

min j{uijtdijt}

max j{uijtdijt}
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This will equal (E7) only if there is no price inertia and Rij  is a constant that does not 

vary across stores or if we can “factor out” Rij  in a way similar to the “factoring out” 

of Sij  in (E10).  

 

The variance measure  

To simplify, I assume that the “true” price does not depend on the level of services. A 

store that provides good services can offer a good deal and have a low “true” price. I 

also assume that the three components of the “true” price are independently 

distributed. Thus the probability of a “sale” is the same for “high true regular price” 

store and for “low true regular price stores”. This simplifies the exposition but the 

main results hold if we allow for a positive correlation between the “true price” and 

services. 

 Writing (E1) and (E3) in log terms leads to:  

(E14) ln(Pijt ) = ln(Sij )+ ln(Rij )+ ln(uijt )+ ln(dijt )  

(E15)  ln(Pijt
*
) = ln(Rij )+ ln(uijt )+ ln(dijt )  

After removing “store effect” we are left with the temporary components of the price: 

(E16)  eijt = ln(uijt )+ ln(dijt )  

 The elimination of demand uncertainty will eliminate UST type reasons for price 

dispersion: The variation in regular true price and in temporary true price due to non-

discrimination. We can therefore compute the variances of the hypothetical prices by 

substituting Var(lnRij ) =Var(lnuijt ) = 0  in (E14)-(E16). This leads to:  

(E17)  Var(lnPijt
H
) =Var(lnSij )+Var(lndijt )  

(E18)  Var(lnPijt
*H
) =Var(lneijt

H
)+Var(lndijt )    

 The ideal measure of the importance of demand uncertainty is: 

(E19) 
Var(lnPijt

*H
)

Var(lnPijt
*
)
=
Var(lndijt )

Var(lnPijt
*
)

 

 The measure that does not control for “store effect” is:  
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(E20) 
Var(lnPijt

H
)

Var(lnPijt
*
)
=
Var(lnSij )+Var(lndijt )

Var(lnSij )+Var(lnPijt
*
)

 

This measure is the same as the ideal measure (E19) when all stores provide the same 

services and Var(lnSij ) = 0 . Otherwise it is higher than the ideal measure.  

 The measure that controls for “store effect” is: 

(E21) 
Var(lneijt

H
)

Var(lneijt )
=

Var(lndijt )

Var(lnuijt )+Var(lndijt )
 

This measure is the same as the ideal measure (E19) if there is no price inertia and 

Var(lnR
ij
) = 0 . Otherwise, it is higher than the ideal measure. 

 Since both (E20) and (E21) are larger than the ideal measure, it follows that:  

 (E22) 1−
SD(lnPijt

H
)

SD(lnPijt )
<1−

SD(lnPijt
*H
)

SD(lnPijt
*
)

 and 1−
SD(lneijt

H
)

SD(lneijt )
<1−

SD(lnPijt
*H
)

SD(lnPijt
*
)

 

The first inequality says that the percentage reduction in the standard deviation of the 

gross prices is less than the ideal measure of the percentage reduction. The second 

inequality says that the percentage reduction in the prices net of store effect is less 

than the ideal measure of the percentage reduction. 
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