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To characterize the cross sectional price distribution of supermarket prices, we divide the 

stores in each good-week combination (UPC-week cell) into bins according to their price. 
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sectional) average price and quantity sold is lower for higher price bins; (b) Temporary 

sales contribute substantially to variations over weeks in the average price of the typical 

good; (c) The elasticity of the quantity sold by stores in the high price bin with respect to 

the quantity sold by stores in a low price bin (the quantity elasticity) is less than unity; (d) 

The elasticity of the quantity sold by stores in the high price bin with respect to the price 

in a low price bin (the cross price elasticity) is positive but less than the absolute value of 

the own price elasticity.  More generally, we provide results about elasticities within 
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1. INTRODUCTION 

 

 Models of price dispersion use various assumptions. Among these are 

monopolistic competition, menu costs, search frictions and uncertainty about aggregate 

demand. Different assumptions may lead to drastically different policy implications and 

therefore attempting to differentiate between various models is important. Here we study 

some implications of monopolistic competition models that assume a CES utility function 

and versions of the Prescott (1975) model.  

 The paper complements Eden (2016) who focuses on variations in the cross 

sectional price dispersion across goods. Here we focus on the within good behavior of 

prices and quantities. We divide stores that sell a given product in a given week into bins 

according to their posted price. For example, we look at stores with price above the 

median and below the median. Stores may be above the median in one week and below 

the median in another week. In the same week a store may have goods that are priced 

above the median and below the median. We therefore define the bins for each good-

week combination (UPC-week cell).  

 Our main findings are: (a) The variations over weeks in the average price and 

quantity sold is lower for higher price bins; (b) Temporary sales contribute substantially 

to variations over weeks in the (cross sectional) average price of the typical good1; (c) 

The elasticity of the quantity sold by stores in the high price bin with respect to the 

quantity sold by stores in a low price bin (the quantity elasticity) is less than unity; (d) 

The elasticity of the quantity sold by stores in the high price bin with respect to the price 

                                                
1 The focus here is on the behavior of posted prices. Glandon (2015) study the behavior of transaction 

prices, obtained by dividing aggregate revenues across stores in each UPC-week cell by the aggregate 

quantity sold in the cell. He finds that temporary sales have a large impact on the price actually paid by 

consumers. Coibion et.al (2015) find that effective (transaction) prices are procyclical while posted prices 

are acyclical. They explain this difference by changes in shopping activities: In recessions consumers 

spend more time shopping and tend to reallocate expenditures towards lower price retailers. This is 

consistent with Kaplan and Menzio (2015) who found a significant effect of the employment status of the 

head of the household on the average price paid. 
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in a low price bin (the cross price elasticity) is positive but less than the absolute value of 

the own price elasticity.  

 We attempt to explain the above findings with a model in which price dispersion 

arises as a result of uncertainty about aggregate demand. We start with a simple 

monopolistic competition model in which there are many buyers who belong to a single 

household. Each buyer visits one store only and is instructed by the head of the household 

to buy a quantity that depends on the price. We derive the prediction of this model about 

the elasticities within UPC-week cell under the assumption that the head of the household 

maximizes a CES utility function. We then explore a flexible price version of the Prescott 

model, the Uncertain and Sequential Trade (UST) model, where buyers can costlessly 

move across stores and buy at the cheapest available price. The "simple versions" of the 

two models do not explain the main empirical findings. Observation (a) is a challenge to 

Prescott type models that assume a tradeoff between the probability of making a sale and 

the price. Observations (c) and (d) are a challenge to versions of monopolistic 

competition models that imply a quantity elasticity of unity and a cross price elasticity 

that is equal to the absolute value of the own price elasticity. We attempt to explain the 

main findings with a model in which some buyers shop around (as in the UST model) and 

some buyers do not shop around (as in our monopolistic competition model). 

 Previous empirical studies of price dispersion focused on the implications of 

search models. See for example, Sorensen (2000), Lach (2002) and Kaplan and Menzio 

(2015). There is also an empirical literature that focus on sticky price models of price 

dispersion. See for example, Reinsdorf (1994), Eden (2001a), Baharad and Eden (2004) 

and Ahlin and Shintani (2007). And there is a literature that focus on price dispersion in 

the airline industry. See for example, Escobari (2012), Gerardi and Shapiro (2009) and 

Cornia, Gerardi and Shapiro (2012). Here we use the UST model to discuss the empirical 

findings. One reason for our focus on the UST model is the finding that demand 

uncertainty is important in explaining differences in price dispersion across goods (Eden 
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[2016]). Another rather obvious reason is that we are more familiar with this model. We 

hope however that the facts recovered in this paper will be of interest also to readers who 

are not familiar with the UST model and who wish to regard the UST framework as an 

organizational device.   

 Section 2 is about the monopolistic competition model. Section 3 is about a 

flexible price version of the Prescott model: the Uncertain and Sequential Trade (UST) 

model. Section 4 describes the data and variations in the (cross sectional) average price 

over weeks. Section 5 is about elasticities. Section 6 repeats the calculations after 

controlling for store effects and section 7 repeats the calculations after controlling for 

UPC specific store effects. Section 8 assesses the importance of temporary sales in the 

variation of the (cross sectional) average price over weeks. Section 9 computes the 

probabilities of attracting shoppers by lower price stores. Section 10 provides concluding 

remarks. 

 

2. MONOPOLISTIC COMPETITION 

 

We start with a model in which the household uses a CES utility function to allocate 

expenditure over stores as in Dixit and Stiglitz (1977).2 

 There is a single household with !!2N  members: !N  workers (sellers) and !N  

buyers. Members live in !N  neighborhoods. There are two members per neighborhood: A 

buyer and a seller. Each seller produces a good and offers it for sale in his neighborhood. 

There are thus !N  goods that are differentiated by location but have identical physical 

characteristics. In week !t , the head of the household decides how much to buy from each 

of the !N  goods and instructs the buyer who lives in neighborhood !i  to buy 
!
x
it

 units 

from the seller in his neighborhood.   

                                                
2 This model is an important component of the New Keynesian literature. See for example, Christiano et.al 

(1997) and Coibion et. al (2015). 
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 The head of the household chooses to spend a total of 
!
I
t
 dollars on the !N  goods. 

He faces the prices 
!!
(p

1t
,...,p

Nt
)  and chooses the quantities 

!!
(x

1t
,...,x

Nt
)  to maximize a CES 

utility function. In week !t , the head of the household solves the following problem:   

(1)  

!!

max
x
jt

(x
jt

j=1

N

∑ )γ
⎛

⎝⎜
⎞

⎠⎟

1/γ

  s.t. 

!!

p
jt

j=1

N

∑ x
jt
= I

t
 

where 
!
0<γ <1 . 

The first order conditions to this problem requires:  

(2)  

!!

x
jt
= x

1t

p
jt

p
1t

⎛

⎝
⎜

⎞

⎠
⎟

θ

  for all !j  

where 

!

θ =
1

γ −1
<0 . We take logs and add a classical measurement error to obtain: 

(3)  
!!
ln(x

jt
)= ln(x

1t
)+θ ln(p

jt
)−θ ln(p

1t
)+e

t
  

This regression imposes strong restrictions on the coefficients. It says that the quantity 

elasticity (the coefficient of 
!!
ln(x

1t
)) is unity and the absolute value of the own price 

elasticity is equal to the cross price elasticity.  

 In the above model each buyer visits one store. We now turn to the other extreme 

in which buyers can costlessly move between stores and buy at the cheapest available 

price.   

 

3. SEQUENTIAL TRADE 

 

The original Prescott (1975) model assumes that prices are set in advance and cheaper 

goods are sold first. Eden (1990) relaxes the price rigidity assumption and describes a 

sequential trade process in which cheaper goods are sold first.3 In his Uncertain and 

Sequential Trade (UST) model, buyers arrive at the market place sequentially. Each 

buyer sees all available offers, buys at the cheapest available price and disappears. Sellers 

                                                
3 For other extensions of the Prescott model, see Dana (1998, 1999,2001) and Deneckere and Peck (2012). 
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must make irreversible selling decisions before they know the aggregate state of demand. 

In equilibrium they are indifferent between prices that are in the equilibrium range 

because the selling probability is lower for higher prices. Sellers in the model make time 

consistent plans and do not have an incentive to change prices during the trading process. 

Prices are thus completely flexible. 

 We start with a simple version and then augment it to account for various features 

of the data. 

 

3.1 A simple version  

 There are many goods and many sellers who can produce the goods at a constant 

unit cost. Here we focus on one good with a unit cost of λ . Production occurs at the 

beginning of the period before the arrival of buyers. Storage is not possible. The number 

of buyers ! !N  is an !iid  random variable that can take two possible realizations: !N  with 

probability 
!!1−q  and !N +Δ  with probability !q . Buyers arrive sequentially in batches. 

The first batch of !N  buyers buys in the first market at the price 
!!
P
1
. The second market 

opens only if the second batch of Δ  buyers arrives. If this second batch arrives the 

second market opens at the price 
!!
P
2
.  

 The demand of each of the active buyer at the price !P  is given by: !!D(P) . In 

equilibrium sellers supply 
!!
x
1

 units to the first market and 
!!
x
2
 units to the second market. 

 Equilibrium is a vector 
!!
(P

1
,P
2
,x

1
,x

2
)  such that the expected profits for each unit is 

zero: 

 (4)  
!!
P
1
= qP

2
= λ  

And markets that open are cleared: 

(5)  
!!
x
1
=ND(P

1
) and 

!!
x
2
= ΔD(P

2
)  

 Figure 1 illustrates the equilibrium solution. The demand in market 1 at the price 

λ , !!ND(λ)  is equal to the supply to the first market 
!!
(x

1
) . When market 2 opens at the 

price , the demand in this market, , is equal to the supply . !!λ /q !!ΔD(λ /q) !!
(x

2
)
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Figure 1: Prices and quantities in the simple version  

 

Note that in this simple version posted prices do not change over time. The quantity sold 

at the low price does not change over time but the quantity sold at the high price 

fluctuates over time.  

 

3.2 Storage 

Bental and Eden (BE, 1993) studied a UST model with storage and in their model both 

quantities and prices fluctuate with the beginning of period level of inventories. The BE 

model can be easily extended to allow for supply shocks. In Eden (2001), the amount 

available for sale fluctuates as a result of both !iid  demand and supply shocks. In this 

model, an increase in the amount of inventories carried from the previous period reduces 

all prices. A temporary reduction in the cost of production will have a similar effect. 

ND(P)

ΔD(P)

Price

Quantity
x1 x2

P1=λ

P2=λ/q
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Prices will in general depend on the amount available for sale (inventories + current 

production) and when this amount is high, prices will remain low until inventories are 

back to "normal". Thus, "temporary sales" may be the result of both demand and supply 

shocks. Eden (2001) uses aggregate NIPA data and VAR analysis to test the implications 

of the model. The model is also consistent with the findings of Aguirregabiria (1999) 

who used a unique data set from a chain of supermarket stores in Spain and found a very 

significant and robust effect of inventories at the beginning of the month on current 

price.4 

 The BE model assumes a convex cost function and exponential depreciation. Here 

we assume a constant per unit cost and one-hoss-shay depreciation. The one-hoss-shay 

depreciation is realistic because most supermarket items have an expiration date. It also 

serves as a tiebreaker and yields predictions about temporary sales that are an important 

feature of the data.  

 To simplify, we assume that the good can be stored for one period only. Thus, if a 

good is not sold in the first period of its life, it can still be sold in the second period but it 

has no value if it is not sold within the two period limit.  

 As before, the number of buyers  is  and can take two possible realizations: 

 with probability  and  with probability . 

                                                
4 Aguirregabiria (1999) provides a description of the negotiation between the firm (chain's headquarter) 

and its suppliers. The toughest part of the negotiation with suppliers is about the number of weeks during 

the year that the brand will be under promotion, and about the percentage of the cost of sales promotions 

that will be paid by the wholesaler (e.g. cost of posters, mailing, price labels). A similar description is in 

Anderson et.al (2013) who present institutional evidence that sales (accompanied by advertising and other 

demand generating activities) are complex contingent contracts that are determined substantially in 

advance. There is also some flexibility. For many promotions manufacturers allow for a "trade deal 

window" of several weeks where the seller can execute the promotion. These descriptions are consistent 

with the hypothesis that temporary sales are used to respond to high inventories. Sometimes the delivery 

schedule allows the firm to predict the level of inventories and as a result temporary sales are set in 

advance. The flexibility in the timing of sales reflects the need to respond to inventories that were 

accumulated as a result of demand shocks. The observation that temporary sales do not respond to cost 

shocks (Anderson et.al [2013]) and are largely acyclical (Coibion et.al [2015]) is also consistent with the 

hypothesis that temporary sales are used to respond to transitory changes in the level of inventories that last 

for a relatively short time and not to changes that last for relatively long time (like changes in cost and the 

level of unemployment). This is different from the view that temporary sales are not used to respond to 

changes in fundamentals and are merely a discrimination device. 

! 
!N
t !iid

! 
!N
t
=N

!!1−q ! 
!N
t
=N +Δ !q
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 At the beginning of period !t  the economy can be at two states. In state !I  (!I  for 

inventories) the demand in the previous period was low (
!! 
!N
t−1

=N ) and the second market 

did not open. As a result inventories were carried from the previous period. In state !NI   

(!NI  for no inventories) demand was high (
!! 
!N
t−1

=N +Δ ) and there are no inventories. 

The price in the first market is !!P(1,I)  in state !I  (with inventories) and !!P(1,NI)  in state 

!NI  (with no inventories). The quantity offered for sales in market 1 is !!x(1,I)  in state !I  

and !!x(1,NI)  in state !NI . The price in the second market  and the supply  do not 

depend on the level of inventories. The quantity sold in the first market is equal to the 

quantity offered for sale. The quantity sold in the second market is zero if demand is low 

and  if demand is high. Table A describes the total amount sold (over the two markets) 

as a function of last period's demand and this period's demand.  

 

Table A: Total amount sold in period  
 

  

 
!!
x(1,NI)+ x

2
 !!x(1,NI)  

 
!!
x(1,I)+ x

2
 !!x(1,I)  

 

 A formal analysis and the equilibrium definition is in Eden (2016, Appendix C). 

To make this paper self-contained we repeat here the description of the model.  

 The main idea is that in allocating the available amount of goods (from new 

production and inventories) across the two markets, the older units get a "priority" in the 

first market (and the younger units get a "priority" in the second market). Given prices 

the allocation rule is as follows. If the amount of old units that come from inventories is 

less than the demand in the first market then all old units are supplied to the first market. 

If the amount of old units is greater than the demand in the first market then only old 

units are supplied to the first market. This allocation rule can be justified on efficiency 

grounds. Suppose for example, that a chain has two stores: Store O with old units and 

store Y with young units. Suppose further that store Y posts the first market low price 

!!
(P

2
)

!!
(x

2
)

!!
x
2

!t

! 
!N
t
=N +Δ

! 
!N
t
=N

!! 
!N
t−1

=N +Δ

!! 
!N
t−1

=N
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and store O posts the second market high price. In this case if aggregate demand is low 

and store O does not sell, the units supplied by store O expire. Alternatively, if store O 

posts the first market price and store Y posts the second market price, the unsold units 

supplied by store Y do not expire and can be sold next period. Thus the chain's profits 

will be higher if the store with the young units supplies to the second market. 

 The value of a young unit that is not sold in the current period (the value of 

inventories) is !!βP(1,I) , where 
!
0< β <1  is a constant that captures discounting, storage 

costs and depreciation. The value of an old unit that is not sold is zero. Given the above 

allocation rule and given that production is strictly positive in each period, newly 

produced units are supplied to the second market and in equilibrium the following 

arbitrage condition must hold.5 

(6)  
!!
qP

2
+(1−q)βP(1,I)= λ  

The left hand side of (6) is the expected present value of revenues from a newly produced 

unit allocated to the second market. If the second market opens (with probability ) the 

seller gets . Otherwise he will get the unit value of inventories, !!βP(1,I) . The right 

hand side of (6) is the unit cost of production. Thus, (6) says that the marginal cost is 

equal to expected revenues.  

 We now distinguish between two cases. In the first case, illustrated by Figure 2A, 

inventories in state !I  are relatively low and newly produced goods are supplied in state !I  

to the first market. The price in the first market is the marginal cost: !!P(1,I)= P(1,NI)= λ . 

Substituting this into (6) yields: 

 (7)  

!!

P
2
=
λ 1−(1−q)β( )

q
 

 In the second case, illustrated by Figure 2B, newly produced goods are supplied 

to the first market only in state !NI . In state !I  the entire supply to the first market is out 

of inventories and the supply to the second market is of both newly produced units and 

                                                
5 Production must be positive because the entire supply in the first market is always sold. 

!q

!!
P
2
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old units. The following arbitrage condition must hold when some old units are supplied 

to the second market. 

(8)  
!!
qP

2
= P(1,I)   

This says that the expected revenue of supplying an old unit to the second market is the 

same as the revenue from supplying it to the first market. The solution to (6) and (8) is: 

(9)  

!!

P(1,I)=
λ

1+(1−q)β
< λ  and 

!!

P
2
=

λ

q 1+(1−q)β( )
 

 Note that the first market price in state !I  is below cost as in the loss-leaders 

model of Lal and Matutes (1994).6 

 

 

 

A. In state !I , 
!!
I = x

2
 "old units" and !!x(1,I)− I  newly produced units are supplied to the first market. The 

supply to the first market does not depend on the amount of inventories in this case.  

 

                                                
6 It is also possible that all the old units are allocated to the first market and all the new units are allocated 

to the second market. Also in this case the first market price can be below cost: !!P(1,I)≤ λ . See, Eden 

(2016). 

ND(P)

x(1,I)=x(1,NI)I=x2

P2

P(1,I)=P(1,NI)=λ

ΔD(P)
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B. In state !I , !!x(1,I)  "old units" are supplied to the first market and !!Ι − x(1,I)  "old units" are supplied 

to the second market. No new units are supplied to the first market. 

Figure 2: Possible Equilibria 

 

 The model described by Figure 2 may account for temporary sales. Some stores 

offer their newly produced good at the high ("regular") price of market 2. Then if demand 

is low they accumulate inventories and offer the good for sale at the low price of market 

1. We also note that the price and quantity in the first market may change over time.   

 

3.3 Using sales by low price stores to predict sales by high price stores.  

In section 3.1 and 3.2, the amount sold in the second market does not depend on the 

amount sold in the first market. This result is special to the assumption that ! !N  can take 

only two possible realizations.  

 In the more general case in which ! !N  may take many possible realizations the 

quantity sold in market !k < i  may be correlated with the quantity sold in market !i , 

because strictly positive sales in market !k  imply 
! 
!N ≥N

k
 and leads to an upward revision 

in the probability that 
! 

!N ≥N
i
 and market !i  will open.  

ND(P)

I=x2

P2

ΔD(P)

x(1,I)x(1,NI)

P(1,I)

P(1,NI)=λ
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 We now establish this correlation under the assumption that the amount supplied 

to market !s  (
!
x
s
) does not change over time. This assumption holds if inventories are not 

too large as in Figure 2A.  

 We start with the case in which the number of buyers ! !N  can take 3 possible 

realizations: 
!!
(N

0
,N

1
,N

2
)  with probabilities 

!
(π

0
,π

1
,π

2
) , where 

!!
N
0
=0<N

1
<N

2
. There 

are two hypothetical markets. The first market opens with probability 
!
1−π

0
 and if it 

opens it serves 
!!
N
1

 buyers. The second market opens with probability 
!
π
2
 and if it opens it 

serves 
!!
Δ =N

2
−N

1
 buyers. The unconditional expected quantity sold in market 2 is: 

!!
E(x

2
)=π

2
ΔD(P

2
) . The expected quantity sold in market 2 conditional on sale in market 1 

is:7  

(10) 

!!

E(x
2
|x

1
>0)=

π
2
ΔD(P

2
)

1−π
0

   

And the expected quantity sold in market 2 conditional on no sales in market 1 is: 

(11)  
!!
E(x

2
|x

1
=0)=0  

There is thus a positive relationship between the quantity sold in market 1 and the 

quantity sold in market 2.  

 We now consider the more general case. We assume that the number of buyers ! !N  

can take !!m+1  possible realizations: 
!!
(N

0
,N

1
,...,N

m
) , where 

!!
(0=N

0
<N

1
<N

2
...<N

m
) . The 

probability that the number of buyers is 
!
N
s
 is denoted by: 

!! 
π
s
=Prob( !N =N

s
) . The 

probability that the number of buyers is greater than 
!
N
s
 is denoted by: 

(12) 
!! 
q
s
=Prob( !N ≥N

s
)= π

ii=s

m

∑  

The demand in market !m  if it opens is: 
!!
Δ
m
D(P

m
) , where 

!!
Δ
m
=N

m
−N

m−1
. The expected 

quantity sold in market !m  given 
!
x
i
 is:  

(13)  

!!

E(x
m
|x

i
>0)=

π
m
Δ
m
D(P

m
)

q
i

, 
!!
E(x

m
|x

i
=0)=0  

                                                

7 Applying Bayes' rule leads to: 

!! 

Prob( !N =N
2
| !N ≥N

1
)=
Prob( !N =N

2
∩ !N ≥N

1
)

Prob( !N ≥N
1
)

=
π
2

1−π
0

. 
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There is thus a positive relationship between the quantity sold in market !i  and the 

quantity sold in market !m . We now make the following additional observation.  

 

Claim 1: The expected sales in market !m  conditional on 
!!
x
i
>0  is increasing in the index 

!i . 

 

To see this claim, note that the probability of making a sale in market !i  is 
!
q
i
 and (12) 

implies: 
!!
q
1
>q

2
> ...>q

m
=π

m
.  

 The intuition for Claim 1 is in the observation that 
!! 
Prob( !N =N

m
| !N ≥N

i
)  is 

increasing in !i . Therefore, from the point of view of the highest price stores, positive 

sales by medium price stores are more encouraging news than positive sales by low price 

stores.  

 Equations (13) may be tested by running the quantity sold by the highest price 

store (store ) on a dummy that is equal to 1 if sales in a lower price store was positive 

and zero otherwise. We did not pursue this route because we cannot distinguish in the 

data between the case in which the good was on the shelf and was not sold to the case in 

which the good was not on the shelf. For this reason we used only good-store 

combinations with positive sales in all weeks. To account for the observations that sales 

are always positive, we follow Salop and Stiglitz (1977), Shilony (1977) and Varian 

(1980) and add non-shoppers to the model.  

 

3.4 Non-shoppers  

We abstract from storage and extend the model in section 3.1 to include two types of 

buyers: shoppers and non-shoppers. The monopolistic competition model in section 2 and 

the UST model in section 3.1 may be obtained as special cases. The monopolistic 

competition model may be obtained if we eliminate shoppers from the model. The UST 

model may be obtained if we eliminate non-shoppers from the model. 

!m
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 We focus here on predicting the quantity sold by the highest price stores on the 

basis of the quantity sold by medium and low price stores. To simplify, we assume that 

shoppers' activity is not important for the highest price stores and focus on the quantity 

elasticity: The elasticity of the quantity sold by the highest price stores with respect to the 

quantity sold by lower price stores.  

 In the absence of shoppers we get the monopolistic competition result of unit 

elasticity. In the presence of shoppers we get an elasticity that is less than unity because 

of the following signal extraction problem. For predicting the quantity sold by the highest 

price stores only the demand of non-shoppers is relevant and therefore shoppers' activity 

introduces noise that leads to an elasticity that is less than unity. 

 Sales by medium price stores provide relatively more information about the 

demand of non-shoppers because they are less influenced by shoppers' activity. And 

therefore as in section 3.3, we find that for predicting sales by the highest price stores, 

sales by medium price stores are more relevant than sales by low price stores. 

 To model this idea, we assume !n  sellers and !nk+m  buyers, where !n>m . Some 

sellers advertise their price and some do not. There are !!m>0  advertisers and !!n−m>0  

non-advertisers. Similarly there are some buyers who shop around and some who do not. 

There are !!m>0  shoppers and !!nk >0  non-shoppers.   

 At the beginning of week !t , sellers (advertisers and non-advertisers) produce the 

good at the cost of 
!
λ
t
, where 

!
λ
t
 is the realization of an !iid  random variable  

!λ . 

 The demand of an active buyer at the price  is 
!
a
t
P

θ
 where !θ <0  and 

!
a
t
 is the 

realization of an !iid  random variable ! !a . The demand of the individual buyer is similar to 

the demand of the individual buyer in the monopolistic competition model (3) where the 

price of the numeraire good is unity and the level of consumption from the numeraire 

good is the realization of ! !a .  

 Sellers and non-shoppers are distributed over !n  locations. In each location there 

is one store (seller) and !k  non-shoppers that always buy in the local store.   

!P
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 The number of active shoppers is an !iid  random variable ! !s  that can take !!m+1  

possible realizations: !!s =0,...,m , where realization !s  occurs with probability 
!
π
s
. Thus, in 

state  there are  active shoppers and !m− s  shoppers who are not active.  

 We may imagine that active shoppers use the internet. The web site of each 

advertiser includes information about the price and about availability. When an advertiser 

is stocked out this information is immediately on the web site.8  

 Each of the !!n−m≥0  non-advertisers sells only to the !k  non-shoppers in his 

location. Each of the !m  advertisers may attract some shoppers in addition to the non-

shoppers in his location. To simplify, we assume that each advertiser chooses capacity 

(production) to satisfy the demand of !!1+k  buyers. We thus assume that a store satisfies 

the demand of its !k  regular clients and has an additional capacity to serve one shopper if 

he arrives. Unlike New Keynesian models, here stores may be stocked out. Unlike some 

search models, here capacity depends on the price.  

 We also simplify by assuming that non-shoppers buy first. After non-shoppers 

have completed their trade there is still available capacity in !m  stores. At this point the 

shoppers form a hypothetical line. There may be no shoppers (if !! !s =0 ) and in this case 

there is no more trade. Otherwise, the first shopper buys at the cheapest advertised price. 

The second in line has less choice because one store is already stocked out. In general, 

the active shoppers who are "last" in line have less choice than those who are at the head 

of the line. Figure 3, describes the sequence of events within the week.  

  

                                                
8 This is different from Burdett, Shi and Wright (2001) who assume that buyers can see all prices but 

cannot see availability. 

!s !s
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 Figure 3: Sequence of Events within the week 

 

 The price posted by an advertiser in location !i  in week !t  is 
!
P
it

. We choose 

indices such that the price posted by advertisers increases with the location index: 

!!
P
1t
< ...< P

mt
. The price posted by non-advertisers (indexed !i >m ) is the monopoly price 

!
P
t

m
.  

 As was said above, shoppers buy at the cheapest available price. The first shopper 

chooses store 1 with the price 
!!
P
1
. The second shopper chooses store 2 with the price 

!!
P
2
 

and so on. The probability of attracting a shopper by a store that advertise the price 
!
P
i
 

!!(i ≤m)  is:  

(14)  

!! 

q
i
=Prob( !s ≥ i)= π

s
s=i

m

∑  

 In equilibrium all advertisers make the same expected profits, Π :  

(15) 
!!
(k+q

i
)P

it
a
t
P
it

θ
−(k+1)λ

t
a
t
P
it

θ
=Π

t  

This leads to: 

(16)  

!!

P
it
=
(k+1)λ

t

k+q
i

+
Π

t

(k+q
i
)a

t
P
it

θ
 

In the simple version of the UST model in section 3.1, !!k =Π =0  and the expected 

revenue per unit 
!
q
i
P
it
= λ

t
 is the same across prices. Here the first term is the unit cost 

divided by the average capacity utilization 
!!
(k+q

i
)/(k+1) . The second term is the 

expected profit per unit sold. For the definition and existence of equilibrium, see 

Appendix A.  

Capacity choice 

 and  are  

observed 

Non-shoppers 

buy - each in 

his own location 

Shoppers 

arrive in a  

sequential  

manner 

The realization 

of  is observed 

at the end of the process 
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 We now turn to study the relationship between the quantity sold by a non-

advertiser and the quantity sold by an advertiser. The quantity sold by the non-advertisers 

is: 

(17)    

The quantity sold by an advertiser is:  

(18)   

where {  with probability  and  otherwise} is the number of buyers that 

shop in the advertiser's store.  

 Subtracting (18) from (17) leads to:  

(19)  
!! 
ln(x

t

m)= ln(k)+θ ln(P
t

m)+ ln(x
it
)− ln( !ω

i
)−θ ln(P

it
) 

 
!!
= ln(x

it
)+θ ln(P

t

m)−θ ln(P
it
)+D

it
 

where 
!
D
it

is the difference in the number of buyers between the non-advertiser and the 

advertiser: 

(20)  
!! 
D
i
= ln(k)− ln( !ω

i
) !!= {ln(k)− ln(1+k)  if !s ≥ i  and zero otherwise} 

This difference is negative if a shopper arrives at the advertiser's store and zero if he does 

not arrive. Since 

!!

x
it

aP
it

θ
=1+k  if !s ≥ i , we can write (20) as: 

(21)  

!!

D
it
= {ln(k)− ln

x
it

a
t
P
it

θ

⎛

⎝
⎜

⎞

⎠
⎟  if !s ≥ i  and zero otherwise} 

Since 
!!
Prob(s ≥ i)= q

i
, (21) implies  

!! 

E(D
ij
| !a= a)= q

i
ln(k)− ln

x
i

aP
i

θ

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ = qi ln(k)− ln(xi )−θ ln(Pi )− ln(a)( ) . The 

unconditional expectations are:  

(22) 
!! 
E(D

it
)= q

i
ln(k)−q

i
ln(x

it
)+q

i
θ ln(P

it
)+q

i
E ln( !a)  

We write: 

(23)  
!!
D
it
= E(D

it
)+ ε

it
 

By construction 
!
ε
it

 has zero mean and is !iid .  

!!
ln(x

t

m)= ln(k)+ ln(a
t
)+θ ln(P

t

m)

!! 
ln(x

it
)= ln( !ω

i
)+ ln(a

t
)+θ ln(P

it
)

! 
!ω
i
= !!1+k !

q
i !k
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Substituting (22) and (23) in (19) leads to: 

(24)  
!!
ln(x

t

m)=ψ
i
+(1−q

i
)ln(x

it
)+θ ln(P

t

m)−(1−q
i
)θ ln(P

it
)+ ε

it
 

where . 

 We can use (24) to interpret a regression of the average quantity sold by stores in 

the high price bin on the average price in the high price bin and the average price and 

quantity in the low price bin. Equation (24) has the following strong predictions.  

 

Claim 2: (a) the quantity elasticity (the coefficient of 
!!
ln x

it
) is between zero and unity 

and the own price elasticity (the coefficient of 
!!
lnP

t

m
) is greater in absolute value than the 

cross price elasticity (the coefficient of 
!!
lnP

it
); (b) the quantity elasticity and the cross 

price elasticity are decreasing in the index of the bin.  

  

The quantity elasticity is less than unity because an increase in the quantity sold by the 

advertiser may be due to the arrival of a shopper rather than an increase in !a . It is due to 

the arrival of a shopper with probability !q  and therefore the elasticity is only  

!!1−q . Since the quantity elasticity is decreasing in !q  it decreases with the index of the 

bin. In Appendix B we generalize the results in Claim 2 to the case in which the 

dependent variable is the quantity sold by an advertiser.  

 

4. DATA 

 

We use a rich set of scanner data from Information Resources Inc. (IRI).9 The complete 

data set covers 48 markets across the United States, where a market is sometimes a city 

(Chicago, Los Angeles, New York) and sometimes states (Mississippi). There are 31 

diverse categories of products found in grocery and drug stores, such as carbonated 

beverages, paper towels, and hot dogs. We define goods by the Universal Product Code 

                                                
9 A complete description of the entire data set can be found in Bronnenberg, Bart J., Michael W. Kruger, 

Carl F. Mela. 2008. Database paper: The IRI marketing data set. Marketing Science, 27(4) 745-748. 

!! 
ψ

i
= q

i
ln(k)+E ln( !a)( )
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(UPC). The data provide information about the total number of units and total revenue for 

each UPC-store-week cell. We obtain the posted price for each cell by dividing revenue 

by the number of units sold. We use data from grocery stores in Chicago during the years 

2004 and 2005. We use 3 samples. The 52 weeks in the year 2004, the 52 weeks in the 

year 2005 and the 104 weeks in the combined sample of 2004-2005.10   

 We apply the following filtering (in a sequential manner):   

(a) We drop all UPC-Store cells that do not have positive revenues in all of the sample’s 

weeks.11  

(b) We drop all UPCs that were sold by less than 11 stores. 

(c) We drop all categories with less than 10 UPCs. 

(d) We drop UPC-Week observations with no price dispersion.  

 

The first exclusion is applied because we cannot distinguish between zero-

revenue observations that occur when the item is not on the shelf and zero-revenue 

observations that occur when the item is on the shelf but was not sold. It is also required 

for identifying "temporary sale" prices. The second exclusion is aimed at reliable 

measures of cross sectional price dispersion. The third economizes on the number of 

category dummies. After applying (a)-(c) we get “semi balanced” samples in which the 

number of stores varies across UPCs but stores that are in the sample sold their products 

in all of the sample’s weeks.  

 The requirement that the product be sold continuously by more than 11 stores 

leads to a sample of fairly popular brands.12 The focus on fairly popular items is likely to 

reduce the problem of close substitutes that have different UPCs. In addition, the 

                                                
10 We also replicated the results for other cities (New York, Los Angeles, Philadelphia, Raleigh/Durham 

and Washington, D.C.). We find strong agreement with the Chicago data presented here. 
11 We also dropped observations in which the quantity sold was zero but revenues were positive. 
12 This bias is not unique to this paper. Sorenson (2000) has collected data on 152 top selling drugs. Lach 

(2002) excluded products that were sold by a small number of stores. Kaplan and Menzio (2015) exclude 

UPCs with less than 25 reported transactions during a quarter in a given market. 
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exclusion of items sold by less than 11 stores significantly reduce the number of items 

with very high price dispersion that may arise as a result of measurement errors.13   

 

Temporary Sales. 

We assume that a temporary sale occurs when a drop in the price of at least 10% is 

followed by a price equal to or above the pre-sale price within four weeks. To study the 

effects of temporary sales we use samples of regular prices obtained from the original 

samples after deleting all observations in which the price was a "sale" price. After 

eliminating "sale prices" we used an additional filter that dropped all UPC-week cells that 

had less than 11 stores or had no price dispersion. Note that the original filter required 

that each UPC- store cell have strictly positive revenues in all weeks. This allowed for the 

implementation of our definitions of sales. We drop this requirement in the second round 

of filtering and as a result the number of stores that sell a given UPC (at a "regular" price) 

may vary across weeks.  

 

Bins. 

We split the stores in each UPC-Week cell into bins of approximately equal size. For 

example, the 2 bins division split the stores in each UPC-Week cell into two categories: 

High and low price stores, where the price of the stores in the high price bin (bin 1) is 

greater than or equal to the median. For example, if there are 3 stores and the prices are: 5 

in store 1, 6 in store 2 and 7 in store 3 then stores 2 and 3 are in bin 1. If the prices are 6 

by stores 1 and 2 and 7 by store 3, then only store 3 will be in bin 1.   

                                                
13 To get a sense of the effect of the sample exclusion on the result, Eden (2013) studies one week in detail. 

Indeed there is a difference between the sample of 8602 UPCs that were sold by more than 1 store during 

that week and the sample of 4537 UPCs that were sold by more than 10 stores. Relative to the larger 

sample, price dispersion in the smaller sample is lower. The highest price dispersion was found in an item 

that was sold by 2 stores and for this item the ratio of the highest to lowest price was 15. 
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 The price of a UPC in a given store can be above the median in one week and 

below the median in another week. Indeed most UPC-Store combinations are sometimes 

above the median and sometimes below the median. Only about 4% of the UPC-Store 

combinations are above the median in more than 95% of the weeks.  

 Summary statistics are in Table 1. The first rows are the number of UPCs and the 

number of observations for individual categories based on the 2 bins samples. In the 2004 

sample there were 32 UPCs in the beer category. The number of observations (UPC-

Week cells) is (32)(52)=1664. In 2005 there were 56 UPCs in the beer category. The 

number of observations is not equal to (56)(52) because in 3 cells there was no price 

dispersion. The total number of observations for each sample is in the bottom of the 

Table. The combined 04-05 sample has fewer UPCs because criterion (a) in our filtering 

procedure is harder to satisfy when there are 104 weeks. As a result the combined sample 

includes relatively more popular brands. The total number of observations varies with the 

number of bins because of insufficient price dispersion. For example if there are 20 stores 

in a UPC-week cell with 10 stores posting the price 1 and 10 posting the price 2, the 

stores can be easily divided into 2 bins but not into 3 or 5 bins. For the same reason, the 

number of observations in the samples of regular prices is lower than the number of 

observations in the samples of all prices. The number of observations reported here is for 

the original dollar prices. Later, when we use residuals instead of the original prices, 

almost all cells have price dispersion and as a result the number of observations is closer 

to the number of UPCs times weeks. 
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Table 1*: Summary statistics for the three samples 

  2004   2005   2004‐2005   

Category # UPCs Obs. # UPCs Obs. #UPCs Obs. 

Beer 32 1,664 56 2,909 20 2,080 

Carbonated Beverages 86 4,472 144 7,471 58 6,032 

Cold Cereal 93 4,836 133 6,900 53 5,512 

Facial Tissue 12 624 18 893 ‐ ‐ 

Frozen Dinner Entrees 36 1,871 75 3,765 ‐ ‐ 

Frozen Pizza 25 1,300 53 2,744 12 1,248 

Hot Dogs 14 728 21 1,091 ‐ ‐ 

Margarine & Butter 25 1,300 40 2,060 18 1,872 

Mayonnaise 17 884 19 988 ‐ ‐ 

Milk 32 1,664 64 3,294 23 2,392 

Mustard & Ketchup 14 728 21 1,092 ‐ ‐ 

Paper Towels ‐ ‐ 19 901 ‐ ‐ 

Peanut Butter 18 936 24 1,245 11 1,144 

Salty Snacks 94 4,887 120 6,226 42 4,368 

Soup 49 2,548 74 3,826 22 2,288 

Spaghetti Sauce 13 676 32 1,660 ‐ ‐ 

Toilet Tissue 13 676 19 958 ‐ ‐ 

Yogurt 92 4,783 152 7,870 65 6,760 

Totals             

1 Bin, All Prices  665  34,580  1084  56,368  324  33,696 

2 Bin, All Prices  665  34,577  1084  55,893  324  33,696 

3 Bin, All Prices  665  34,273  1084  54,650  324  33,624 
5 Bin, All Prices  665  29,533  1084  45,923  324  29,234 

             

1 Bin, Regular Prices  80  4,160  215  11,180  18  1,872 
2 Bin, Regular Prices  80  4,158  215  10,860  18  1,872 
3 Bin, Regular Prices  80  3,286  215  10,060  18  1,640 
5 Bin, Regular Prices  72  2,424  212  7,770  18  1,160 

* An observation is a UPC - Week cell. The first column is the category name. The two columns that 

follow are about the 2004 sample. The first is the number of UPCs in each category and the second is the 

number of UPC-Weeks in that category. The next two columns are for the 2005 sample and the last two 

columns are for the combined 2004-05 sample. Totals are in the last rows.  
  

 Table 2 is about bin size. As was said before, the bins are only approximately the 

same size because of the discrete nature of the data. In the 2 bins division, 60% of the 

stores are in bin 1 and 40% in bin 2. Later, when we control for store effects, the size of 

the bins are much more similar.  

 Table 2a is about the frequency of temporary sales. The last column labeled as 

"frequency of sales" is the number of "sale prices" divided by the number of prices in the 

sample. Since our sample size varies with the number of bins, the frequency of sales 
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varies slightly between samples. It is 0.20 when dividing the stores in the 2005 sample 

into 2 or 3 bins and 0.22 when dividing the stores into 5 bins.  

 The first 5 columns in Table 2a are the frequency of sales by bin. This is 

calculated by dividing the number of "sale prices" in the bin (aggregating over all UPCs 

and weeks) by the number of prices in the bin. When using the 2005 sample and the 2 

bins division, 10% of the prices in bin 1 are "sale prices". The number for bin 2 is 34%. 

Using the 2005 sample and the 5 bins division, 42% of the prices in the lowest price bin 

(bin 5) are sale prices. The number for the highest price bin (bin 1) is 5%. This says that 

the fact that an item is on sale does not guarantee that it is cheap relative to the prices 

offered in the same week. The fraction of prices on sale is increasing with the index of 

the bin suggesting that the probability that an item is cheap relative to other stores given 

that it is on "sale" is higher than the unconditional probability.  

 Table 2b estimates the conditional probabilities: The probability that a price is in 

bin !i  given that it is a "sale price". For example, when using the 2005 sample and a 2 

bins division, the probability that a "sale price" is in bin 1 is 0.3. This conditional 

probability is calculated as follows. Using Table 2, the unconditional probability that a 

price is in bin 1 is: !!Prob(bin1)=0.6 . Using the last column in Table 2a, the 

unconditional probability that a price is a "sale price" is: !!Prob(sale)=0.2 . The 

probability that a price in bin 1 is a "sale price" is in the first column of Table 2a. It is: 

!!Prob(Sale|bin=1)=0.1 . The probability that a price is in bin 1 and it is a "sale price" is:

!! Prob(bin1∩ Sale)=Prob(bin1)Prob(Sale|bin=1)= (0.6)(0.1)=0.06 . The probability 

that a price is in bin 1 given that it is a sale price is:  

!! 

Prob(bin1|price = "sale")=
Prob(bin1∩ Sale)

Prob(Sale)
=
0.06

0.2
=0.3 . There is a remarkable 

agreement about the estimates of the conditional probabilities across samples.  

 The observation that a "sale price" can be in the highest price bin is surprising. It 

is possible that some stores are more expensive than others and they are in the highest 
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price bin even when they have a "sale". It is also possible that the timing of "sales" is 

correlated across stores. We will try to distinguish between these two explanations later 

when we remove store effects.  

 

Table 2*: Bin size 
 bin 1 bin 2 bin 3 bin 4 bin 5 

2 bins      

2004 0.60 0.40    

2005 0.60 0.40    

2004‐2005 0.60 0.40    

3 bins      

2004 0.47 0.25 0.28   

2005 0.47 0.24 0.29   

2004‐2005 0.46 0.25 0.29   

5 bins      

2004 0.34 0.16 0.16 0.15 0.19 

2005 0.34 0.16 0.15 0.15 0.20 

2004‐2005 0.33 0.16 0.16 0.15 0.20 

* The average fraction of stores in each bin. Averages are over weeks and UPCs.   

 

Table 2a: Frequency of temporary sales by bins 
 bin 1 bin 2 bin 3 bin 4 bin 5 Freq. Sale 

2 bins       

2004 0.09 0.35    0.19 

2005 0.10 0.34    0.20 

2004‐2005 0.10 0.37    0.21 

3 bins       

2004 0.06 0.22 0.38   0.19 

2005 0.07 0.24 0.37   0.20 

2004‐2005 0.07 0.25 0.41   0.21 

5 bins       

2004 0.04 0.16 0.24 0.33 0.43 0.21 

2005 0.05 0.18 0.27 0.32 0.42 0.22 

2004‐05 0.05 0.18 0.27 0.35 0.45 0.23 

* The first 5 columns are the frequency of "temporary sales" by bins. These frequencies are obtained by 

dividing the number of "temporary sale prices" in the bin (aggregating over UPCs and weeks) by the total 

number of prices in the bin. The last column is obtained by dividing the number of "temporary sale prices" 

in the sample (aggregating over bins, weeks and UPCs) by the total number of prices.  
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Table 2b: The probability that the price is in bin !i  given that it is a "sale price" 
 bin 1 bin 2 bin 3 bin 4 bin 5 

2 bins      

2004 0.28 0.72    

2005 0.30 0.70    

2004‐2005 0.28 0.72    

3 bins      

2004 0.15 0.29 0.56   

2005 0.16 0.30 0.54   

2004‐2005 0.15 0.30 0.56   

5 bins      

2004 0.07 0.12 0.18 0.24 0.39 

2005 0.07 0.13 0.18 0.23 0.39 

2004‐2005 0.07 0.12 0.18 0.23 0.39 

 

 Table 3 provides the averages of the main variables using the 2 bins division. The 

difference in average log price between the high price stores and the low price stores (P1-

P2) is about 20%. (It is 21% for the 2004 sample, 18% for the 2005 sample and 21% for 

the combined 04-05 sample). The difference in the average log quantity sold (X2-X1) is 

58% for the 2004 sample, 37% for the 2005 sample and 49% for the 04-05 sample. These 

differences are smaller when using the sample of regular prices. For regular prices, the 

average price is about 15% higher in the high price bin and the average quantity is about 

25% higher in the low price bin. Thus temporary sales contribute to both price dispersion 

and unit dispersion.  

 

Table 3*: Means  

All prices  P1 P2 X1 X2 # stores 

2004 0.81 0.59 2.76 3.35 15.43 

2005 0.86 0.68 2.63 2.99 21.05 

2004‐05 0.76 0.55 3.07 3.56 14.56 

Reg. Prices      

2004 0.9 0.76 2.97 3.27 15.89 

2005 1.08 0.93 2.7 2.93 22.54 

2004‐05 1.17 1.03 3.01 3.33 15.7 

* The Table uses the 2 bins division to provide the mean of the variables. P1 is the average log price for 

high price stores, P2 is the average log price for low price stores, X1 is the average log of the quantity sold 

for the high price stores and X2 is the average for the low price stores. The first rows use the sample of all 

prices and the last rows use the sample of regular prices obtained by deleting observations that are labeled 

as "sale prices". The last column is the average number of stores (average across UPCs). 
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 Table 3a computes the standard deviation of the average price and the average 

quantity over weeks. We first calculate the average (over stores) price and units for each 

UPC-week-bin cell. We then calculate the standard deviation of these averages for each 

UPC-bin across weeks. Table 3a reports the average of these standard deviations across 

UPCs. In the two bins case, the standard deviation of P2 (the average weekly price in the 

low price bin) is more than 30% larger than the standard deviation of P1. It is larger by 

54% for the 2004 sample, by 30% for the 2005 sample and by 40% for the 04-05 sample. 

The standard deviations of the quantities are also larger for the low price bin. The 

quantity standard deviation is larger by 47% for the 2004 sample, by 35% for the 2005 

sample and by 39% for the 04-05 sample.  

  The following 3 rows in Table 3a describe the standard deviations when dividing 

each UPC-Week cell into three bins: High, medium and low. Also here the standard 

deviation of the price in the low price bin is higher than the standard deviation of the 

price in the high price bin. The last rows in Table 3a are the standard deviations when 

dividing each UPC-Week cell into 5 bins. The standard deviations in bin 5 (the lowest 

price bin) are higher than the standard deviations in bin 1 (the highest price bin). The 

ratio of the standard deviations of the average price in bin 5 to the standard deviation in 

bin 1 is 1.8 on average (2 for 2004, 1.6 for 2005 and 1.76 for 2004-05). For quantities the 

average ratio is 1.6 (1.76 for 2004, 1.46 for 2005 and 1.61 for 2004-05). When using the 

samples of regular prices (Table 3b) these ratios are smaller. For prices the average ratio 

is 1.62 (1.64, 1.46 and 1.77). And for quantities the average ratio is 1.36 (1.42, 1.23 and 

1.44).  
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Table 3a: Standard deviations over weeks  
 2004 2005 2004‐2005 

One bin      

P 0.0765  0.0908  0.0837 

X 0.3132  0.3166  0.3049 

Two bins     

P1 0.0690 0.0862 0.0784 

P2 0.1066 0.1119 0.1106 

         

X1 0.3276 0.3401 0.3289 

X2 0.4824 0.4586 0.4562 

Three bins    

P1 0.0633 0.0758 0.0728 

P2 0.0936 0.1065 0.1008 

P3 0.1172 0.1129 0.1174 

      

X1 0.3422 0.3543 0.3494 

X2 0.4856 0.5001 0.4970 

X3 0.5951 0.5138 0.5544 

Five bins    

P1 0.0612 0.0721 0.0712 

P2 0.0822 0.0967 0.0941 

P3 0.0953 0.1060 0.1029 

P4 0.1140 0.1109 0.1148 

P5 0.1248 0.1148 0.1253 

      

X1 0.3865 0.3914 0.3972 

X2 0.5317 0.5295 0.5533 

X3 0.5751 0.5632 0.5902 

X4 0.6520 0.5921 0.6359 

X5 0.6806 0.5726 0.6394 

* The Table reports standard deviations over weeks. We first calculate the average price and units for each 

UPC-week-bin cell. We then calculate the standard deviation of these averages for each UPC-bin across 

weeks. The first rows report the standard deviation for the 2 bins case. The next rows report the standard 

deviation for the 3 bins case and the rows in the bottom report the standard deviation for the 5 bins case.   
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Table 3b: The Samples of regular prices.  
  2004 2005 2004-2005 

One bin    

P 0.0219 0.0392 0.0318 

X 0.1943 0.2068 0.2104 

Two Bins       

P1 0.0244 0.0392 0.0309 

P2 0.0363 0.0544 0.0424 

          
X1 0.2300 0.2595 0.2334 

X2 0.3019 0.3288 0.3536 

Three Bins       

P1 0.0251 0.0386 0.0287 

P2 0.0435 0.0548 0.0539 

P3 0.0420  0.0554  0.0460 
        

X1 0.2576 0.2963 0.2668 

X2 0.4094 0.4206 0.4603 

X3 0.3473 0.3586 0.3998 

Five Bin       

P1 0.0270 0.0393 0.0282 

P2 0.0416 0.0547 0.0535 

P3 0.0430 0.0566 0.0529 

P4 0.0460  0.0585  0.0548 
P5 0.0443 0.0573 0.0499 

        

X1 0.2975 0.3412 0.2977 

X2 0.4732 0.4980 0.5247 

X3 0.4752 0.4916 0.5318 

X4 0.4974 0.4961 0.5255 

X5 0.4211 0.4202 0.4296 

* This Table repeats the calculations in Table 3a after eliminating all "temporary sale" observations. 

 

 Figure 4A plots the standard deviations in the last rows of Table 3a (5 bins 

division) and the 2005 sample. The standard deviations are increasing with the index of 

the bin and there is a good fit between the quantity standard deviation and the price 

standard deviation. The quantity standard deviation is about 5.7 times the price standard 

deviation.14 Figure 4B uses the sample of regular prices (Table 3b). The standard 

deviation of the regular price (SD RP) in the highest price bin (bin 1) is lower than the 

standard deviations in lower price bins. The standard deviation of the "regular" quantity 

(SD RX) is relatively low both for the highest price bin and the lowest price bin. Figure 

                                                
14 The coefficient varies across bins and samples from 5 to 6.5. For the 2004 sample the average coefficient 

is 6 and for the 2005 sample it is 5.3. 
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4C compares the standard deviations. The standard deviations are higher in the all prices 

sample. The standard deviations of quantities are increasing in the all price sample but 

are more like a "hump shape" in the sample of regular prices.   

 

 
A. The sample of all prices: SD X is the standard deviation of the 

quantity and SD P is the standard deviation of the price 
 

 
B. The sample of regular prices: SD RX is the standard deviation of the 

quantity and SD RP is the standard deviation of the price 

0.00 

0.02 

0.04 

0.06 

0.08 

0.10 

0.12 

0.14 

0.00 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

1  2  3  4  5 

S
D
 P
 

S
D
 X
 

Bin 

X 

P 

0.00 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.00 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

1  2  3  4  5 

S
D
 R
P
 

S
D
 R
X
 

Bin 

RX 

RP 



                      31 

 
C. The sample of all prices (SD X and SD P) and the sample of regular 

prices (SD RX and SD RP)  
 

Figure 4: The standard deviations across bins. Using the 2005 sample.  

 

 The observation that variations over weeks in posted price are lower for higher 

price bins is roughly consistent with the model in section 3.2. In this model there are no 

variations in the high price but the low price may depend on the amount of inventories. It 

seems that we need non-shoppers to account for the observation that variations over 

weeks in the quantity sold are lower for higher price bins. In section 3.4 high price stores 

specialize in servicing non-shoppers and the quantity sold by the high price stores do not 

fluctuate with the number of shoppers. The observation that the standard deviations are 

lower for the sample of regular prices and the difference in the standard deviations is 

especially large for the cheapest price bin is consistent with the model in section 3.2 

because eliminating temporary sales observations reduces the variations over weeks in 

the first market price and quantity.  
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5. ELASTICITIES 

 

 We now turn to examine the relationship (24) between the quantity sold by the 

highest price stores and the quantity sold by lower price stores. We start by splitting the 

stores in each UPC-week cell into two groups (below and above the median price) and 

run in Table 4 the average log quantity in the high price bin (X1) on the average log 

quantity and price in the low price bin (X2 and P2) and the average log price in the high 

price bin (P1). Averages are across the stores in the UPC-week-bin cell. The elasticity 

with respect to the average quantity sold per store in the low price group (X2) is about 0.6 

in all the three samples. The own price elasticity is about -2 and the cross price elasticity 

is about 1.8. The rows in the bottom of the Table report the results when using the 

samples of regular prices. Part (a) of Claim 2 works. The quantity elasticity is less than 

unity and the cross price elasticity is less than the absolute value of the own price 

elasticity.  

 To examine Part (b) which says that the quantity elasticity and the cross price 

elasticity decline with the price distance, we need the 3 and 5 bins divisions. Table 5 

describes the results when using the 3 bins division. The first 2 columns use the 2004 

sample: The first uses the averages from the medium price stores as explanatory variables 

and the second uses the variables from the low price stores as explanatory variables. The 

quantity sold by the high price stores is more sensitive to the variables in the medium 

price stores. The elasticity with respect to the quantity sold in the medium price stores 

(the coefficient of X2) is 0.6 while the elasticity with respect to the quantity sold in the 

low price stores (the coefficient of X3) is 0.5. The elasticity with respect to the price in 

the medium price group is 1.7 while the elasticity with respect to the price in the low 

price group is 1.5. This pattern occurs also in the other two samples and is consistent with 

Claim 2. The rows that follow use samples of regular prices. The coefficients of X2 are 

slightly lower than the coefficients of X3. The coefficients of P2 are much higher than the 
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coefficients of P3. Also here part (a) of Claim 2 works. Part (b) works for the sample of 

all prices but the results for the sample of regular prices are mixed. 

 

 

Table 4*: Two bins regression. 
Dependent Variable X1 X1 X1 

  2004 2005 2004‐2005 

X2 0.6240*** 0.6390*** 0.6487*** 

 (0.0030) (0.0024) (0.0031) 

P1 ‐1.9794*** ‐1.8803*** ‐2.0269*** 

 (0.0208) (0.0157) (0.0225) 

P2 1.7941*** 1.6484*** 1.8618*** 

 (0.0209) (0.0157) (0.0218) 

R
2
 0.6846 0.6950 0.6977 

Regular prices 

X2 0.5919*** 0.6759*** 0.6593*** 

 (0.0085) (0.0058) (0.0121) 

P1 -1.7665*** -1.2157*** -0.7332*** 

 (0.1138) (0.0556) (0.1938) 

P2 1.5475*** 1.0903*** 0.6356*** 

 (0.1115) (0.0537) (0.1874) 

R
2
 0.8205 0.7063 0.7563 

*Standard errors in parentheses. One star (*) denotes p-value of 10%, two stars (**) denote p-value of 5% 

and three stars (***) denote p-value of 1%. Category dummies are included in all the regressions. X1 is the 

average log of the quantity sold across stores in the high price bin, X2 is the average across stores in the 

low price bin, P1 is the average log price across stores in the high price bin and P2 is the average across 

stores in the low price bin.  
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Table 5*: 3 bins regressions 
 2004 2005 04-05 

Dep. Var. X1 X1 X1 X1 X1 X1 

          

X2 0.6125***  0.6019***  0.6062***  

 (0.0034)  (0.0028)  (0.0035)  

P2 1.7259***  1.7131***  1.8254***  

 (0.0271)  (0.0208)  (0.0280)  

X3   0.5026***   0.5466***   0.5418*** 

   (0.0032)   (0.0027)   (0.0033) 

P3   1.5115***   1.4728***   1.6487*** 

   (0.0193)   (0.0152)   (0.0205) 

P1 ‐1.89*** ‐1.76*** ‐1.92*** ‐1.75*** ‐1.95*** ‐1.84*** 

 (0.0274) (0.0196) (0.0208) (0.0153) (0.0289) (0.0214) 

R
2
 0.6241 0.5838 0.6248 0.6057 0.6261 0.6081 

N 34,273 34,273 54,650 54,650 33,624 33,624 

Regular Prices 

X2 0.5048***   0.6308***   0.6160***   

 (0.0118)   (0.0072)   (0.0151)   

P2 2.3644***   1.0252***   2.4977***   

 (0.1712)   (0.0811)   (0.2223)   

X3   0.5146***   0.6518***   0.6423*** 

   (0.0105)   (0.0066)   (0.0127) 

P3   1.5361***   0.7428***   0.6728*** 

   (0.1098)   (0.0557)   (0.1797) 

P1 -2.6050*** -1.7701*** -1.1542*** -0.8342*** -2.6847*** -0.7556*** 

 (0.1751) (0.1138) (0.0835) (0.0583) (0.2257) (0.1856) 

R
2
 0.5532 0.5925 0.5943 0.6435 0.6607 0.7255 

N 3,286 3,286 10,060 10,060 1,640 1,640 

* Each UPC-week cell is divided into three bins. Xj = the average log units in bin j. Pj = the average log 

price in bin  j. Category dummies are included in all the regressions. 

 

 Table 6 uses the 5 bins division and the largest 2005 sample. It describes the 

results when running the average quantity in the high price stores (bin 1) on the average 

quantity and price in the other 4 bins. In the first 4 columns the explanatory variables are 

from a single bin: From bin 2 in the first column, from bin 3 in the second and so on. In 

the last column we report the regression results when using all the explanatory variables. 

The first rows use the sample of all prices. The last rows use the sample of regular prices.  
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 Part (a) of Claim 2 works. The quantity elasticity is less than unity and the cross 

price elasticity is less than the absolute value of the own price elasticity. Part (b) works 

for the sample of all prices. In the first four columns the elasticities decline with the 

distance from the high price group. The elasticity of the quantity sold with respect to the 

quantity sold by stores in bin 2 is 0.57 while the elasticity with respect to the quantity 

sold by stores in bin 5 (the lowest price stores) is 0.48. The elasticity with respect to the 

price posted by bin 2 stores is 1.75 while the elasticity with respect to the price posted by 

bin 5 stores is 1.3. Part (a) works also for the sample of regular prices but for these 

samples the results with respect to part (b) are mixed.   

 Figure 5 describes the results for the 3 samples of "all prices" when using three 

explanatory variables as in the first four columns of Table 6. Figure 5A is the elasticity 

with respect to the quantity sold (the quantity elasticity = the coefficient of Xj), Figure 

5B is the cross price elasticities (the coefficient of Pj). As can be seen there is a strong 

agreement among the three samples. The quantity and cross price elasticities are both 

decreasing in the bin index. Figure 6 uses the samples of all prices to plot the coefficients 

of the regressions that use 9 explanatory variables as in the last column in Table 6. Also 

here there is a strong agreement among the three samples and the qualitative results do 

not change. 

 The results obtained when using the samples of all prices support the hypothesis 

that the quantity elasticities and the cross price elasticities decrease in the index of the 

bin. The results when using the samples of regular prices are mixed, possibly due to the 

fact that shoppers play a critical role in obtaining the results in Claim 2 and removing 

temporary sales prices may have reduced the role of shoppers who are looking for 

bargains.  
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Table 6*: 5 bins regression using the 2005 sample 

Dep. Variable X1 X1 X1 X1 X1 

X2 0.5703***    0.2868*** 

X3   0.5259***   0.1718*** 

X4    0.4933***  0.1456*** 

X5     0.4764*** 0.1468*** 

P1 ‐1.9572*** ‐1.8640*** ‐1.7809*** ‐1.6082*** ‐2.591*** 

P2 1.7537***    1.3498*** 

P3   1.6279***   0.6461*** 

P4    1.5063***  0.2972*** 

P5     1.3114*** 0.1389*** 

R
2
 0.582 0.5483 0.5399 0.5382 0.6684 

N 45,923 45,923 45,923 45,923 45,923 

Regular prices 

X2 0.5534***       0.2384*** 

X3   0.5556***     0.1927*** 

X4     0.5424***   0.1784*** 

X5       0.5696*** 0.1986*** 

P1 ‐1.3523*** ‐1.4064*** ‐1.2412*** ‐1.0328*** ‐1.8160*** 

P2 1.2258***       1.0234*** 

P3   1.2685***     0.5513*** 

P4     1.0965***   0.1396 

P5       0.9089*** 0.0331 

R
2
 0.5692 0.5511 0.5534 0.5748 0.6799 

N 7,770 7,770 7,770 7,770 7,770 

* The first four columns report the results when using 3 explanatory variables. The last column is the 

results when using 9 explanatory variables. The first rows use the sample of all prices. The rows that follow 

use the sample of regular prices. Category dummies are included in all the regressions.  
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A. Elasticity with respect to the quantity sold 

 

 
B. Cross Price Elasticities 

 

 

Figure 5: Elasticities based on a 3 explanatory variables regressions (First four columns in Table 6, sample 

of all prices). 
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A. Quantity Elasticities  

 

 
B. Price Elasticities 

 

Figure 6: Elasticities based on a 9 explanatory variables regression in the last column of Table 6.   
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6. STORE EFFECT 

 

Stores that are similar in price may be similar in other ways. For example, stores in rich 

neighborhoods may charge on average a price that is higher than the price charged by 

stores in poor neighborhoods. If shoppers shop with higher intensity in their own 

neighborhood, the quantity sold by a group of stores maybe more sensitive to the 

variables in a group of stores that is close in price because the two groups are also closer 

in locations.   

 In an attempt to address this problem we remove the store effect by running the 

following regressions.  

 

(25) 
!!
ln(P

ijt
)= a

i
+b

j
(store−dummy)+e

ijt

P
 

(26) 
!!
ln(x

ijt
)= a

i
+b

j
(store−dummy)+e

ijt

x
 

 

where !P  is price, !x  is quantity sold, !i  index the UPC, !j  index the store and !t  index the 

week. We then repeat the above Tables after replacing ln(P) with the residuals 
!
e
ijt

P
  and 

ln(x) with the residuals 
!
e
ijt

X
.  

 Tables 2' are comparable Tables 2. The bins are much more equal in sizes because 

the residuals are different across stores and the problem of lack of price dispersion is less 

common. The conditional probability in Table 2b' are not very different from the 

conditional probabilities in Table 2b.  
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Table 2': Bin size 
 bin 1 bin 2 bin 3 bin 4 bin 5 

2 bins      

2004 0.52 0.48    

2005 0.51 0.49    

2004‐2005 0.52 0.48    

3 bins      

2004 0.35 0.31 0.34   

2005 0.35 0.32 0.33   

2004‐2005 0.36 0.31 0.34   

5 bins      

2004 0.23 0.19 0.19 0.19 0.21 

2005 0.22 0.19 0.19 0.19 0.21 

2004‐2005 0.23 0.19 0.18 0.19 0.22 

 

Table 2a': Frequency of temporary sales by bins 
 bin 1 bin 2 bin 3 bin 4 bin 5 Freq. Sale 

2 bins       

2004 0.08 0.31    0.19 

2005 0.11 0.29    0.19 

2004‐2005 0.10 0.34    0.21 

3 bins       

 Bin1 Bin2 Bin 3   0.19 

2004 0.06 0.16 0.35   0.19 

2005 0.08 0.19 0.32   0.21 

2004‐2005 0.07 0.19 0.38    

5 bins       

2004 0.05 0.09 0.16 0.27 0.39 0.19 

2005 0.07 0.12 0.18 0.26 0.35 0.19 

2004‐2005  0.06  0.11  0.18  0.30  0.42  0.21 

 

 

Table 2b': The probability that the price is in bin i given that it is a "sale price" 
 bin 1 bin 2 bin 3 bin 4 bin 5 

2 bins      

2004 0.23 0.77    

2005 0.28 0.72    

2004‐2005 0.24 0.76    

3 bins      

2004 0.11 0.27 0.62   

2005 0.15 0.30 0.55   

2004‐2005 0.12 0.27 0.61   

5 bins      

2004 0.06 0.09 0.16 0.26 0.43 

2005 0.08 0.11 0.18 0.25 0.37 

2004‐2005 0.06 0.10 0.16 0.26 0.43 
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 Table 3a' and 3b' are comparable to Tables 3a and 3b. The results are qualitatively 

the same suggesting that store effects do not drive our findings about the standard 

deviations by bins. 

 

 

Table 3a': Standard deviations of the quantity sold for the average UPC by bin (all prices)  
 2004 2005 2004‐2005 

One bin      

P 0.0765  0.0908  0.0836 

X 0.3132  0.3166  0.3049 

Two bins    

P1 0.0641 0.0801 0.0722 

P2 0.1036 0.1125 0.1108 

    

X1 0.3131 0.3284 0.3184 

X2 0.4396 0.3985 0.4099 

Three bins    

P1 0.0612 0.0750 0.0692 

P2 0.0926 0.1036 0.0911 

P3 0.1157 0.1166 0.1218 

    

X1 0.3428 0.3460 0.3473 

X2 0.3902 0.4077 0.4003 

X3 0.5127 0.4273 0.4647 

Five bins    

P1 0.0597 0.0718 0.0679 

P2 0.0708 0.0879 0.0786 

P3 0.0844 0.1054 0.0931 

P4 0.1025 0.1170 0.1140 

P5 0.1275 0.1209 0.1303 

    

X1 0.3902 0.3794 0.3865 

X2 0.4228 0.4255 0.4321 

X3 0.4480 0.4531 0.4626 

X4 0.5024 0.4798 0.4994 

X5 0.6049 0.4708 0.5270 
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Table 3b': The samples of regular prices.  
  2004 2005 2004-2005 

One bin    

P 0.0241 0.0391 0.0320 

X 0.1922 0.2054 0.2094 

Two Bins       

P1 0.0237 0.0367 0.0298 

P2 0.0290 0.0462 0.0389 

        

X1 0.2168 0.2409 0.2352 

X2 0.2359 0.2391 0.2378 

Three Bins       

P1 0.0236 0.0358 0.0302 

P2 0.0284 0.0437 0.0323 

P3 0.0316 0.0481 0.0429 

        

X1 0.2413 0.2639 0.2505 

X2 0.2541 0.2719 0.2765 

X3 0.2645 0.2600 0.2626 

Five Bin       

P1 0.0246 0.0356 0.0300 

P2 0.0251 0.0395 0.0326 

P3 0.0287 0.0443 0.0324 

P4 0.0337 0.0483 0.0407 

P5 0.0345 0.0500 0.0454 

        

X1 0.2854 0.3070 0.2854 

X2 0.3213 0.3216 0.3343 

X3 0.3036 0.3172 0.3179 

X4 0.3136  0.3198  0.3342 
X5 0.3167  0.3009  0.2996 
 

Table 4' uses the residuals from (25) and (26) to estimate the two bins regression. The 

quantity elasticity is about 0.75 and is higher than the elasticity in Table 4. As in Table 4 

and consistent with Claims 2 the absolute value of the own price elasticity is higher than 

the cross price elasticity. 
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Table 4'*: Two bins regression. 
Dependent Variable X1 X1 X1 

  2004 2005 2004‐2005 

X2 0.7305*** 0.7546*** 0.7697*** 

 (0.0028) (0.0021) (0.0028) 

P1  ‐2.3756*** ‐2.0344*** ‐2.1366*** 

 (0.0204) (0.0152) (0.0212) 

P2 2.1127*** 1.7960*** 1.9594*** 

 (0.0205) (0.0152) (0.0206) 

R
2
 0.7701 0.7963 0.7879 

N  34,580  56,368  33,696 

Regular prices 

X2 0.7081*** 0.8580*** 0.8967*** 

 (0.0081) (0.0044) (0.0101) 

P1 -1.4920*** -1.6860*** -0.7566*** 

 (0.1010) (0.0541) (0.1556) 

P2 1.2213*** 1.6050*** 0.6351*** 

 (0.1018) (0.0533) (0.1576) 

R2
 0.8806 0.8639 0.8838 

N  4,160 11,180 1,872 

*Standard errors in parentheses. Category dummies are included in all the regressions.  

 

 

Table 5' uses 3 bins division: high, medium and low price. The estimated elasticities are 

higher than in Table 5 but as in Table 5, the quantity elasticity is less than unity and the 

own price elasticity is higher in absolute value than the cross price elasticity. As in Table 

5, in the sample of all prices, the quantity sold by the high price stores is more strongly 

related to the quantity and price in the medium price stores. 
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Table 5': 3 bins regressions 
 2004 2005 04-05 

Dep. Var. X1 X1 X1 X1 X1 X1 

          

X2 0.7439***  0.7696***  0.7616***  

 (0.0031)  (0.0024)  (0.0032)  

P2 1.9836***  2.0645***  2.1473***  

 (0.0301)  (0.0205)  (0.0310)  

X3   0.6302***  0.6712***   0.6791*** 

   (0.0031)  (0.0024)   (0.0032) 

P3   1.8253***  1.5818***   1.7519*** 

   (0.0194)  (0.0146)   (0.0197) 

P1 ‐2.214*** ‐2.159*** ‐2.248*** ‐1.884*** ‐2.31*** ‐1.99*** 

 (0.0301) (0.0193) (0.0205) (0.0147) (0.0316) (0.0205) 

R
2
 0.7411 0.6776 0.7668 0.7118 0.7432 0.6987 

N 34,580 34,580 56,368 56,368 33,696 33,696 

Regular Prices 

X2 0.7387***   0.8075***   0.8653***   

 (0.0089)   (0.0048)   (0.0125)   

P2 1.1600***   1.6713***   0.6341**   

 (0.1531)   (0.0735)   (0.3219)   

X3   0.6122***   0.8027***   0.8210*** 

   (0.0094)   (0.0052)   (0.0123) 

P3   1.3228***   1.4705***   0.6226*** 

   (0.0887)   (0.0502)   (0.1522) 

P1 -1.4607*** -1.6792*** -1.7698*** -1.5768*** -0.8800*** -0.8171*** 

 (0.1534) (0.0873) (0.0743) (0.0513) (0.3203) (0.1498) 

R
2
 0.8734 0.8357 0.8230 0.8049 0.8427 0.8330 

N 4,160 4,160 11,180 11,180 1,872 1,872 

 

Table 6' reports the regression estimates when using 5 bins. The quantity elasticities are 

higher but still less than unity and decreasing with the distance from the highest price bin. 

The cross price elasticity also decreases with the distance and the absolute value of the 

own price elasticity is greater than the cross price elasticity.  
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Table 6'*: 5 bins regression using the 2005 sample 

Dep. Variable X1 X1 X1 X1 X1 

X2 0.7102***    0.3752*** 

X3   0.6699***   0.2068*** 

X4    0.6199***  0.1095*** 

X5     0.5791*** 0.1235*** 

P1 ‐2.0454*** ‐2.0671*** ‐1.8820*** ‐1.6689*** ‐2.4396*** 

P2 1.8549***    0.9778*** 

P3   1.8247***   0.9138*** 

P4    1.5756***  0.1376*** 

P5     1.3139*** 0.2245*** 

R
2
 0.6946 0.6617 0.6349 0.6179 0.7468 

N 56,368 56,368 56,368 56,368 56,368 

Regular prices 

X2 0.7700***       0.2952*** 

X3   0.7483***     0.2208*** 

X4     0.7342***   0.2223*** 

X5       0.7227*** 0.1538*** 

P1 ‐1.9860*** ‐1.9842*** ‐1.8659*** ‐1.4147*** ‐2.2054*** 

P2 1.8611***       0.5169*** 

P3   1.8453***     0.5732*** 

P4     1.6952***   0.7013*** 

P5       1.2750*** 0.3115*** 

R
2
 0.7512 0.7404 0.7351 0.7098 0.8119 

N 11,180 11,180 11,180 11,180 11,180 

* The first four columns report the results when using 3 explanatory variables. The last column is the 

results when using 9 explanatory variables. The first rows use the sample of all prices. The rows that follow 

use the sample of regular prices. Category dummies are included in all the regressions. 

 

7. UPC SPECIFIC STORE EFFECT 

 

A store may promote a specific UPC by placing it in a visible and easy to reach place. 

Therefore we allow for the store effect to vary across UPCs and run for each UPC the 

following regression.  
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As before, we repeat the Tables after replacing ln(P) with the residuals   and ln(x) 

with the residuals . It turns out that the results are qualitatively similar to the case in 

which we control for non-UPC specific store effects, but there are some large differences 

in the magnitudes of the estimated elasticities. It thus makes a difference whether one 

controls for store effects or for UPC specific store effects.  

 Tables 2'' are comparable to Tables 2 and Table 2'. The bin sizes are the same as 

in Table 2' and so are the unconditional frequency of sales (the last column of Table 2a'). 

Instead of reporting the unconditional frequency of sales, we report now in the last 

column of Table 2a'', the percentage of weeks in which an average UPC is not on sale in 

any store. For example, in 2005 the average UPC was not on sale in 43% of the weeks. 

To appreciate this number we consider the case in which each store uses a mixed strategy 

to determine whether the item is on sale or not. In the 2005 sample there are on average 

21 stores per UPC and the frequency of sale is 0.19. If stores use a mixed strategy as in 

Varian (1980), the probability that there are no sales is: !(1−0.19)
21
=0.01 . This suggests 

no sales in only 1% of the weeks. Since no sales occur in 43% of the weeks, temporary 

sales are correlated across stores.  

 In the 2005 sample, the fraction of stores that has the item on sale fluctuates 

between 0 and 0.7. The average (over UPCs) standard deviation of this fraction is 0.2. 

There are thus substantial variations (over weeks) in the percentage of stores that has the 

item on sale. This may explain the conditional probabilities in Table 2b''. In the absence 

of variations over weeks we will have the item on sale in 19% of the stores in every week 

and the probability that a price is in bin 5 given that it is a "sale price" should be close to 

one. Instead we find that the conditional probabilities in Table 2b'' are less than 0.5.  
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Table 2a'': Frequency of temporary sales by bins* 
 bin 1 bin 2 bin 3 bin 4 bin 5 No sales 

2 bins       

2004 0.07 0.32    0.40 

2005 0.09 0.31    0.43 

2004‐2005 0.08 0.35    0.38 

3 bins       

2004 0.05 0.15 0.38   0.40 

2005 0.06 0.18 0.35   0.43 

2004‐2005 0.05 0.18 0.41   0.38 

5 bins       

2004 0.03 0.08 0.15 0.27 0.42 0.40 

2005 0.05 0.10 0.17 0.27 0.39 0.43 

2004‐2005 0.04 0.09 0.17 0.31 0.44 0.38 

*The frequency of temporary sales are the same as in Table 2a'. The last column is the percentage of weeks 

in which the average UPC is not on "sale" in any store.  

 

Table 2b'': The probability that a price is in bin !i  given that it is a "sale price" 
 bin 1 bin 2 bin 3 bin 4 bin 5 

2 bins      

2004 0.18 0.82    

2005 0.23 0.77    

2004‐2005 0.20 0.80    

3 bins      

2004 0.08 0.25 0.67   

2005 0.11 0.29 0.60   

2004‐2005 0.09 0.26 0.64   

5 bins      

2004 0.04 0.07 0.15 0.27 0.47 

2005 0.05 0.10 0.17 0.27 0.42 

2004‐2005 0.05 0.08 0.15 0.27 0.45 

 

 

 Table 3'' is comparable to Tables 3 and 3'. It shows the same pattern: The standard 

deviation across weeks is increasing with the index of the bin. This is not the case in the 

sample of regular prices.  
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Table 3a'': Standard deviations of the quantity sold for the average UPC by bin 
 2004 2005 2004‐2005 

One bin      

P 0.0765  0.0908  0.0836 

X 0.3132  0.3166  0.3049 

Two bins    

P1 0.0600 0.0912 0.0713 

P2 0.1069 0.1122 0.1126 

    

X1 0.2931 0.3211 0.2964 

X2 0.4282 0.3868 0.4005 

Three bins    

P1 0.0582 0.0762 0.0692 

P2 0.0787 0.1036 0.0906 

P3 0.1214 0.1172 0.1250 

    

X1 0.3095 0.3287 0.3117 

X2 0.3713 0.3919 0.3707 

X3 0.4908 0.4099 0.4487 

Five bins    

P1 0.0573 0.0724 0.0672 

P2 0.0659 0.0904 0.0789 

P3 0.0904 0.1056 0.0926 

P4 0.1041 0.1161 0.1135 

P5 0.1345 0.1227 0.1336 

    

X1 0.3415 0.3490 0.3384 

X2 0.3757 0.3952 0.3718 

X3 0.4104 0.4262 0.4085 

X4 0.4672 0.4467 0.4517 

X5 0.5709 0.4467 0.4965 
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Table 3b'': Standard deviations of the quantity sold for the average UPC by bin. The 

Samples of regular prices.  
  2004 2005 2004-2005 

One bin    

P 0.0211 0.0380 0.0312 

X 0.1861 0.2017 0.2081 

Two Bins       

P1 0.0189 0.0385 0.0320 

P2 0.0266 0.0430 0.0359 

        

X1 0.2111 0.2232 0.2350 

X2 0.2190 0.2328 0.2317 

Three Bins       

P1 0.0204 0.0403 0.0343 

P2 0.0174 0.0370 0.0286 

P3 0.0315 0.0472 0.0410 

        

X1 0.2335 0.2418 0.2547 

X2 0.2329 0.2468 0.2492 

X3 0.2451 0.2548 0.2539 

Five Bin       

P1 0.0228 0.0425 0.0369 

P2 0.0173 0.0387 0.0317 

P3 0.0174 0.0372 0.0286 

P4 0.0225 0.0410 0.0337 

P5 0.0367 0.0522 0.0457 

        

X1 0.2635 0.2682 0.2766 

X2 0.2776 0.2812 0.3002 

X3 0.2709 0.2772 0.2817 

X4 0.2806  0.2826  0.2961 
X5 0.2806  0.2880  0.2833 
  

 

Table 4'' is comparable to Tables 4 and 4'. There are large differences between the Tables. 

The quantity elasticities and the cross price elasticities are much lower. The quantity 

elasticity is about 38 to 55 percent of the quantity elasticities in Table 4 and 32 to 47 

percent of the quantity elasticities in Table 4'. But still the quantity elasticities are 

between zero and unity as predicted by the theory. The cross price elasticities are 38-51 

percent of the cross price elasticities in Table 4 and 32-37 percent of the cross price 

elasticities in Table 4'. The own price elasticities are higher. They are 140-149 percent of 

the own price elasticities in Table 4 and 124-130 percent of the own price elasticities in 

Table 4'.  
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 Note that in Table 4'' the quantity elasticity is close to the cross price elasticity 

divided by the absolute value of the own price elasticity as implied by (24).  

 
Table 4''*: Two bins regression. 
Dependent Variable X1 X1 X1 

  2004 2005 2004‐2005 

X2 0.2359*** 0.3544*** 0.3040*** 

 (0.0041) (0.0035) (0.0045) 

P1  ‐2.9514*** ‐2.6542*** ‐2.6505*** 

 (0.0185) (0.0123) (0.0182) 

P2 0.6822*** 0.8430*** 0.7886*** 

 (0.0168) (0.0129) (0.0170) 

R
2
 0.5216 0.6025 0.518 

N  34,580  56,368  33,696 

Regular prices 

X2 0.4753*** 0.5612*** 0.6208*** 

 (0.0133) (0.0079) (0.0191) 

P1 -2.4648*** -1.9469*** -2.3481*** 

 (0.1309) (0.0448) (0.1644) 

P2 0.8285*** 0.9728*** 1.2196*** 

 (0.1013) (0.0447) (0.1363) 

R2
 0.3141 0.4426 0.4292 

N  4,160 11,180 1,872 

*Standard errors in parentheses. Category dummies are included in all the regressions. 
  

 

 Table 5'' is comparable to Tables 5 and 5'. Also here the quantity elasticities and 

the cross price elasticities are much lower than in Tables 5 and 5' and the own price 

elasticity is higher in absolute value. Here, with UPC specific residuals, the distance 

matters more than with non-specific residuals. 
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Table 5'': 3 bins regressions 
 2004 2005 04-05 

Dep. Var. X1 X1 X1 X1 X1 X1 

          

X2 0.3317***  0.4177***  0.3956***  

 (0.0050)  (0.0038)  (0.0051)  

P2 0.9280***  1.0959***  1.0987***  

 (0.0254)  (0.0168)  (0.0238)  

X3   0.1254***  0.2259***   0.1728*** 

   (0.0040)  (0.0036)   (0.0045) 

P3   0.3594***  0.5044***   0.4481*** 

   (0.0160)  (0.0128)   (0.0166) 

P1 ‐2.815*** ‐2.876*** ‐2.661*** ‐2.66*** ‐2.598*** ‐2.608*** 

 (0.0227) (0.0191) (0.0163) (0.0128) (0.0220) (0.0188) 

R
2
 0.4928 0.4441 0.5662 0.5057 0.4919 0.4275 

N 34,580 34,580 56,368 56,368 33,696 33,696 

Regular Prices 

X2 0.4535***   0.5425***   0.6062***   

 (0.0142)   (0.0083)   (0.0202)   

P2 -0.0394   0.8814***   0.8299***   

 (0.1869)   (0.0666)   (0.2093)   

X3   0.3533***   0.43556***   0.5160*** 

   (0.0140)   (0.0086)   (0.0206) 

P3   0.5490***   0.6682***   0.8143*** 

   (0.0928)   (0.0437)   (0.1242) 

P1 -1.5125*** -2.2996*** -1.7748*** -1.8736*** -1.7624*** -2.1259*** 

 (0.1717) (0.1304) (0.0582) (0.0447) (0.2094) (0.1583) 

R
2
 0.2726 0.2079 0.3963 0.3206 0.3897 0.3219 

N 4,160 4,160 11,180 11,180 1,872 1,872 

  

 

 Table 6'' is comparable to Table 6 and Table 6'. Relative to Table 6', the quantity 

elasticity and the cross price elasticities are considerably lower, suggesting that it makes a 

difference if we control for UPC specific store effects or just for store effects.   
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Table 6''*: 5 bins regression using the 2005 sample 

Dep. Variable X1 X1 X1 X1 X1 

X2 0.3982***    0.3235*** 

X3   0.2946***   0.1425*** 

X4    0.2053***  0.0517*** 

X5     0.1423*** 0.0212*** 

P1 ‐2.6320*** ‐2.6298*** ‐2.6328*** ‐2.6397*** ‐2.6640*** 

P2 1.0487***    0.8685*** 

P3   0.7621***   0.4185*** 

P4    0.4971***  0.1064*** 

P5     0.2977*** 0.0425** 

R
2
 0.5009 0.4565 0.4312 0.4189 0.5182 

N 56,368 56,368 56,368 56,368 56,368 

Regular prices 

X2 0.4442***       0.2991*** 

X3   0.3948***     0.1752*** 

X4     0.3544***   0.1308*** 

X5       0.2949*** 0.0733*** 

P1 -1.3769*** -1.6784*** -1.7796*** -1.8096*** -1.4170*** 

P2 0.2386***       -0.2194 

P3   0.5126***     0.6979*** 

P4     0.5233***   0.3604*** 

P5       0.3685*** 0.0328 

R
2
 0.3202 0.2699 0.2471 0.2184 0.3784 

N 11,908 11,908 11,908 11,908 11,908 

* The first four columns report the results when using 3 explanatory variables. The last column is the 

results when using 9 explanatory variables. The first rows use the sample of all prices. The rows that follow 

use the sample of regular prices. Category dummies are included in all the regressions. 
 

 We calculated Table 6'' for the other two samples (2004 and 04-05). Figures 5'' 

and 6'' are comparable to Figures 5 and 6 and describe the estimate of all three samples. 

As can be seen there is a considerable degree of consensus about the elasticities across 

the three samples, especially if we use the 9 variables regression that is reported in the 

last column of Table 6''.   
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A. Quantity Elasticities. 

 

 
B. Cross Price Elasticities 

 

Figure 5'': Elasticities based on a 3 explanatory variables regressions (using the samples of "all prices"). 
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A. Quantity Elasticities 

 
B. Price Elasticities  

Figure 6'': Elasticities based on a 9 explanatory variables regression (using the samples of "all prices").  
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In Bental and Eden (1993) demand shocks are !iid  but nevertheless they have a lasting 

effect on output. A high realization of demand is associated with high consumption and 

possibly high output in the current period. In the following period, inventories are low 

and the prices in all the hypothetical markets are relatively high. Production that is 

determined by equating the marginal cost to the first market price is relatively high but 
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the increase in production is not enough to bring inventories back to "normal" in the 

current period. It takes time until inventories are back to normal and during this time 

production is relatively high. Thus a positive demand shock leads to an effect on output 

that may last for a long time. For money to have a lasting effect on output, it is essential 

that prices react to changes in inventories. See Bental and Eden (1996). Since in the 

model, the prices in all markets react to changes in inventories, the cross sectional 

average price must fluctuate over time.  

 In the Bental-Eden model the behavior of the price at the individual store level is 

not important and so is the distinction between regular and sale prices. What is important 

is the behavior of the cross sectional price distribution which we will proxy by the cross 

sectional average price.15 This is different from the approach taken by the sticky price 

literature. Sticky price models may be rejected if prices move too much. The Bental-Eden 

model may be rejected if prices move too little.  

 A first look at the data through the lens of sticky price models, suggests that 

prices move too much. But this is not the case once a distinction between regular and sale 

prices is introduced. For example, Kehoe and Midrigan (2015) use a Calvo type model 

and assume that sometimes the store is allowed to make a regular price change and 

sometimes it is allowed to make a temporary price change that lasts for one period only. 

In this framework, the effect of money will depend primarily on the probability of 

making a regular price change and not on the probability of making a temporary price 

change.16 An extreme view of this approach is that "temporary sale prices" are not 

important for macro.  

                                                
15 As was noted by Eden (1994) and Head et.al. (2012), looking at the behavior of the average price is 

different from looking at the behavior of the price in an "average store". It is possible for example that in 

each period x% of the stores put the item "on sale" and discount its price by y%. In this case, if the 

regular price does not change over time, the cross sectional average posted price will not change but the 

price in the "average store" will fluctuate. 
16 See also Nakamura and Steinsson (2008) and Eichenbaum et. al. (2011). 
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  Looking at the data through the lens of the Bental-Eden model, "temporary sale 

prices" are important if they move the cross sectional price distribution. Here we examine 

the contribution of temporary sales to the variations in the cross sectional average price 

over weeks.  

 Table 7 calculates the ratio of the variations over weeks in the samples of regular 

prices to variations over weeks in the samples of all prices. The columns 3b/3a use Tables 

3a and 3b to compute the ratio of the standard deviation in the sample of regular prices to 

the standard deviation in the sample of all prices. Similarly, the columns 3b'/3a' use 

Tables 3a' and 3b' that control for store effects and the columns 3b''/3a'' use Tables 3a'' 

and 3b'' that control for UPC specific store effects. Average prices and quantities vary 

less overs weeks in the samples of regular prices. The effect of temporary sales on the 

variations in prices is larger than the effect on the variations in quantities. When looking 

at the entire sample (one bin) the standard deviation of the average price in the sample of 

regular prices is on average 37% of the standard deviation of the average price in the 

sample of all prices. The standard deviation of quantities in the sample of regular prices is 

65% of the standard deviation in the sample of all prices. The effect of temporary sales is 

relatively large on the cheapest price bin. The standard deviation of the average regular 

price in the high price bin is on average 40% of the standard deviation in the sample of all 

prices. The percentage for the low price bin is 36. What may be somewhat of a surprise is 

that temporary sales affect the standard deviation in the high price bin. We find that this 

is also the case when using the 3 and 5 bins divisions (not reported in Table 7). One 

possible explanation relies on the observation that temporary sales are synchronized 

across stores (see the last column in Table 2a''). Sometimes an item is on sale in most 

stores and the average price in all bins goes down. This is consistent with Bental and 

Eden (1993, 1996) that assume increasing marginal cost. As was said above, in their 

model an increase in inventories leads to a decrease in all prices until inventories are back 

to "normal". It is therefore possible that all stores will have a "sale" at the same time.   



                      57 

 

 

Table 7*: The ratio of the standard deviation in the sample of regular prices to the 

standard deviation in the sample of all prices. 

 

Orginal Prices 

(3b/3a) Store effect (3b'/3a') UPC specific (3b''/3a'')  

 2004 2005 04‐05 2004 2005 04‐05 2004 2005 04‐05 Average 

One bin 

P 0.29  0.43  0.38  0.31  0.43  0.38  0.28  0.42  0.37  0.37 

X 0.62  0.65  0.69  0.61  0.65  0.69  0.59  0.64  0.68  0.65 

Two bins 

P1 0.35 0.45 0.40 0.37 0.46 0.41 0.32 0.42 0.45 0.40 

P2 0.34 0.49 0.38 0.28 0.41 0.35 0.25 0.38 0.32 0.36 

            

X1 0.70 0.76 0.71 0.69 0.73 0.74 0.72 0.70 0.79 0.73 

X2 0.63 0.72 0.78 0.54 0.60 0.58 0.51 0.60 0.58 0.61 

* This Table computes the ratio of the standard deviation of the average price across week in the samples of 

regular prices to the standard deviation in the samples of all prices. The columns 3a/3 use Tables 3 and 3a 

to compute the ratios. The columns 3a'/3' use Tables 3' and 3a' and the columns 3a''/3'' use Tables 3'' and 

3a''. The average in the last column is across the cells in the row. 

 

 Table 7 shows that removing temporary sales reduces our measure of price 

flexibility by a substantial amount. We may therefore conclude that from the point of 

view of the Bental-Eden model, temporary sale prices are important.  

 The version of the UST model in section 3.2 suggests that temporary sales are 

relatively more important for lower price bins. (In the example of Figure 2B removing 

temporary sale will affect the variances in the low price bin but will not affect the 

variances in the high price bin). To examine this prediction we look at the 5 bins division 

in the 2005 sample (not reported in Table 7). Figure 7A is the ratio of the standard 

deviation of the average regular price to the standard deviation of the average price 

(regular and sale). In the highest price bin (bin 1) the standard deviation of the average 

regular price is about 55% of the standard deviation of the average price. In the lowest 

price bin it is about 45%. Figure 7B is about quantities. In the highest price bin, the 

standard deviation of the average quantity in the sample of regular prices is about 85% of 

the standard deviation in the sample of all prices. In the lowest price bin the number is 
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about 65%. Figure 7C use the average over samples and methods as the last column in 

Table 7. For price the average ratio is 0.47 for bin 1 and 0.37 for bin 5. It thus appear that 

removing temporary sale prices has a larger effect on the variation of the average price in 

the low price bin.  

 

 

 
A. Ratios for SD Prices in the 2005 sample (P uses the original 

variables, P' uses the residuals when controlling for store effects and 
P'' uses the residuals when controlling for UPC specific store effects) 

 

 
B. Ratios for SD Quantities in the 2005 sample (X uses the original 

variables, X' uses the residuals when controlling for store effects and 
X'' uses the residuals when controlling for UPC specific store effects) 
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C. Average over samples and methods  

 
Figure 7: The ratio of the standard deviation (over weeks) of the 

cross-sectional average price in the sample of regular price to the 
standard deviation in the sample of all prices using the 5 bins 

division.  

 

 We may conclude that temporary sales have a larger effect on variations over 

weeks in low price bins as suggested by the example in Figure 2B.   

 

8.1 Variations over weeks by bins. 

 The example in Figure 2B also suggests that variations over weeks in the lowest 

price bin are larger than in the highest price bin. To examine this hypothesis, Table 8 
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prices (Table 3a). When using the 2 bins division, the standard deviation in the low price 
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larger. The percentage differences in the standard deviations are lower when using the 

sample of regular prices (RP in the second column).  

 The third column in Table 8 is the ratio of the standard deviation of the quantity 

sold by stores in the lowest price bin to the quantity sold by stores in the highest price 

bin. When using the 2 bins division, the standard deviation in the low price bin is 40% 

larger than the standard deviation in the high price bin. This difference is about 30% 

when controlling for a store effect and for a UPC specific store effect (the last rows of the 

Table). Also here the ratios are lower when using the sample of regular prices but the 

ratios are still greater than 1.  

 

Table 8: Ratio of the average standard deviation in the lowest price bin to the average 

standard deviation in the highest price bin.   
 P RP X RX 

no store eff. 
Tables 3     

2 bins 1.42 1.42 1.40 1.36 

3 bins 1.65 1.57 1.59 1.35 

5 bins 1.80 1.62 1.61 1.36 

store eff.  
Tables 3'     

2 bins 1.52 1.26 1.30 1.03 

3 bins 1.74 1.37 1.36 1.04 

5 bins 1.91 1.44 1.38 1.05 

upc specific 
Tables 3''     

2 bins 1.53 1.22 1.34 1.02 

3 bins 1.81 1.30 1.42 1.03 

5 bins 2.01 1.36 1.47 1.05 

* The Table reports the ratio of the average standard deviation in the lowest price bin to the average 

standard deviation in the highest price bin. Averages are over samples. The first column (P) is the ratio of 

the standard deviations of prices in the samples of all prices. The second column (RP) is this ratio in the 

samples of regular prices. The third column (X) is the ratio of the standard deviations of quantities and the 

last column (RX) is this ratio in the sample of regular prices.  

 

 We may therefore conclude that variations over weeks are relatively large in the 

low price bin. Removing temporary sales observations tends to reduce the difference in 

variations especially when controlling for UPC specific store effects.   
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9. PROBABILITIES 

 

 We have examined two predictions of (23): the quantity elasticity is between zero 

and unity and the cross price elasticity is less than the absolute value of the own price 

elasticity. Equation (23) has an additional prediction: The ratio of the cross price 

elasticity to the absolute value of the own price elasticity (C/O) is the same as the 

quantity elasticity (QE). This prediction can be examined by comparing two alternative 

calculations of the probability of attracting shoppers by the low price stores. The two 

alternative methods do not yield similar numbers when using the original variables or the 

store effect residuals. But they yield similar numbers when using the UPC specific 

residuals. Here we present the calculations for the UPC specific residuals.   

 Table 9 uses the estimated elasticities for the samples of all prices in Tables 4''-6'' 

and 2 methods for computing the probability. The first (Pr 1) is 1-QE where QE is the 

quantity elasticity. The second (Pr 2) is 1 - C/O, where C/O is the ratio of the cross price 

elasticity to the absolute value of the own price elasticity. There is a substantial 

agreement between the two methods and the probability of attracting shoppers by stores 

in lower price bins is higher.   

 

Table 9*: The probability of attracting shoppers by bin 
 Prob. 1 Prob. 2 

2 bins division   

bin 2 0.65 0.68 

3 bins division   

bin 2 0.58 0.59 

bin 3 0.77 0.81 

5 bins division   

bin 2 0.60 0.60 

bin 3 0.71 0.71 

bin 4 0.79 0.81 

bin 5 0.86 0.89 

* This Table uses the 2005 sample of all prices in Tables 4''-6''. The second column (Pr 1) is one minus the 

quantity elasticity. The third column (Pr 2) is one minus the ratio of the cross price elasticity to the absolute 

value of the own price elasticity.  
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10. CONCLUDING REMARKS 

  

 We provide results about elasticities within UPC-week cells, variations over 

weeks within UPC and the role of temporary sales.  

 The results about elasticities are obtained by dividing the stores in each UPC-

week cell into bins and running the average quantity sold by stores in the highest price 

bin on the average quantity and price in a lower price bin. Our main findings are: (a) The 

elasticity of the quantity sold by stores in the high price bin with respect to the quantity 

sold by stores in a low price bin (the quantity elasticity) is between zero and unity; (b) 

This quantity elasticity is higher when the explanatory variables are from bins closer in 

price to the highest price bin; (c) The elasticity of the quantity sold by stores in the high 

price bin with respect to the price in a low price bin (the cross price elasticity) is positive 

but less than the absolute value of the own price elasticity; (d) The cross price elasticity is 

higher when the explanatory variables are from bins closer in price to the highest price 

bin. 

 Observations (b) and (d) say that for the purpose of predicting the quantity sold by 

stores in the highest price bin, the quantity and price in medium price stores is more 

relevant than the quantity and price in low price stores.  

 We computed the average quantity sold and the cross sectional average price for 

each UPC-week-bin cell and found that: (e) Variations over weeks in the average price 

and quantity are lower for higher price bins.  

 We also make the following observations about temporary sales: (f) The fraction 

of stores that offer an item on sale fluctuates over weeks in a way that is not consistent 

with the mixed strategy hypothesis; (g) Temporary sales contribute substantially to 

variations over weeks in the average posted price and the quantity sold; (h) The 

contribution of temporary sales to variations over weeks is large for all bins and 

somewhat larger for lower price bins.   
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 Using our largest 2005 sample and controlling for UPC specific store effects the 

following estimates support the above conclusions:  

 (a) The quantity elasticity is 0.35 in the sample of all prices and 0.56 in the sample of 

regular prices (Table 4'', 2 bins).   

(b) The elasticity of the quantity sold by stores in bin 1 with respect to the quantity sold 

by stores in bin 2 is 0.4 while the elasticity with respect to the quantity sold by stores in 

bin 3 is 0.2 (Table 5'', 3 bins).   

(c) The cross price elasticity is 0.84 and the absolute value of the own price elasticity is 

2.65 (Table 4'', 2 bins).  

(d) The elasticity with respect to the price posted by stores in bin 2 is 1.0 while the 

elasticity with respect to the price posted by stores in bin 3 is 0.5 (Table 5'', 3 bins).  

(e) The standard deviation of the average price over weeks in the low price bin is 23% 

higher than the standard deviation of the average price in the high price bin. The number 

for quantity is 20% (Table 3a'', 2 bins). 

 The following numbers (again, using the UPC specific 2005 sample) support the 

conclusions about temporary sales:  

(f) For the average UPC, none of the stores have temporary sales in 43% of the weeks. 

The mixed strategy hypothesis implies that this number should be around 1%.   

(g) The standard deviation of the (cross sectional) average price over weeks in the sample 

of regular prices is only 41.9% of the standard deviation in the sample of all prices 

(Tables 3a'' and 3b'', 1 bin). The standard deviation of the quantity sold over weeks in the 

sample of regular prices is 64% of the standard deviation in the sample of all prices 

(Tables 3a'' and 3b'', 1 bin).  

(h) For bin 1, the standard deviation of the average price over weeks in the sample of 

regular prices is 42.2% of the standard deviation in the sample of all prices. The number 

for bin 2 is 38.3% (Tables 3a'' and 3b'', 2 bins). For bin 1, the standard deviation of the 
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quantity sold over weeks in the sample of regular prices is 70% of the standard deviation 

in the sample of all prices. This number is 60% for bin 2 (Tables 3a'' and 3b'', 2 bins). 

 

 The main findings are consistent with a UST model that allows for storage and 

non-shoppers (but are not consistent with the simple version of the UST model in section 

3.1 and the simple version of the monopolistic competition model in section 2).  

 The intuition for the observations about elasticities ([a]-[d]) is as follows. The 

amount sold by stores depends on a random shock that is common to all buyers and on 

the number of shoppers (buyers who shop across stores). From the point of view of 

predicting the quantity sold by stores in the highest price bin the common shock is 

relevant and the number of shoppers is a "noise". Therefore shoppers' activity reduces the 

quantity elasticity. Since in the absence of shoppers the quantity elasticity is unity, we 

find a quantity elasticity that is less than one. The quantity sold by stores in the medium 

price bin is less influenced by shoppers' activity and therefore it provides a better signal 

for the common shock. As a result the elasticity with respect to the quantity sold by stores 

in the medium price bin is higher than the elasticity with respect to the quantity sold by 

stores in the low price bin.   

 We have assumed that the demand of shoppers is less stable than the demand of 

non-shoppers. This may be the result of storage activity by shoppers as in Hendel and 

Nevo (2013). Shoppers who find the item at a low price buy a large quantity and store 

most of it. They then stay out of the market until the level of inventories at home is low. 

We think that explicitly modeling this behavior will lead to the result that the demand of 

shoppers is relatively unstable and this will lead to the result about variations over week 

([e]) because shoppers are more important for low price stores.   

 In section 3.2 temporary sales occur when demand in the previous period was low 

and stores that post the high regular price accumulate inventories. The prevalence of 

weeks with no temporary sales ([f]) is consistent with this model.   
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 Observation (g) is relevant to the question of whether temporary sales are 

important for price flexibility. The measure of price flexibility (or price rigidity) depends 

on the underlying model. In UST models with storage the behavior of the entire cross 

sectional distribution is important but the behavior of prices at the store level is not. We 

have focused on the average cross sectional price and found that temporary sales have a 

large effect on its variability over weeks. Thus, from the point of view of UST models, 

temporary sales are important for macro. 

 Observation (h) complements observation (f) in suggesting that temporary sales 

are correlated across stores. The UST model in Bental and Eden (1993) may account for 

this observation. In this model an increase in inventories depresses all prices including 

the prices in the top of the distribution. Over time the level of inventories go back to 

"normal" and prices go back to their "regular level".    
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APPENDIX A: AN EXISTENCE PROOF 

 

We now turn to show the following Claim.   

 

Claim A1: If  is small, there exists a unique solution to (5) that satisfies: 

.  

 

Proof: Let  

  

We look for a fixed point: . Since  and , we can 

sign the following derivatives:  

 and 

. 

Note that . Since  is small, the function  will intersect the 

45 degree line twice. We choose the lower intersection in Figure A1. Note that the 

function  is decreasing in  and therefore an increase in  will shift the curve 

downward and the fixed point will be lower. Therefore:  . Since  
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Figure A1 

 

 

The monopoly price charged by the non-advertisers is: 

(A1)   

The monopoly profits are: 

(A2)   

We require that advertisers will make the same profits as non-advertisers:  

(A3)   

 

Equilibrium.  
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 is small.  

 

 To show this Claim note since , (A4) insures that the condition in Claim A1 is 

satisfied for all .  

 

The expression (A4) is decreasing in  and in . Therefore the sufficient condition is 

satisfied when either  is large or  is large.  

 Figure A2 provides a numerical example.  In the figure there are three curves. The 

curve labeled "lambda/q" describes the standard UST prices which corresponds to the 

case . The curve labeled P(teta=-3) computes the equilibrium prices under the 

assumption that the own price elasticity is  and the curve labeled P(teta=-2) 

computes the equilibrium prices under the assumption . As can be seen having 

non-shoppers in the model increase prices and profit. In general when  is lower in 

absolute value there is more monopoly power and prices are higher. This seems to be the 

case when the probability of selling to shoppers is high. In our example, the price when 

 is an exception to the rule. The monopoly price is 1.5 when  and 2 when 

. In this example, the monopoly price is the highest price when .  
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Figure A2: The probability of making a sale to shoppers ( ) is on the horizontal axis. Equilibrium prices 

are on the vertical axis. All three curves assume . The curve lambda/q  ( ) is the prices of the 

standard UST model with !!k =Π =0 . The curves P assume !!k =1 . The curve P(teta=-3) assumes , 

 and = 0.15. The curve P(teta=-2) assumes ,  and 

= 0.25. 

 

Deviation from equilibrium behavior. 

Suppose that an advertiser increases his price from say  to . In this case a 

non-advertiser will fill the gap in the equilibrium price distribution by advertising . As 

a result the deviant advertiser will be able to sell only if  with probability . Will 

he increase his expected profits? To answer this question, let 

 

 denote the expected profits as a function of the probability of making a sale to shoppers 

and the price. The function  is increasing in . Under the assumption that  
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APPENDIX B: GENERALIZING THE RESULTS IN CLAIM 2 

   

Changing the dependent variable makes a big difference in this case. Substituting 

 in (22) leads to:  

(B1)   

 Here there is no correlation between the quantity sold by the monopoly  and the 

number of buyers served by the advertiser  and therefore when running a 

regression based on (B1) we expect the quantity elasticity to equal unity and the cross 

price elasticity to equal the absolute value of the own price elasticity.  

 

The relationship between the quantities sold by advertisers.  

 We now turn to study the relationship between the quantities sold by stores in two 

different bins that are occupied by advertisers.  

 We start with two stores indexed . Subtracting the quantity sold by advertiser ,

, from (22) leads to:  
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where  is the difference in the number of shoppers. Since , 

when  the number of shoppers is zero for both stores and . It is also zero 

when  because in this case the number of shoppers is 1 for both stores. The 

difference  is negative when  because in this case a shopper arrives in the low 

index store but does not arrive in the high index store. Thus,  

(B3)   when  and 0 otherwise}.   

Since  and ,  

(B4)   

!!
ln(a

t
)= − ln(k)+ ln(x

t

m)−θ ln(P
t

m)

!! 
ln(x

it
)= ln( !ω

i
)− ln(k)+ ln(x

t

m)−θ ln(P
t

m)+θ ln(P
it
)

!!
ln(x

t

m)

!! 
ln( !ω

i
)

!j < i ≤m !j

!! 
ln(x

jt
)= ln( !ω

j
)+ ln(a)+θ ln(P

jt
)

!!
ln(x

it
)= ln(x

jt
)+θ ln(P

it
)−θ ln(P

jt
)+D

ij

!! 
D
ij
= ln( !ω

i
)− ln( !ω

j
) !j < i

!s < j !!
D
ij
=0

!s ≥ i

!
D
ij !j ≤ s < i

!!

D
ij
= {ln(k)− ln(1+k)= ln(k)− ln

x
jt

aP
jt

θ

⎛

⎝
⎜

⎞

⎠
⎟ !j ≤ s < i

!

q
i
= π

s
s=i

m

∑
!

q
j
= π

s
s= j

m

∑

!!

Prob( j ≤ s < i)= π
s

s= j

i−1

∑ = q
j
−q

i



                      74 

The expected difference in the number of shoppers is:  

(B5)   

where . We can therefore write: 

(B6)   

where  is an  random variable with zero mean.  

Substituting (B6) in (B2) leads to:  

(B7)   

Since , , the quantity elasticity is between zero and unity and the 

own price elasticity is higher in absolute value than the cross price elasticity.  

 

Claim B1: (a) the quantity elasticity is between zero and unity, (b) the own price 

elasticity is higher in absolute value than the cross price elasticity, (c) the quantity 

elasticity and the cross price elasticity are decreasing with the distance between the bins.  

 

Parts (a) and (b) follow from . To show (c) note that the absolute value 

of the difference in the probabilities of selling to shoppers ( ) is larger for bins that 

are further apart.  

 We now turn to show that Claim 4 holds also for the case: . 
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Substituting (B10) in (B2) leads to:  

(B11)   

Since , Claim B1 holds also for this case. 

 

 The theory says that the quantity elasticity and the cross price elasticity declines 

with the index of the explanatory bin. We have seen that this is the case when the 

dependent variable is the quantity sold by stores in the first bin. Does it holds for the case 

where the dependent variable is X2 or X3?  

 We ran X2 on 9 explanatory variables: X1,X3,X4,X5,P1,P2,P3,P4,P5. We expect 

that the coefficient of X3 will be larger than the coefficient of X4 and X5. We also expect 

that the coefficient of P3 will be larger than the coefficient of P4 and P5. We also ran X3 

on X1,X2,X4,X5,P1,P2,P3,P4,P5. In this regression we expect that the coefficient of X4 

is larger than the coefficient of X5 and the coefficient of P4 is larger than the coefficient 

of P5.  

 We ran these regressions using the original variables, the variables net of store 

effects and the variables net of UPC specific store effects. The results support the above 

hypotheses. Figures B1 and B2 describe the results when using the variables net of UPC 

specific store effects. 
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A. Dependent variable = X2 

 
B. Dependent variable = X3 

Figure B1: Quantity Elasticities based on 9 explanatory variable 
regressions with UPC specific store effects 
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A. Dependent variable = X2 

 

 
B. Dependent variable = X3 

Figure B2: Price Elasticities based on a regression with 9 explanatory 
variables with UPC specific store effect 

‐3.50 

‐3.00 

‐2.50 

‐2.00 

‐1.50 

‐1.00 

‐0.50 

0.00 

0.50 

1.00 

1.50 

1  2  3  4  5 

P
r
ic
e
 E
la
s
ti
c
it
y
 

Bin 

p04 

p05 

p0405 

‐3.50 

‐3.00 

‐2.50 

‐2.00 

‐1.50 

‐1.00 

‐0.50 

0.00 

0.50 

1.00 

1  2  3  4  5 

P
r
ic
e
 E
la
s
ti
c
it
y
 

Bin 

p04 

p05 

p0405 


